
Chapter 1
Regular Languages

Overview

2

• computation theory begins with the question: what is a
computer?

• real computers are overly complicated for our uses

• instead, we use an idealized computer, or computational
model

• we will use several different models with varying
features

• the first is the finite state machine, or finite
automaton

Finite Automata

3

• finite automata

• useful

• limited memory

• common in everyday life

• example: automatic door controller with ground pads

• front pad: detect person about to walk through door

• rear pad: detect how long to hold the door, and to
keep the door shut if someone is standing there

Finite Automata

4

• example: automatic door with ground pads (cont.)

• controller in one of two states: OPEN or CLOSED

• four possible input conditions

• FRONT: person standing on front pad

• REAR: person is standing on rear pad

• BOTH: people are standing on both pads

• NEITHER: no one is standing on either pad

Finite Automata

5

• example: automatic door with ground pads (cont.)

• controller moves between states OPEN and CLOSED
depending on input

• state diagram

Finite Automata

6

• example: automatic door with ground pads (cont.)

• state transition table

• if controller is CLOSED and receives input:

• FRONT, REAR, NEITHER, FRONT, BOTH,
NEITHER, REAR, and NEITHER

• it would go through states:

•CLOSED (starting), OPEN, OPEN, CLOSED,
OPEN, OPEN, CLOSED, CLOSED, CLOSED

Finite Automata

7

• automatic door controller as finite automaton

• controller: computer with single bit of memory to hold
state

• other controllers might need larger memories

• elevator controller

• state for current floor

• inputs from buttons

• dishwashers, thermostats, digital watches, calculators

• Markov chains: useful for recognizing patterns in data

• speech processing, optical character recognition

• employ probabilistic state chains

Finite Automata

8

• sample finite automaton M1

• state diagram

• three states: q1, q2, q3

• start state: q1 indicated by arrow pointing from
nowhere

• accept state: q2 with double circle

• transitions: other arrows

Finite Automata

9

• sample finite automaton M1

• when input string is received, e.g. 1101, the FA
processes it and produces an output: accept or reject

• begins at start state of M1

• input string symbols processed one by one from
left to right

• after reading each symbol, M1 moves from one
state to another according to the symbol

• when the last symbol is read, M1 produces output
accept if it is in the accept state; otherwise reject

Finite Automata

10

• sample finite automaton M1

• e.g. 1101

• start at state q1

• read 1, follow transition from q1 to q2

• read 1, follow transition from q2 to q2

• read 0, follow transition from q2 to q3

• read 1, follow transition from q3 to q2

• accept because M1 is in an accept state q2 at end of
input

Finite Automata

11

• sample finite automaton M1

• other strings accepted

• 1, 01, 11, 01010101

•any string that ends with 1

• 100, 0100, 110000, 0101010000

•any string that ends with an even number of 0s

• rejected strings

• 0, 10, 101000

Finite Automata

12

• formal definition

• diagrams easier to understand, but formal definition
needed because it is

• precise

• resolves uncertainties as to what is allowed

• notation

• helps express thoughts clearly

Finite Automata

13

• formal definition

• requires multiple parts (5-tuple)

• set of states

• rules for transitions between states depending on
input

• input alphabet of allowable input symbols

• start state

• set of accept states (or final states)

Finite Automata

14

• concerning rules for transitions between states

• use transition functions, denoted by δ

• if FA has an arrow from state x to state y when it
reads a 1, it will move from x to y when 1 is read

• δ (x, 1) = y

Finite Automata

15

• formal definition

• with this definition we see

• 0 accept states is allowable

• δ specifies exactly one next state for each state/input
value

Finite Automata

16

• for example

• M1 can be described as M1 = (Q, Σ, δ, q1, F) where

• Q = {q1, q2, q3}

• Σ = {0, 1}

• δ is described as

• q1 is the start state

• F = {q2}

Finite Automata

17

• if A is the set of all strings that M accepts

• A is the language of M

• L(M) = A

• M recognizes A

• M accepts A

• a machine may accept multiple strings, but it only
recognizes one language

• if it accepts no strings, it recognizes the empty
language ∅

• M1 recognizes A where A = {w | w has at least one 1 and
an even number of 0s follow the last 1}

Finite Automata

18

• example

• M2 = ({q1, q2}, {0, 1}, δ, q1, {q2}) where

• δ is described as

• try sample strings

• What language does M2 recognize?

• all binary strings ending with a 1

Finite Automata

19

• example

• What language does M4 recognize?

• all strings of {a,b} beginning and ending with the
same letter

Finite Automata

20

• example

• think about a counter or accumulator where RESET
sets it back to 0

• What language does M5 recognize?

• accepts all strings with digits summing to 0 mod 3

Finite Automata

21

• for some FAs, a state diagram is not possible

• it may be too large to draw (but not infinite)

• description depends on an unspecified parameter

• a formal definition must then be used to specify the
machine

• e.g., a generalization of the previous example

Finite Automata

22

• formal definition of computation

• let M = (Q, Σ, δ, q1, F) be a FA and w = w1w2…wn be a
string where each wi is a member of the alphabet

• M accepts w if a sequence of states r0,r1,…,rn in Q
exists with three conditions:

• r0