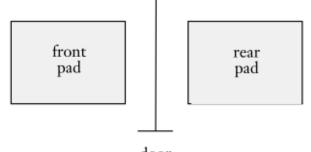
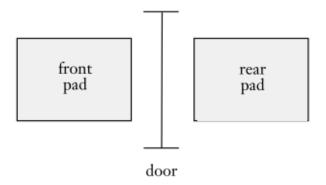
Chapter 1 Regular Languages

- computation theory begins with the question: what is a computer?
 - real computers are overly complicated for our uses
 - instead, we use an idealized computer, or computational model
 - we will use several different models with varying features
 - the first is the finite state machine, or finite automaton

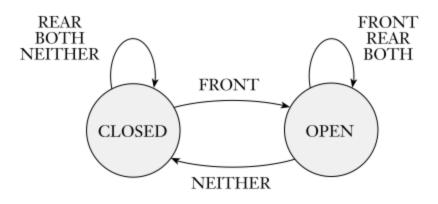
- finite automata
 - useful
 - limited memory
 - common in everyday life
 - example: automatic door controller with ground pads
 - front pad: detect person about to walk through door
 - rear pad: detect how long to hold the door, and to keep the door shut if someone is standing there



- example: automatic door with ground pads (cont.)
 - controller in one of two states: OPEN or CLOSED
 - four possible input conditions
 - FRONT: person standing on front pad
 - REAR: person is standing on rear pad
 - BOTH: people are standing on both pads
 - NEITHER: no one is standing on either pad



- example: automatic door with ground pads (cont.)
 - controller moves between states OPEN and CLOSED depending on input
 - state diagram



- example: automatic door with ground pads (cont.)
 - state transition table

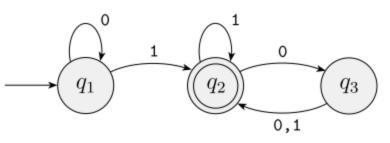
input signal

		NEITHER			
state	CLOSED	CLOSED	OPEN	CLOSED	CLOSED
	OPEN	CLOSED	OPEN	OPEN	OPEN

- if controller is CLOSED and receives input:
 - FRONT, REAR, NEITHER, FRONT, BOTH, NEITHER, REAR, and NEITHER
 - it would go through states:
 - •CLOSED (starting), OPEN, OPEN, CLOSED, OPEN, OPEN, CLOSED, CLOSED, CLOSED

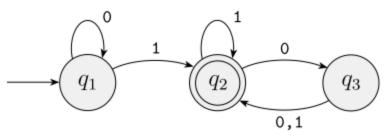
- automatic door controller as finite automaton
 - controller: computer with single bit of memory to hold state
- other controllers might need larger memories
 - elevator controller
 - state for current floor
 - inputs from buttons
 - dishwashers, thermostats, digital watches, calculators
 - Markov chains: useful for recognizing patterns in data
 - speech processing, optical character recognition
 - employ probabilistic state chains

• sample finite automaton M_1



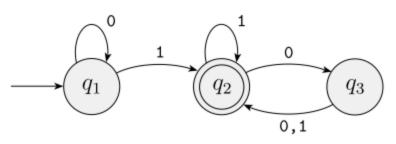
- state diagram
- three states: q_1 , q_2 , q_3
- \bullet start state: q_1 indicated by arrow pointing from nowhere
- accept state: q_2 with double circle
- transitions: other arrows

• sample finite automaton M_1



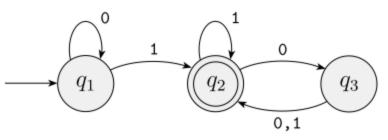
- when input string is received, e.g. 1101, the FA processes it and produces an output: accept or reject
 - begins at start state of M_1
 - input string symbols processed one by one from left to right
 - \bullet after reading each symbol, M_1 moves from one state to another according to the symbol
 - when the last symbol is read, M_1 produces output accept if it is in the accept state; otherwise reject

• sample finite automaton M_1



- e.g. 1101
 - start at state q₁
 - read 1, follow transition from q_1 to q_2
 - read 1, follow transition from q_2 to q_2
 - read 0, follow transition from q_2 to q_3
 - read 1, follow transition from q_3 to q_2
 - accept because M_1 is in an accept state q_2 at end of input

• sample finite automaton M_1



- other strings accepted
 - 1, 01, 11, 01010101

•any string that ends with 1

• 100, 0100, 110000, 0101010000

•any string that ends with an even number of Os

- rejected strings
 - 0, 10, 101000

- formal definition
 - diagrams easier to understand, but formal definition needed because it is
 - precise
 - resolves uncertainties as to what is allowed
 - notation
 - helps express thoughts clearly

- formal definition
 - requires multiple parts (5-tuple)
 - set of states
 - rules for transitions between states depending on input
 - input alphabet of allowable input symbols
 - start state
 - set of accept states (or final states)

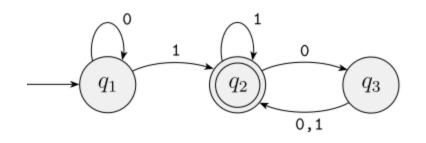
- concerning rules for transitions between states
 - $\boldsymbol{\cdot}$ use transition functions, denoted by $\boldsymbol{\delta}$
 - if FA has an arrow from state x to state y when it reads a 1, it will move from x to y when 1 is read

formal definition

A *finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- 2. Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*,
- **4.** $q_0 \in Q$ is the *start state*, and
- 5. $F \subseteq Q$ is the set of accept states
- with this definition we see
 - O accept states is allowable
 - δ specifies exactly one next state for each state/input value

for example



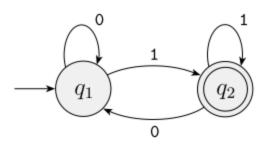
- M_1 can be described as $M_1 = (Q, \Sigma, \delta, q_1, F)$ where
 - Q = { q_1, q_2, q_3 }
 - Σ = {0, 1}
 - $\cdot \delta$ is described as

$$\begin{array}{c|cccc} 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_3 & q_2 \\ q_3 & q_2 & q_2, \end{array}$$

• q_1 is the start state

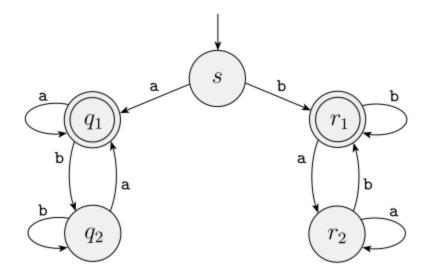
- if A is the set of all strings that M accepts
 - A is the language of M
 - $\cdot L(M) = A$
 - M recognizes A
 - M accepts A
- a machine may accept multiple strings, but it only recognizes one language
 - if it accepts no strings, it recognizes the empty language Ø
- M₁ recognizes A where A = {w | w has at least one 1 and an even number of 0s follow the last 1}

• example



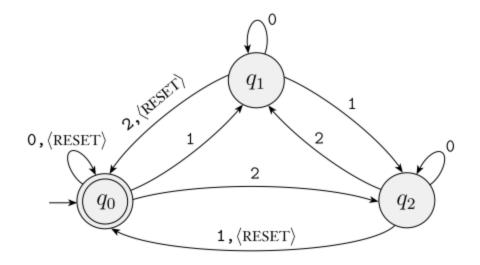
- $M_2 = (\{q_1, q_2\}, \{0, 1\}, \delta, q_1, \{q_2\})$ where
 - δ is described as $\begin{array}{c|c} 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2. \end{array}$
- try sample strings
- What language does M₂ recognize?
 - all binary strings ending with a 1

• example



- What language does M₄ recognize?
 - all strings of {a,b} beginning and ending with the same letter

• example



- think about a counter or accumulator where RESET sets it back to 0
- What language does M₅ recognize?
 - accepts all strings with digits summing to 0 mod 3

- for some FAs, a state diagram is not possible
 - it may be too large to draw (but not infinite)
 - description depends on an unspecified parameter
 - a formal definition must then be used to specify the machine
- e.g., a generalization of the previous example

- formal definition of computation
 - let $M = (Q, \Sigma, \delta, q_1, F)$ be a FA and $w = w_1 w_2 \dots w_n$ be a string where each w_i is a member of the alphabet
 - M accepts w if a sequence of states r_0, r_1, \dots, r_n in Q exists with three conditions:
 - $r_0 = q_0$
 - machine starts at start state
 - $\delta(r_i, w_{i+1}) = r_{i+1}$ for i = 0, ..., n-1
 - machine goes from state to state according to transition function
 - $r_n \in F$
 - machine accepts its input if it ends up in an accept state

- formal definition of computation (cont.)
 - M recognizes language A if
 - A = {w | M accepts w}
 - a language is called a regular language if some finite automaton recognizes it

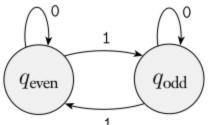
- designing finite automata
 - cannot be prescribed easily
 - put yourself in the place of the machine
 - you receive a string an input string and must determine whether it is a member of the language the automaton is supposed to recognize
 - process the symbols in the string one by one
 - decide whether the string seen so far is in the language since you don't know when the string will end

- designing finite automata (cont.)
 - determine what you need to remember about the string as you are reading it
 - input could be very long, but you probably don't need to remember the entire input string
 - you have finite memory, e.g., a single sheet of paper
 - what is the crucial information to remember?

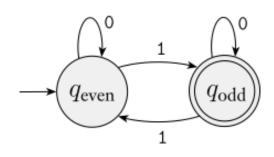
- designing finite automata
 - example: construct a FA that recognizes the language of all bit strings with an odd number of 1s
 - as you traverse the string, you don't need to remember the entire string
 - simply remember whether the number of 1's seen so far is odd or even
 - if you read a 1, flip the answer
 - if you read a 0, leave the answer as is

- designing finite automata
 - example: construct a FA that recognizes the language of all bit strings with an odd number of 1s (cont.)
 - once you have the necessary information to remember, make a finite list of possibilities
 - even so far
 - odd so far
 - assign a state to each of the possibilities

- designing finite automata
 - example: construct a FA that recognizes the language of all bit strings with an odd number of 1s (cont.)
 - assign transitions to go from one possibility to another \bigcirc



- set the start state to q_{even} since 0 is an even number
- set q_{odd} to be the accept state

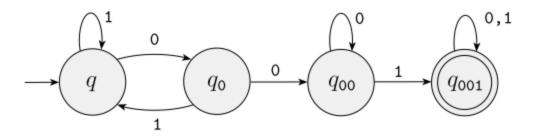


- designing finite automata
 - example: construct a FA that recognizes the regular language of all bit strings that contain 001
 - e.g., 0010, 1001, 001, 11111001111, but not 11 and 000
 - if you were the automaton, you would read symbols from the beginning, skipping over all 1s
 - if you read a 0, you may be seeing the start of 001
 - if you read a 1 next, there are too few Os, so go back to skipping over 1s
 - •if you read a 0 next, you need to remember that you have now seen two symbols of the pattern
 - continue scanning until you see a 1 if so, remember that you have found the pattern, and keep reading to the end of the string

- designing finite automata
 - example: construct a FA that recognizes the regular language of all bit strings that contain 001 (cont.)
 - four different possibilities
 - you haven't seen any symbols of the pattern
 - you have seen just one O
 - you have seen 00
 - you have seen the entire pattern 001
 - assign states q, q_0 , q_{00} , and q_{001} to these possibilities

- designing finite automata
 - example: construct a FA that recognizes the regular language of all bit strings that contain 001 (cont.)
 - assign the transitions
 - from q
 - if you read a 1, stay in q
 - if you read a 0, go to q_0
 - from q_0
 - if you read a 1, return to q
 - if you read a 0, go to q_{00}
 - from q_{00}
 - if you read a 1, go to q_{001}
 - if you read a 0, stay in q_{00}
 - from q_{001}
 - if you read a 0 or 1, stay in q_{001}

- designing finite automata
 - example: construct a FA that recognizes the regular language of all bit strings that contain 001 (cont.)
 - start state is q
 - accept state is q_{001}



- regular operations
 - properties for finite automata
 - help us design FA to recognize particular languages
 - help us determine other languages are nonregular
 - three regular operations
 - union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
 - concatenation: $A \circ B = \{ xy \mid x \in A \text{ and } y \in B \}$
 - star: $A^* = \{x_1x_2...x_k \mid k \ge 0 \text{ and each } x_i \in A\}$

where A and B are regular languages

- regular operations
 - regular operation notes
 - union: takes all strings in A and B and puts them into one language
 - concatenation: attaches a string from A in front of a string from B in all possible ways to get the new language
 - star: unary rather than binary
 - attaches any number (0 or more) of strings in A to get a string in the new language
 - empty string ε is always a member of A^*

- regular operations
 - example: $\Sigma = \{a, b, ..., z\}$, $A = \{good, bad\}$, $B = \{boy, girl\}$
 - $A \cup B = \{good, bad, boy, girl\}$
 - A B = {goodboy, goodgirl, badboy, badgirl}
 - A* = {ε, good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, ...}

- closure
 - consider N = {1, 2, 3, ...}
 - N is closed under multiplication means that when we multiply any two numbers from N, we get a product that is also in N
 - N is not closed under division (why?)
 - in general, a collection of objects is closed under some operation if the result of that operation is still in the collection

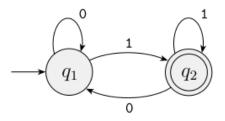
- closure
 - regular languages are closed under union
 - if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$
 - proof idea: construct a FA M that recognizes $A_1 \cup A_2$
 - if M_1 recognizes A_1 and M_2 recognizes A_2 , then M will simulate both M_1 and M_2 , accepting if either M_1 or M_2 accepts
 - cannot simulate M_1 and then M_2
 - cannot rewind the input

- closure
 - regular languages are closed under union (cont.)
 - instead, simulate M_1 and M_2 simultaneously
 - remember state each machine would be in if it had read the input up to this point
 - if M_1 has k_1 states and M_2 has k_2 states, the number of pairs of states is $k_1 \times k_2$
 - each state in M will be a pair
 - transitions go from pair to pair, updating the current state of both M_1 and M_2
 - accept states are those pairs where either $M_1\,\text{or}$ M_2 is in an accept state

- closure
 - proof: regular languages are closed under union (cont.)
 - let M_1 recognize A_1 where $M_1 = \{Q_1, \Sigma, \delta_1, q_1, F_1\}$
 - let M_2 recognize A_2 where $M_2 = \{Q_2, \Sigma, \delta_2, q_2, F_2\}$

- closure
 - proof: regular languages are closed under union (cont.)
 - construct $M = \{Q, \Sigma, \delta, q_0, F\}$ to recognize $A_1 \cup A_2$
 - Q = {(r_1, r_2) | $r_1 \in Q_1$ and $r_2 \in Q_2$ }
 - cartesian product for all pairs of states $Q_1 \times Q_2$
 - $\bullet \Sigma$ alphabet for both
 - δ transition function for each $(r_1, r_2) \in \mathbb{Q}$ and $a \in \Sigma$ • $\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$
 - moves from state pair to state pair based on a
 - q_0 is the pair (q_1, q_2)
 - F is set of pairs where M_1 or M_2 is in an accept state •F = { $(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2$ } not and

- closure
 - regular languages are closed under union example
 - let M_1 recognize A_1 where $M_1 = \{Q_1, \Sigma, \delta_1, q_1, F_1\}$



• let M_2 recognize A_2 where $M_2 = \{Q_2, \Sigma, \delta_2, q_2, F_2\}$

$$M_{2} = \{\{q_{1}, q_{2}, q_{3}\}, \{0, 1\}, \delta_{2}, q_{1}, \{q_{2}\}\} \xrightarrow{q_{1}} q_{2} \xrightarrow{q_{1}} q_{3}$$

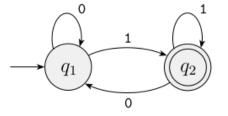
binary strings with 1 followed by even number of Os

- closure
 - regular languages are closed under union example
 - let M_1 recognize A_1 where $M_1 = \{Q_1, \Sigma, \delta_1, q_1, F_1\}$
 - let M_2 recognize A_2 where $M_2 = \{Q_2, \Sigma, \delta_2, q_2, F_2\}$

new states: $q_{11}, q_{12}, q_{13}, q_{21}, q_{22}, q_{23}$ $\Sigma = \{0, 1\}$

start state: q₁₁

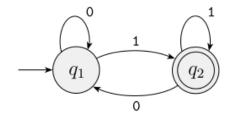
accept states: {q₁₂, q₂₁, q₂₂, q₂₃}

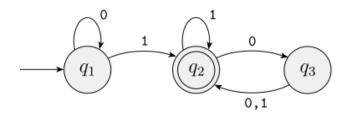


 q_1 q_2 q_3 q_3

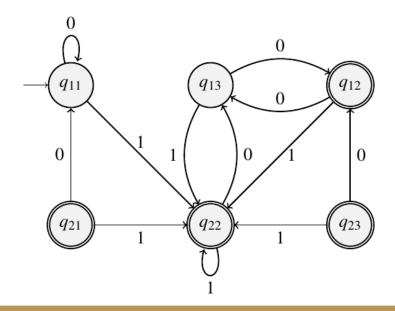
accepts binary strings ending with 1 or containing a 1 followed by an even # of Os

• closure

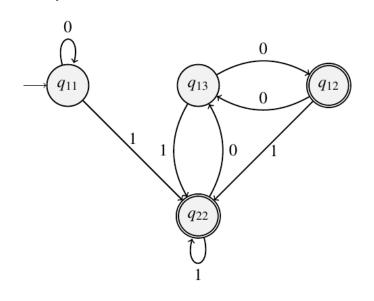




union

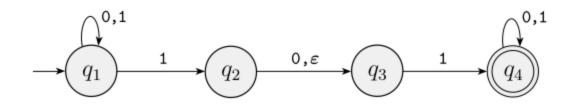


simplified



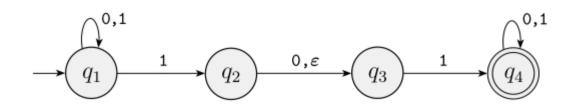
- closure
 - regular languages are closed under concatenation
 - let M_1 recognize A_1 where $M_1 = \{Q_1, \Sigma, \delta_1, q_1, F_1\}$
 - let M_2 recognize A_2 where $M_2 = \{Q_2, \Sigma, \delta_2, q_2, F_2\}$
 - construct M to accept input first for M_1 , then for M_2
 - BUT, M doesn't know where to break its input
 - where the first part ends and the second part begins
 - we need to introduce a new technique called nondeterminism

- so far, we have considered only deterministic finite automata (DFA)
 - i.e., when a machine is in a given state and reads the next input symbol, there is only one state that can be the next state
- in a nondeterministic machine, several choices may exist for the next state
 - nondeterminism is a generalization of determinism



• what do you notice that is different in this NFA?

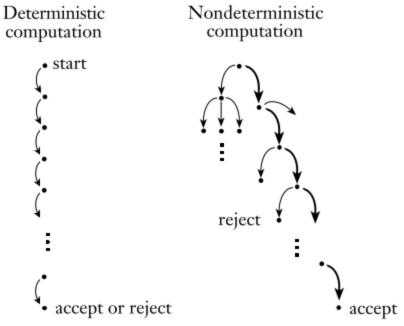
- differences between DFAs and NFAs
 - DFAs: states may have exactly one exiting arrow for each symbol
 - NFAs: a state may have zero, one, or many exiting arrows for each symbol
 - DFAs: labels on transition arrows are symbols from the alphabet
 - NFAs: labels on transition arrows are symbols from the alphabet or ϵ ; zero, one, or many arrows may exit from each state with label ϵ



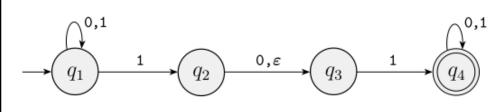
- how does an NFA compute?
 - if multiple ways to proceed exist after reading a symbol, the machine splits into multiple copies of itself and follows all possibilities in parallel
 - machine also splits for all ε branches that can be taken
 - each copy takes one of the possible ways to proceed and continues as before
 - each machine continues to split as needed
 - if the next input symbol does not match an exiting arrow for a machine's current state, that copy of the machine dies, along with its branch of computation
 - if any one of the copies reaches an accept state at the end of the input, the NFA accepts the input string

- nondeterminism can be viewed as a parallel computation
 - multiple independent "processes" or "threads" can be running concurrently
 - each split corresponds to a process forking into multiple children, with each proceeding separately
 - if at least one of these processes accepts, then the entire computation accepts

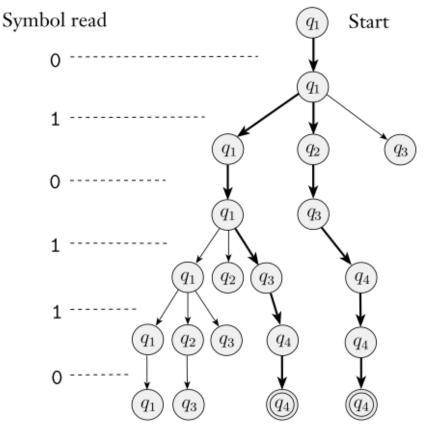
- nondeterminism can be viewed as a tree of possibilities
 - root is the start of the computation
 - branches signify the machine splitting across multiple choices
 - machine accepts if at least one branch ends in an accept state



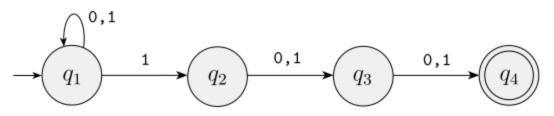
- example: NFA N_1 on 010110
 - keep track of possibilities by placing fingers over each state where a machine could be



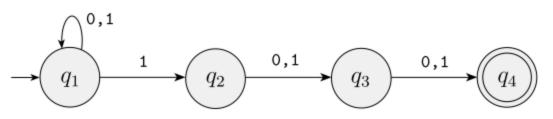
- what about 010?
- what language does this accept?
 - all strings with 101 or 11



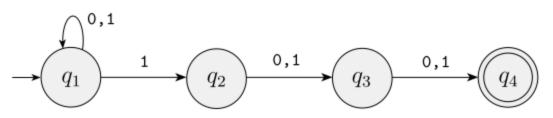
- NFAs are useful in several ways
 - every NFA can be converted directly into a DFA
 - constructing NFAs is sometimes easier than directly constructing DFAs
 - an NFA may be much smaller or easier to understand than its corresponding DFA



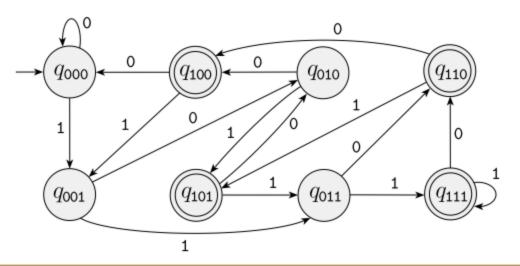
- what language does it accept?
 - all binary strings with 1 in third-to-last position

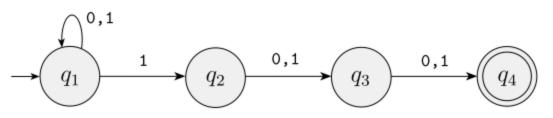


- can think of it as staying in the start state until it guesses that it is three places from the end
- \bullet at that point, if the next symbol is 1, it branches to q_2 and uses q_3 and q_4 to check its guess

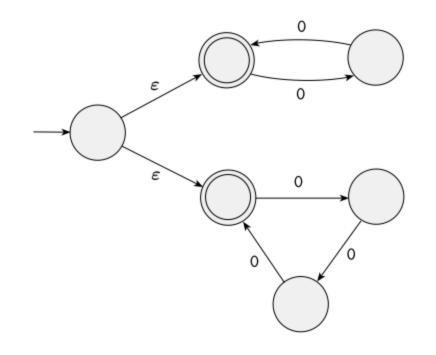


- this NFA can be converted to an equivalent DFA, but with more states and transitions
- smallest equivalent DFA

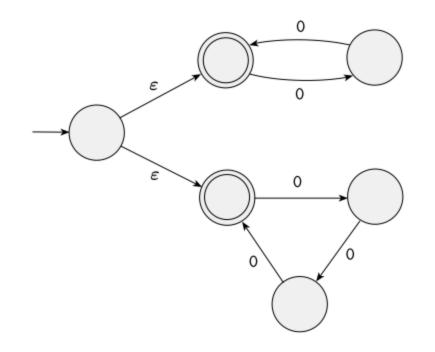




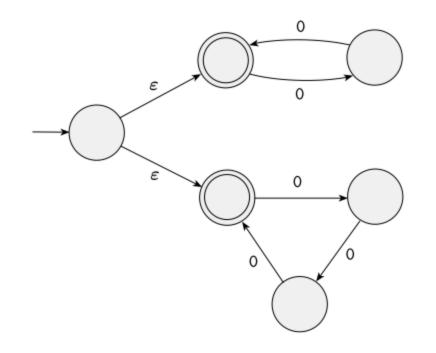
- what language would N_2 recognize if edges with labels ϵ were added from q_2 to q_3 and from q_3 to $q_4?$
 - all binary strings containing a 1 in any of the last three positions
- how would the corresponding DFA change?



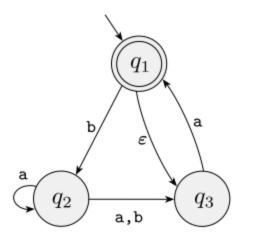
- unary alphabet {0}
- what language does this accept?



- accepts ε, 00, 000, 0000, 000000 but not 0, 00000
- accepts all strings O^k where k is 0 or a multiple of 2 or 3



- think of the machine as guessing whether to test for multiples of 2 or 3
- could use a DFA instead, but N_3 is easiest to understand



- accepts ε, a, baba, baa
- does not accept b, bb, babba
- \bullet so, the language consists of ϵ and strings composed of a's and b's, but always ending in a
 - more limitations, but this language cannot be easily and succinctly described

- formal definition of NFA
 - similar to DFA, but transition functions are different
 - in NFA, transition function takes a state and an input symbol *or the empty string* and produces a *set* of possible next states
 - \cdot recall P(Q) is the power set (set of all subsets)
 - alphabet must add ɛ

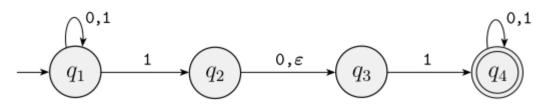
•
$$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$$

formal definition of NFA

A *nondeterministic finite automaton* is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set of states,
- **2.** Σ is a finite alphabet,
- 3. $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

• example N_1



- formal definition
 - Q = {q₁, q₂, q₃, q₄}
 - Σ = {0, 1}
 - $\bullet \delta$ is given as 0 1 ε $\{q_1\}$ $\{q_1, q_2\}$ Ø q_1 $\{q_3\}$ q_2 $\{q_3\}$ Ø $\{q_4\}$ Ø Ø q_3 Ø. $\{q_4\}$ $\{q_4\}$ q_4
 - q_1 is the start state

- formal definition of computation
 - similar to DFA
 - let N = (Q, Σ , δ , q_0 , F) be a NFA and w a string over alphabet Σ
 - N accepts w if we can write w as $w = y_1y_2...y_n$ where each y_i is a member of Σ_{ϵ} and the sequence of states r_0 , r_1 ,... r_n in Q exists with three conditions:
 - $r_0 = q_0$
 - machine starts at start state
 - $r_{i+1}\in\delta$ $(r_i,\,y_{i+1})\,$ for i = 0, ..., m-1
 - machine goes from state r_i to $r_{i\!+\!1}$ which is a member of the set of allowable next states according to transition function
 - $r_m \in F$
 - machine accepts its input if it ends up in an accept state

- equivalence of NFAs and DFAs
 - deterministic and nondeterministic FAs recognize the same class of languages
 - surprising since NFAs seem more powerful
 - useful because NFAs are often easier to construct and understand
 - two machines are equivalent if they recognize the same language

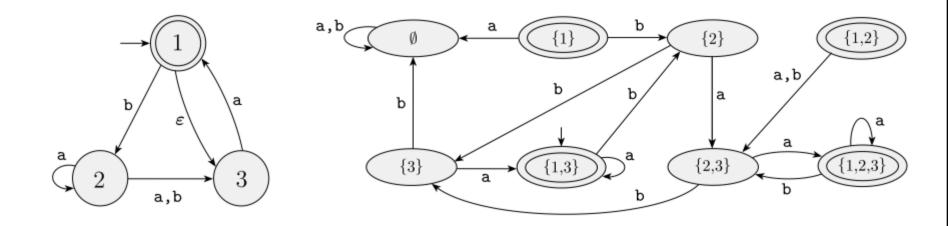
- Theorem: every nondeterministic finite automaton has an equivalent deterministic finite automaton
 - proof idea
 - convert NFA to equivalent DFA that simulates it
 - · consider what happens as input is read
 - what do you need to keep track of?
 - various branches of computation by placing fingers over active states
 - if the NFA has k states, there are 2^k subsets of states
 - each subset corresponds to one state the DFA will need to keep track of, so the DFA will have 2^k states
 - set start and accept states for DFA

- proof
 - let N = (Q, Σ , δ , q_0 , F) be the NFA recognizing A
 - construct DFA M = (Q', Σ , δ' , q_0' , F') recognizing A
 - $\boldsymbol{\cdot}$ first consider case where N has no $\boldsymbol{\epsilon}$ edges
 - Q' = P(Q)
 - every state of M is a set of states of N
 - let δ' (R, a) = {q \in Q | q \in \delta (r, a) for some r \in R} where R \in Q
 - if R is a state of M, it is also a set of states of N; when M reads a symbol a in R, it goes to one or more states in R, so $\delta'(R, a) = U_{r \in R} \delta(r, a)$
 - $q_0' = \{q_0\}$
 - M starts in the state corresponding to the collection containing just the start state of N
 - $F' = \{R \in Q' \mid R \text{ contains an accept state of } N\}$
 - machine accepts if one of the possible states that N could be in at this point is an accept state

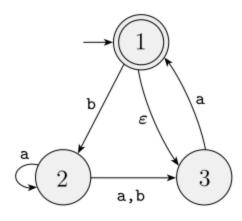
- proof (cont.)
 - \cdot now consider ϵ edges
 - for any state R of M, E(R) is the collection of states that can be reached from members of R by following ϵ arrows, including the members of R themselves
 - E(R) = {q | q can be reached from R by 0 or more ε arrows}
 - \bullet modify transition function to include states reached by ϵ arrows
 - $\delta'(R, a) = \{q \in Q \mid q \in E(\delta(r, a)) \text{ for some } r \in R\}$
 - modify start state $q_0' = E(\{q_0\})$

- corollary
 - a language is regular if and only if some nondeterministic finite automaton recognizes it

 $\boldsymbol{\cdot}$ convert NFA N_4 to a DFA

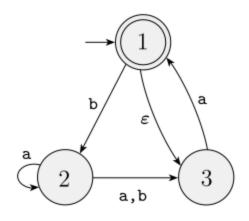


 $\boldsymbol{\cdot}$ convert NFA N_4 to a DFA



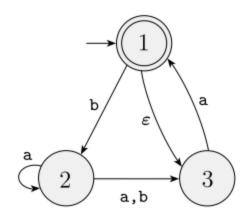
- $N_4 = (Q, \{a, b\}, \delta, 1, \{1\})$ where $Q = \{1, 2, 3\}$
- DFA D's states will be
 - $P(Q) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$
- D's start state = E({1}) = {1, 3}
- D's accept states = {{1}, {1,2}, {1,3}, {1,2,3}}
 - \cdot anything containing the N₄'s accept states

• convert NFA N_4 to a DFA (cont.)



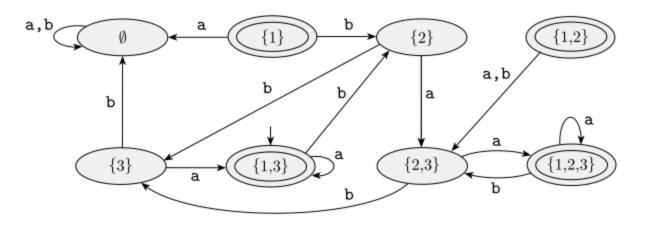
- D's transition function
 - each of D's states must go to one place on input a and one place on input b
 - state {2} goes to {2,3} on a and {3} on b
 - state {1} goes to Ø on a and {2} on b
 - note: follow ε arrows as a new state is entered (start state or state reached by input symbol)

• convert NFA N_4 to a DFA (cont.)

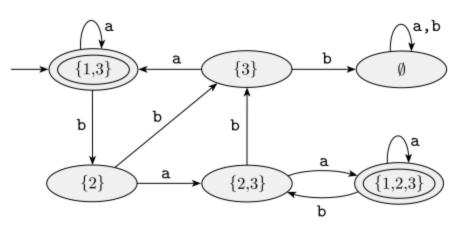


- D's transition function (cont.)
 - state $\{3\}$ goes to $\{1,3\}$ on a and \emptyset on b
 - state {1,2} goes to {2,3} on a and {2,3} on b
 - etc.

- convert NFA N_4 to a DFA (cont.)
 - DFA D



- DFA D simplified
 - remove states that cannot be reached

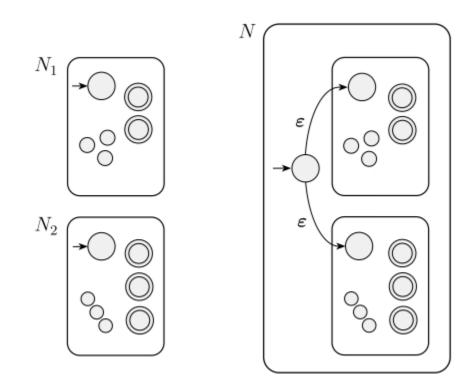


- closure under the regular operations
 - remember that we started this topic on nondeterminism because we needed NFA to prove regular operations were closed under
 - union
 - concatenation
 - star

- closure under union
 - we proved closure under union before by simulating both machines simultaneously
 - the new proof using nondeterminism is easier

- closure under union (cont.)
 - if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$
 - proof idea: construct NFA N that recognizes $A_1 \cup A_2$
 - if N_1 recognizes A_1 and N_2 recognizes A_2 , then N will combine N_1 and N_2 , accepting if either N_1 or N_2 accepts
 - N has new start state that branches to the start states of N_1 and N_2 with ϵ arrows
 - N nondeterministically guesses which machine accepts the input
 - if either N_1 or N_2 accepts, N will accept, too

• closure under union (cont.)



- closure under union (cont.)
 - proof: regular languages are closed under union
 - let N_1 recognize A_1 where $N_1 = \{Q_1, \Sigma, \delta_1, q_1, F_1\}$
 - let N_2 recognize A_2 where $N_2 = \{Q_2, \Sigma, \delta_2, q_2, F_2\}$
 - construct N = {Q, Σ , δ , q_0 , F) to recognize $A_1 \cup A_2$
 - $\mathbf{Q} = \{\mathbf{q}_0\} \cup \mathbf{Q}_1 \cup \mathbf{Q}_2$
 - the states of N are all states of $N_1 \,and \, N_2$ with new start state q_0
 - Σ alphabet for both
 - δ transition function for each $q \in Q$ and $a \in \Sigma_{\epsilon}$

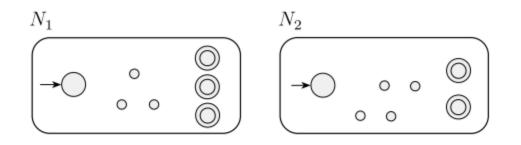
•
$$\delta(q, a) = \delta_1(q, a) \quad q \in Q_1$$

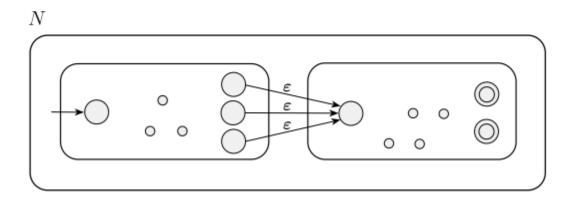
- $\delta(q, a) = \delta_2(q, a) \quad q \in Q_2$
- $\delta(q, a) = \{q_1, q_2\}$ $q = q_0$ and $a = \varepsilon$
- $\delta(q, a) = \emptyset$ $q = q_0$ and $a \neq \varepsilon$
- q_0 is the start state of N
- $F = F_1 \cup F_2$
 - the accept states of N are all the accept states of N_1 and N_2 so that N accepts if either N_1 or N_2 accepts

- closure under concatenation
 - we tried earlier to prove closure under concatenation, but we didn't finish because it was too difficult
 - the new proof using nondeterminism is easier

- closure under concatenation (cont.)
 - if A_1 and A_2 are regular languages, so is $A_1 \circ A_2$
 - proof idea: construct NFA N that recognizes $A_1 \circ A_2$
 - if N_1 recognizes A_1 and N_2 recognizes A_2 , then N will combine N_1 and N_2
 - start state of N is assigned to the start state of N_1
 - the accept states of N_1 have additional ϵ arrows that nondeterministically allow branching to N_2 whenever N_1 is in an accept state
 - i.e., the first part of the concatenation has been found
 - accept states of N are the accept states of N_2 only
 - accepts when input split into two parts: N_1 and N_2
 - nondeterministically guesses where to make split

closure under concatenation (cont.)





- closure under concatenation (cont.)
 - proof: regular languages are closed under concatenation
 - let N₁ recognize A₁ where N₁ = {Q₁, Σ , δ_1 , q_1 , F_1)
 - let N₂ recognize A₂ where N₂ = {Q₂, Σ , δ_2 , q_2 , F_2)
 - construct N = {Q, Σ , δ , q_0 , F) to recognize $A_1 \circ A_2$

$$\mathbf{Q} = \mathbf{Q}_1 \cup \mathbf{Q}_2$$

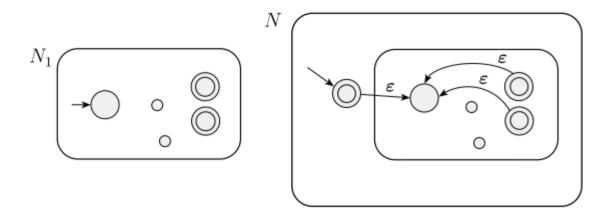
- the states of N are all states of N_1 and N_2
- Σ alphabet for both
- δ transition function for any $q \in \mathbb{Q}$ and any $a \in \Sigma_{\varepsilon}$
 - $\bullet \delta(q, a) = \delta_1(q, a)$ $q \in Q_1$ and $q \notin F_1$ • δ (q, a) = δ_1 (q, a) q ∈ F₁ and a ≠ ε
 - $\delta(q, a) = \delta_1(q, a) \cup \{q_2\}$ $q \in F_1$ and $a = \varepsilon$ $q \in Q_2$
 - $\bullet \delta(q, a) = \delta_2(q, a)$
- q_1 is the start state of N
- $F = F_2$

• the accept states of N are all the accept states of N_2

- closure under star
 - if A_1 is a regular languages, so is A_1^*
 - proof idea: construct NFA N that recognizes A_1^*
 - modify N_1 that recognizes A_1 to produce N
 - N will accept its input whenever it can be broken into several pieced and N_1 accepts each piece

- closure under star (cont.)
 - proof idea: construct NFA N that recognizes A₁*
 - modify N_1 that recognizes A_1 to produce N
 - N will be similar to $N_1,$ but with additional ϵ arrows returning to the start state from the accept states
 - \bullet when processing gets to the end of a piece that N_1 accepts, you can jump back to the start state to try to read another piece that N_1 accepts
 - N must also accept ε , which is always a member of A_1^*
 - could add start state to set of accept states, but may cause other bad strings to be accepted
 - \bullet instead, add a new start state that is also an accept state and that has an ϵ arrow to the old start state

• closure under star (cont.)



- closure under star (cont.)
 - proof: regular languages are closed under star
 - let N_1 recognize A_1 where $N_1 = \{Q_1, \Sigma, \delta_1, q_1, F_1\}$
 - construct N = {Q, Σ , δ , q_0 , F) to recognize A_1^*
 - $Q = \{q_0\} \cup Q_1$
 - ${\boldsymbol{\cdot}}$ the states of N are states of N_1 plus new start state
 - Σ alphabet
 - δ transition function for each $q \in Q$ and $a \in \Sigma_{\epsilon}$
 - $\delta(q, a) = \delta_1(q, a)$ $q \in Q_1 \text{ and } q \notin F_1$
 - $\delta(q, a) = \delta_1(q, a)$ $q \in F_1 \text{ and } a \neq \varepsilon$
 - $\delta(q, a) = \delta_1(q, a) \cup \{q_1\} \quad q \in F_1 \text{ and } a = \varepsilon$
 - $\delta(q, a) = \{q_1\}$ $q = q_0 \text{ and } a = \epsilon$
 - $\delta(q, a) = \emptyset$ $q = q_0 \text{ and } a \neq \varepsilon$
 - \bullet q_0 is the new start state of N
 - $F = \{q_0\} \cup F_1$
 - the accept states are old accept states plus new start state

- in arithmetic, we can use operations + and x to build expressions
 - (5 + 3) × 4
 - value?
- similarly, we use regular expression operations to build up regular expressions
 - (0 ∪ 1)0*
 - value: a language consisting of all strings starting with 0 or 1 followed by any number of 0s

- similarly, we use regular expression operations to build up regular expressions (cont.)
 - (0 ∪ 1)0*
 - in this example
 - (0 \cup 1) is short for ({0} \cup {1})
 - value is language {0, 1}
 - 0* means {0}*
 - value is language of all strings containing any number of Os
 - concatenation symbol can be implicit
 - instead of $(0 \cup 1) \circ 0^*$, it's just $(0 \cup 1)0^*$
 - like multiplication

- regular expressions are important in computer science applications
 - e.g., search for strings with specific patterns
 - regular expressions are used in
 - awk and grep in Unix/Linux
 - Perl
 - e.g., \$myfilesearch =~ s/"//g;
 - text editors

- e.g., (0 ∪ 1)*
 - value is language of all possible strings of 0s and 1s
- if Σ = {0, 1}
 - Σ is shorthand for (0 \cup 1)
 - $\cdot \ \Sigma$ describes language consisting of all strings of length 1 over this alphabet
 - $\cdot \ \Sigma^*$ describes language consisting of all strings over this alphabet
 - Σ^{*1} is all strings that end in 1
 - (OS*) \cup (S*1) is all strings that start with 0 or end with 1

- in arithmetic, x has precedence over +
 - 2 + 3 × 4
 - value?
- to change the precedence, must use parentheses
 - (2 + 3) × 4
- precedence in regular expressions
 - ()
 - *
 - concatenation
 - union

- R is a regular expression if R is
 - $\boldsymbol{\cdot}$ a for some a in $\boldsymbol{\Sigma}$
 - 8
 - ٠Ø
 - ($R_1 \cup R_2$) where R_1 and R_2 are regular expressions
 - ($R_1 \circ R_2$) where R_1 and R_2 are regular expressions
 - (R_1^*) where R_1 is a regular expressions
- ${\boldsymbol{\cdot}}$ careful with ${\boldsymbol{\epsilon}}$ and ${\boldsymbol{\varnothing}}$
 - $\cdot \epsilon$ the language containing one string: the empty string
 - $\cdot \mathcal{Q}$ the language containing no strings
- using R_1 and R_2 in definition not circular, but inductive

- R⁺ shorthand for RR*
 - R* 0 or more concatenations from R
 - \cdot R⁺ 1 or more concatenations from R
 - $R^+ \cup \epsilon = R^*$
 - R^k k concatenations of R
- L(R) language of R

- regular expression exercises
 - 0*10* =
 - {w | w contains a single 1}
 - Σ*1Σ* =
 - {w | w contains at least one 1}
 - Σ*001Σ* =
 - {w | w contains the substring 001}
 - 1*(01⁺)* =
 - {w | every 0 in w is followed by at least one 1}
 - (ΣΣ)* =
 - {w | w is a string of even length}
 - (ΣΣΣ)* =
 - {w | the length of w is a multiple of 3}

- regular expression exercises (cont.)
 - 01 U 10 =
 - {01, 10}
 - ΟΣ*Ο ∪ 1Σ*1 ∪ Ο ∪ 1 =
 - {w | w starts and end with the same symbol}
 - $(0 \cup \epsilon)1^* = 0.01^* \cup 1^*$
 - $(0 \cup \varepsilon) (1 \cup \varepsilon) =$
 - {ε, 0, 1, 01}
 - 1*Ø =
 - ٠Ø
 - Ø* =

- regular expression identities
 - $\cdot \mathsf{R} \cup \emptyset = \mathsf{R}$
 - R ∘ ε = R
 - $R \cup \epsilon$ may not = R
 - if R = 0 then L(R) = $\{0\}$ but L(R $\cup \varepsilon$) = $\{0, \varepsilon\}$
 - $R \circ \emptyset$ may not = R
 - if R = 0 then $L(R) = \{0\}$ but $L(R \circ \emptyset) = \emptyset$

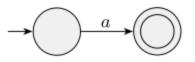
- regular expressions are useful for designing compilers for programming languages
 - tokens, such as constants or variable names, may be described using regular expressions
 - e.g., numerical constant that may include a fractional part and/or a sign can be described as

$$(+ \cup - \cup \varepsilon) (D^+ \cup D^+.D^* \cup D^*.D^+)$$

- examples: 72, 3.14159, +7., and -.01
- once syntax has been described with regular expressions in terms of its tokens, a lexical analyzer that processes the program can be generated

- regular expressions are equivalent to finite automata
 - surprising since they appear to be quite different
 - a regular expression that describes a language can be converted into a FA that recognizes that language, and vice versa
- Theorem: A language is regular if and only if some regular expression describes it.
 - iff requires proof in each direction

- Proof:
 - if a language is described by a regular expression, it is regular
 - Proof idea: convert R describing A into an NFA recognizing A
 - Proof: consider 6 cases
 - 1. R = a for some $a \in \Sigma$, so L(R) = {a} that can be recognized by the following NFA (easier than DFA)



- note that this is an NFA (why?)
- N = {{q₁, q₂}, Σ , δ , q₁, {q₂}) where δ is shown above

- Proof: (cont.)
 - Proof: consider 6 cases
 - 2. $R = \varepsilon$, so $L(R) = {\varepsilon}$ that can be recognized by the following NFA (easier than DFA)

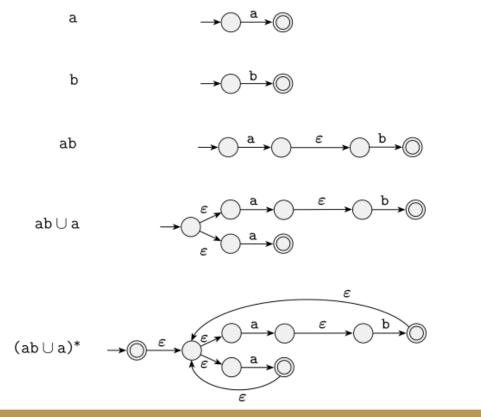
- N = {{q₁}, Σ , δ , q_{1} , {q₁}) where
 - $\delta(r, b) = \emptyset$ for any r and b

- Proof: (cont.)
 - Proof: consider 6 cases
 - R = Ø, so L(R) = Ø that can be recognized by the following NFA

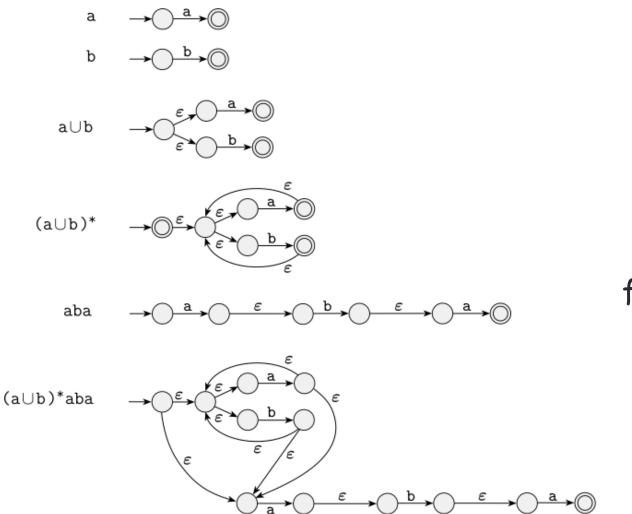
- N = {{q}, Σ , δ , q, \emptyset) where
 - $\delta(r, b) = \emptyset$ for any r and b

- Proof: (cont.)
 - Proof: consider 6 cases
 - 4. $R = R_1 \cup R_2$ 5. $R = R_1 \circ R_2$ 6. $R = R_1^*$
 - for these last three cases, we use constructions given in the proofs of regular languages closed under these operations

- example: build an NFA from the RE (ab \cup a)*
 - start with smallest and build up
 - this technique generally does not result in an NFA with the fewest states (2 states for this NFA)



• example: build an NFA from the RE (a \cup b)*aba

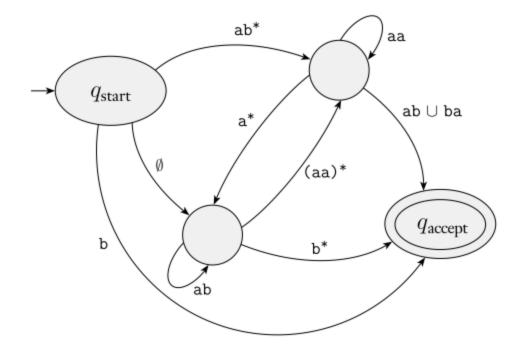


follows from def of concat

- Proof: (cont.)
 - if a language is regular, then it is described by a regular expression
 - Proof idea: if A is regular, it is accepted by a DFA; convert the DFA into an equivalent regular expression
 - break procedure into two parts using a GNFA (generalized nondeterministic finite automaton)
 - convert DFA to GNFA
 - •GNFA to regular expression

- Proof: (cont.)
 - GNFA (generalized nondeterministic finite automaton)
 - NFA with transition arrows that may have regular expressions as labels
 - can read blocks of symbols instead of just one at a time
 - moves along transition arrow by reading a block of symbols representing a string described by the RE on that arrow
 - nondeterministic so may have different ways to process the same input string
 - accepts if in an accept state at end of input

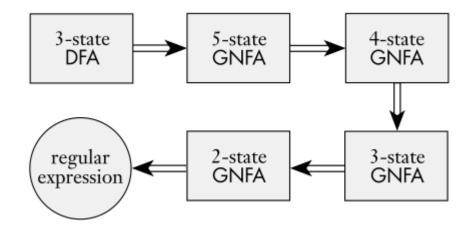
- Proof: (cont.)
 - example: GNFA



- Proof: (cont.)
 - for convenience, we will require GNFAs to have a special form
 - the start state has transition arrows going to every other state but no arrows coming in from any other state
 - only one accept state with arrows coming in from every other state but no arrows going to any other states; cannot be the same as the start state
 - except for the start and accept states, one arrow goes from every state to every other state and to itself

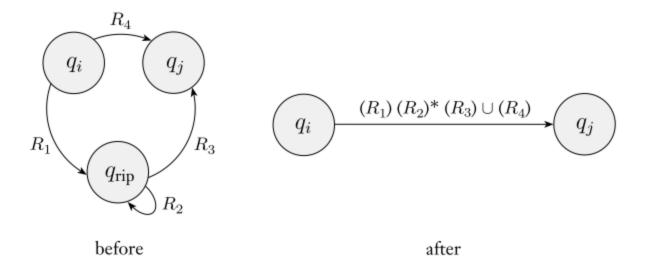
- Proof: (cont.)
 - easy to convert a GNFA into a RE
 - if GNFA has k states, k \ge 2 since at least a start and accept state
 - if k > 2, we can construct an equivalent GNFA with k - 1 states
 - this step can be repeated on a GNFA until it is reduced to just 2 states
 - if k = 2, the GNFA has a single arrow from start to accept state with the label being the equivalent of the RE

- Proof: (cont.)
 - stages to convert a GNFA into a RE



- Proof: (cont.)
 - constructing an equivalent GNFA with one fewer state when k > 2
 - select a state, rip it out of the machine, and repair the remaining machine so the language is still recognized
 - any state can be ripped out except the start or accept states
 - ripped state termed q_{rip}
 - \bullet after removing $q_{\rm rip},$ repair the machine by altering the RE on the labels of the remaining arrows
 - -compensate for absence of $q_{\rm rip}$ by adding back lost computations

- Proof: (cont.)
 - constructing an equivalent GNFA with one fewer state



- Proof: (cont.)
 - in the old machine, if
 - q_i goes to q_{rip} with an arrow labeled R_1 ,
 - q_{rip} goes to itself with an arrow labeled R_2 ,
 - q_{rip} goes to q_j with an arrow labeled R_3 , and
 - q_i goes to q_j with an arrow labeled R_4
 - then in the new machine, the arrow from q_i to q_j gets the label

 $(R_1)(R_2) * (R_3) \cup (R_4)$

- make this change for any arrow from q_i to q_j , even when $q_i = q_j$
- the new machine recognizes the original language

- Proof: (cont.)
 - formal definition of a GNFA (similar to NFA but diff δ)

$$\delta: (Q - \{q_{accept}\}) \times (Q - \{q_{start}\}) \rightarrow R$$

- R: all regular expressions over alphabet Σ
- if $\delta(q_i, q_j) = R$, the arrow from q_i to q_j has RE R as its label
- an arrow connects every state to every other state
 - no arrows coming from q_{accept} or going to q_{start}

- Proof: (cont.)
 - formal definition of a GNFA

A generalized nondeterministic finite automaton is a 5-tuple,

- $(Q, \Sigma, \delta, q_{\text{start}}, q_{\text{accept}})$, where
 - 1. Q is the finite set of states,
 - **2.** Σ is the input alphabet,
 - 3. $\delta: (Q \{q_{\text{accept}}\}) \times (Q \{q_{\text{start}}\}) \longrightarrow \mathcal{R}$ is the transition function,
 - **4.** q_{start} is the start state, and
 - **5.** q_{accept} is the accept state.

- Proof: (cont.)
 - $\boldsymbol{\cdot}$ a GNFA accepts a string w in $\boldsymbol{\Sigma}^{\star}$ if
 - w = w₁w₂...w_k
 - \bullet each w_i is in Σ^{\star}
 - a sequence of states $q_0, q_1, ..., q_k$ exists
 - such that
 - $q_0 = q_{start}$ is the start state
 - $q_k = q_{accept}$ is the accept state
 - for each i, we have $w_i \in L(R_i)$ where
 - $R_i = \delta(q_{i-1}, q_i)$
 - i.e., R is the RE on the arrow from q_{i-1} to q_i

- Proof: (cont.)
 - returning to the lemma proof: if a language is regular, then it is described by a regular expression
 - let M be the DFA for language A
 - convert M to GNFA G
 - add new start state (with ε arc to old start state)
 - add new accept state (with ε arcs from old accept states)
 - \bullet add all other missing arcs and label with $\ensuremath{\mathcal{Q}}$
 - use new procedure CONVERT(G)
 - takes GNFA and returns equivalent RE
 - recursive, but only calls itself with a GNFA with one fewer state (to avoid infinite recursion)

- Proof: (cont.)
 - CONVERT(G)
 - 1. k is number of states of G
 - 2. if k = 2, G has start state, accept state, and one arrow connecting them labeled with RE R
 - 3. if k > 2, select any state $q_{rip} \in Q$ (other than q_{start} and q_{accept})

• let
$$G' = (Q', \Sigma, \delta', q_{start}, q_{accept})$$

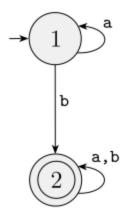
- $Q' = Q \{q_{rip}\}$
- for any $q_i \in Q'$ { q_{accept} } and any $q_j \in Q'$ { q_{start} } let

$$\delta'(q_i, q_j) = (R_1)(R_2)^*(R_3) \cup (R_4)$$

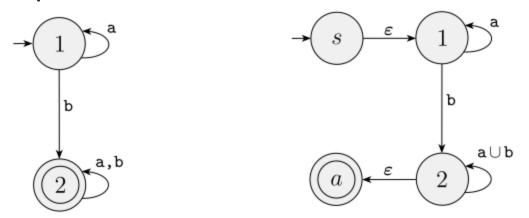
for

- $R_1 = \delta(q_i, q_{rip}), R_2 = \delta(q_{rip}, q_{rip}), R_3 = \delta(q_{rip}, q_j), and R_4 = \delta(q_i, q_j)$
- if $\delta(q_i, q_j) = R$, the arrow from q_i to q_j has RE R as its label
- 4. compute CONVERT(G') and return this value

- Proof: (cont.)
 - example: convert two-state DFA to a regular expression



- Proof: (cont.)
 - example: convert two-state DFA to a regular expression
 - create 4-state GNFA by adding new start and accept states
 - labeled s and a for diagram clarity
 - do not draw arcs labeled \emptyset (i.e., $s \rightarrow 2$, $s \rightarrow a$, $1 \rightarrow a$, $2 \rightarrow 1$)
 - replace label a,b with a \cup b since only one transition allowed per arc in GNFA

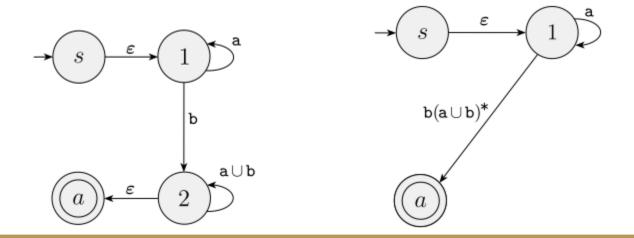


- Proof: (cont.)
 - example: convert two-state DFA to a regular expression
 - remove state 2 and update arc labels
 - only arc that changes is 1 to a (step 3 in CONVERT)

•
$$q_i = 1, q_j = a, q_{rip} = 2$$

•
$$R_1 = b, R_2 = a \cup b, R_3 = \epsilon, and R_4 = \emptyset$$

•new label: (b)(a \cup b)*(ϵ) \cup Ø, or just b(a \cup b)*

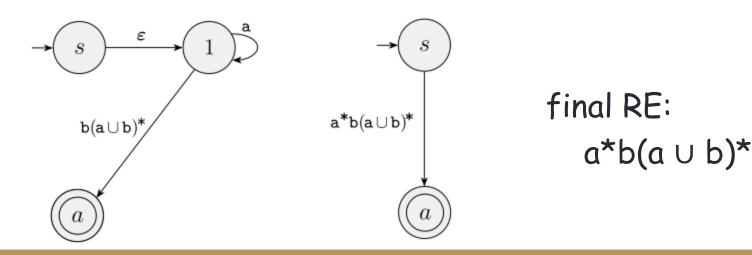


- Proof: (cont.)
 - example: convert two-state DFA to a regular expression
 - remove state 1 and update arc labels
 - only arc that changes is s to a (step 3 in CONVERT)

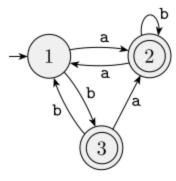
•
$$q_i = s, q_j = a, q_{rip} = 1$$

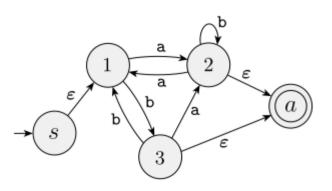
•
$$R_1 = \varepsilon$$
, $R_2 = a^*$, $R_3 = b(a \cup b)^*$, and $R_4 = \emptyset$

•new label: $(\epsilon)(a^*)b(a \cup b)^* \cup \emptyset$, or just $a^*b(a \cup b)^*$



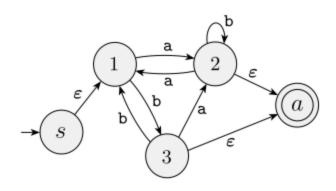
- Proof: (cont.)
 - example: convert three-state DFA to a regular expression
 - steps are similar

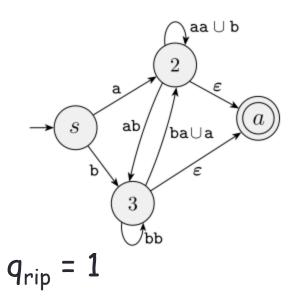




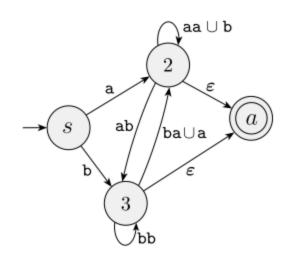
DFA

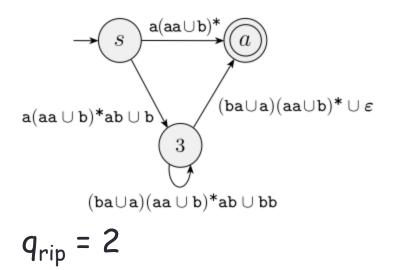
- Proof: (cont.)
 - example: convert three-state DFA to a regular expression
 - steps are similar



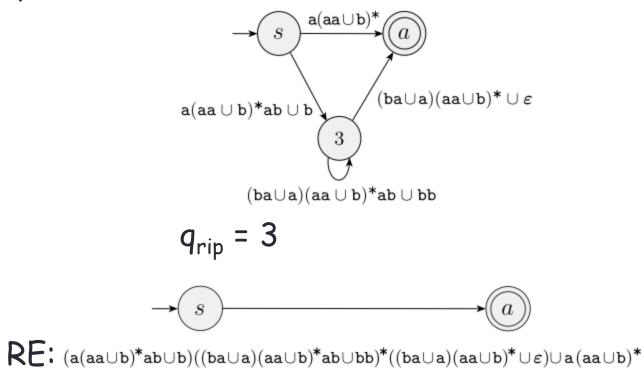


- Proof: (cont.)
 - example: convert three-state DFA to a regular expression
 - steps are similar



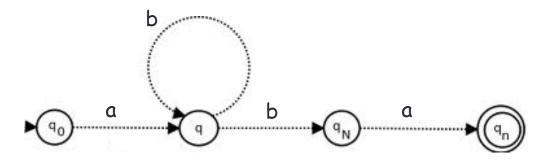


- Proof: (cont.)
 - example: convert three-state DFA to a regular expression
 - steps are similar



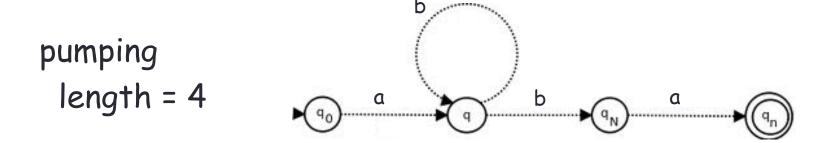
- some languages cannot be recognized by FA
 - ex.: $B = \{O^n 1^n | n \ge 0\}$
 - machine would need to be able to remember how many Os were seen as it reads the input
 - could be unlimited, so could not be done with a finite number of states
 - need a proof method to show a language is nonregular
 - cannot use example above because though a language appears to require unlimited memory does not mean that it actually does
 - examples
 - $C = \{w \mid w \text{ has an equal number of 0s and 1s} \}$
 - D = {w | w has an equal number of 01 and 10 substrings}
 - C is not regular, but D is

- pumping lemma preliminary
 - consider the NFA for the language A

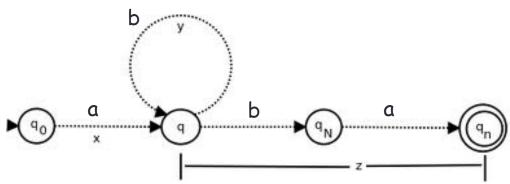


- what is the smallest string in this language?
- is there a relationship between the number of symbols in the smallest string and the number of states?
- what can you say about a string in the language whose length is greater than or equal to the number of states?

- the pumping lemma
 - all regular languages can be pumped if they are at least as long as a special value termed the pumping length
 - each such string contains a section that can be repeated any number of times with the resulting string remaining in the language
 - if a language does not have this property, it is nonregular



- pumping lemma
 - if A is a regular language, there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions
 - for each $i \ge 0$, $xy^i z \in A$
 - |y| > 0
 - |xy| ≤ p



- pumping lemma (cont.)
 - for each $i \ge 0$, $xy^i z \in A$
 - |y| > 0
 - |xy| ≤ p
 - note that
 - |s| is the length of string s
 - yⁱ means i copies of y are concatenated together
 - γ⁰ = ε
 - x or z may be ε , but y $\neq \varepsilon$
 - x and y together have length at most p

- pumping lemma
 - proof idea:
 - let M = {Q, Σ , δ , q_1 , F) is a DFA that recognizes A
 - let pumping length p = number of states of M
 - show that any string s in A can be broken into pieces xyz satisfying the three conditions
 - if no strings in A are of length at least p, the theorem is vacuously true
 - otherwise, three conditions hold

- pumping lemma
 - proof idea: (cont.)
 - if s in A has length at least p, consider the sequence of states M goes through with input s
 - e.g., let's say it starts with q_1 (start state), then goes on to q_3 , q_{20} , q_9 , ... until it reaches the end of s in q_{13}
 - if $s \in A$, M must accept s, so q_{13} is an accept state

- pumping lemma
 - proof idea: (cont.)
 - let n = |s| therefore, the sequence of states q_1 , q_3 , q_{20} , q_9 ,..., q_{13} has length n + 1
 - because n is at least p, n + 1 > p (or |Q|)
 - therefore, the sequence must contain a repeated state due to the pigeonhole principle

• e.g.,

$$s = s_1 s_2 s_3 s_4 s_5 s_6 \dots s_n$$

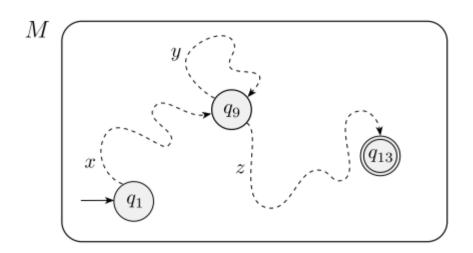
$$q_1 q_3 q_{20} q_9 q_{17} q_9 q_6 \dots s_n$$

- pumping lemma
 - proof idea: (cont.)
 - divide s into three pieces x, y, and z
 - x appears before q₉
 - y is the part between the two q_9 's
 - z is the remaining part of s

$$s = s_1 s_2 s_3 s_4 s_5 s_6 \dots s_n$$

$$q_1 q_3 q_{20} q_9 q_{17} q_9 q_6 \dots s_n$$

- pumping lemma
 - proof idea: (cont.)
 - S0,
 - x takes M from q_1 to q_9
 - y takes M from q₉ back to q₉
 - z takes M from q_9 to the accept state q_{13}



- pumping lemma
 - proof idea: (cont.)
 - this division of xyz satisfies the three conditions on input xyyz:
 - for each $i \ge 0$, $xy^i z \in A$
 - x takes M from q_1 to q_9
 - •y takes M from q_9 back to q_9 , as does the second y
 - z takes M to q_{13} , the accept state, so M accepts xyyz
 - similarly, it accepts xyⁱz for any i > 0
 - for i = 0, xyⁱz = xz, which is also accepted
 - |y| > 0
 - •since it was the part of s that occurred between two different occurrences of state q_9
 - |xy| ≤ p
 - •make sure q_9 is the first repetition in the sequence
 - p+1 states must contain a repetition (pigeonhole principle)

- pumping lemma (cont.)
 - proof is similar to proof idea
 - use the pumping lemma to show that a language B is nonregular
 - assume B is regular and show a contradiction
 - use the pumping lemma where all strings of B with at least length p can be pumped
 - find string s in B with length > p that can't be pumped
 - show s cannot be pumped by considering all ways of dividing s into x, y, and z, and for each division, finding an i where xyⁱz is not in B
 - s contradicts pumping lemma, so B is nonregular

- pumping lemma (cont.)
 - finding s may take creative thinking
 - try members of B that seem to exhibit B's nonregularity
 - see following examples

- example: let $B = \{O^n 1^n | n \ge 0\}$ use the pumping lemma to prove by contradiction that B is not regular
 - assume B is regular with p pumping length
 - let s = 0^p1^p
 - because of our assumption, s = xyz where xyⁱz is in B for any i > 0
 - three cases to show how this is impossible
 - y consists of only Os
 - now xyyz has more Os than 1s and is not in B, violating condition 1 of the pumping lemma
 - y consists of only 1s
 - also a contradiction
 - y consists of 0s and 1s
 - xyyz may have same number of 0s and 1s, but they will be out of order with some 1s before 0s (not in B)

- let $B = \{O^n 1^n | n \ge 0\}$ use the pumping lemma to prove by contradiction that B is not regular (cont.)
 - in any of the cases, a contradiction is unavoidable
 - can simplify argument by applying condition 3 of the pumping lemma to eliminate cases 2 and 3
 - in this example, finding s was easy

- example: let C = {w | w has an equal number of Os and 1s} show that C is not regular
 - assume C is regular with p pumping length
 - let s = 0p1p
 - because of our assumption, s = xyz where xyⁱz is in C for any i > 0
 - seems possible since if x and z are empty, and y = 0^p1^p, then xyⁱz always has an equal number of 0s and 1s
 - but condition 3 of the pumping lemma states that $|xy| \le p$, so s cannot be pumped in this way
 - if $|xy| \le p$, our only choice is y consists of all Os, so xyyz is not in C, which leads to the contradiction

- example: let C = {w | w has an equal number of Os and 1s} show that C is not regular (cont.)
 - finding s was a bit harder here
 - if we had let s = (01)^p, it would not have worked since it can be pumped
 - keep trying different values of s until you find one that cannot be pumped
 - another way to prove C is nonregular is to use another language that we already know is nonregular, like B
 - if C were regular, $C \cap O^*1^*$ would also be regular due to closure under intersection (proved in the textbook)
 - but $C \cap O^*1^* = B$, which is not regular

- example: let F = {ww | $w \in \{0,1\}^*$ } show that F is not regular
 - assume F is regular with p pumping length
 - let s = O^p1O^p1
 - so s can be split into three pieces s = xyz satisfying the three conditions of the lemma
 - could let x and z be $\epsilon,$ but y must consist of only Os, so xyyz not in F
 - we chose s to be a string that exhibits a nonregular language instead of say, O^pO^p, even though it is a member since it can be pumped and fails the contradiction

- example: let $D = \{1^{n^2} | n \ge 0\}$ show that D is not regular
 - assume D is regular with p pumping length
 - let $s = 1^{p^2}$
 - so s can be split into three pieces s = xyz satisfying the three conditions of the lemma
 - perfect squares: 0, 1, 4, 9, 16, 25, 36, 49, ...
 - •gap between values gets greater as n increases

• example: let $D = \{1^{n^2} | n \ge 0\}$ - show that D is not regular

- assume D is regular with p pumping length (cont.)
 - \bullet consider strings xyz and xy^2z
 - •differ by one repetition of y so lengths differ by |y|
 - •by condition 3, $|xy| \le p$ so $|y| \le p$
 - •but $|xyz| = p^2 \operatorname{so} |xy^2z| \le p^2 + p$

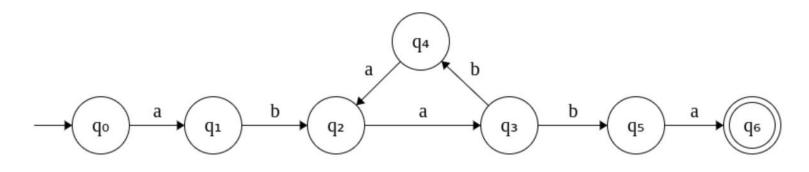
•
$$p^2 + p < p^2 + 2p + 1 = (p + 1)^2$$

- •y cannot be ϵ , so $|xy^2z| > p^2$
- •thus $|xy^2z|$ lies between consecutive perfect squares p^2 and $(p + 1)^2$
- so length is not a perfect square (contradiction)
 thus xy²z not in D, and D is not regular

- example: let $E = \{O^{i}1^{j} | i > j\}$ use the pumping lemma to prove by contradiction that E is not regular
 - use pumping lemma to pump down
 - assume E is regular with p pumping length
 - let s = 0^{p+1}1^p
 - because of our assumption, s = xyz where xyⁱz is in E for any i ≥ 0
 - by condition 3, y consists of only 0s
 - now xyyz has even more Os, which is in E, so we need to try another string
 - try $xy^{0}z = xz$ (pumping down)
 - since s had just one more 0 than 1s, xz cannot have more 0s than 1s -> contradiction

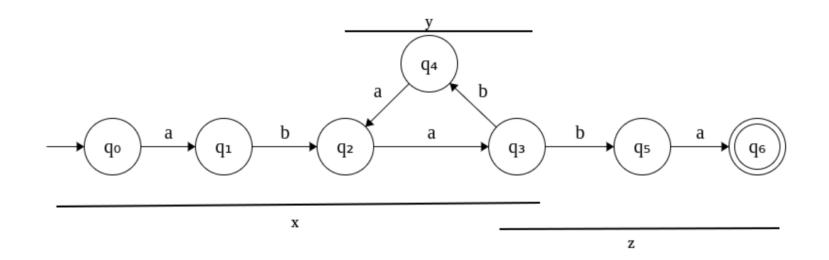
- pumping lemma (cont.)
 - additional notes
 - we cannot use the pumping lemma to show that a language is regular
 - some languages will pass the pumping lemma test, but still be nonregular
 - the pumping lemma, therefore, is a necessary test, but not a sufficient test, to show that a language is regular
 - we have other ways to show a language is regular
 - no language that fails the pumping lemma test is regular

- pumping lemma (cont.)
 - additional notes
 - consider the following DFA



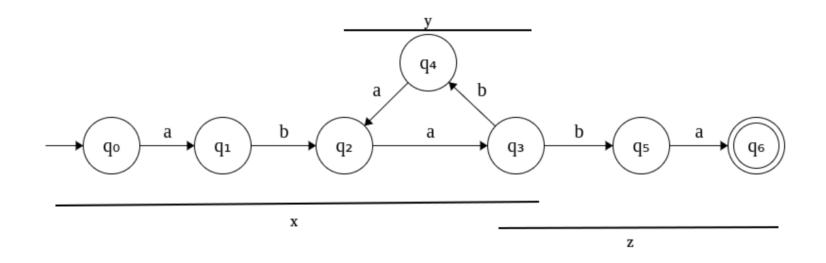
- what strings can be accepted?
- divide the strings into three parts
- provide a regular expression

- pumping lemma (cont.)
 - additional notes



- if loop at beginning $x = \varepsilon$ and w = yz
- if loop at end $z = \varepsilon$ and w = xy
- y cannot be ε (but y⁰ can!)

- pumping lemma (cont.)
 - additional notes



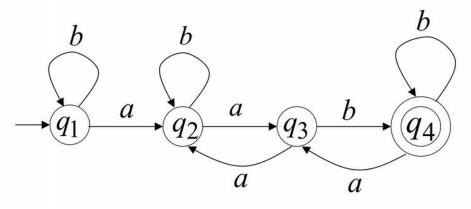
- shortest string accepted? if q_2 is also accept state?
- longest string accepted without looping?
- longest string accepted by looping once (p)?

- pumping lemma (cont.)
 - additional notes
 - what is the pumping length for the following languages?
 - 1. 1*
 - 2. 01
 - 3. 01*0
 - 4. 11*
 - 1. 1
 - 2. 3
 3. 3

4. 2

- pumping lemma (cont.)
 - additional notes
 - remember that s is only one type of string found in the language
 - try to choose s to be a string pattern we already know is nonregular
 - use p strategically to limit the number of parts of the string that y can be assigned
 - for xy^iz , string must be in the language for all $i \ge 0$
 - only one assignment to x, y, and z must work
 - •but for that assignment, it must work for all $i \ge 0$
 - so you must try them all and explain why none of them work when considering all i ≥ 0

- pumping lemma (cont.)
 - additional notes
 - what about DFAs with multiple circuits?
 - the pumping lemma seems too limited



*Hermant Chetwani

 it still works since we can break down the strings into different cases of s where each s has only one circuit, e.g., a bⁱ abb and babbabab bⁱ

- pumping lemma (cont.)
 - proof requirements for proving A is nonregular
 - Assume A is regular and therefore must pass the pumping lemma test
 - let s = some string using p, such as O^p1^p
 - explain xyz assignment, such as x and y must consist entirely of 0s (from the limitations imposed by s)
 - explain how xyⁱz would allow other strings to be generated with i = 0 or 2 that are not in A
 - explain how there are no other options, or every other option would result in the same or similar condition
 - state that this is a contradiction and therefore the pumping lemma does not hold; therefore, A is nonreg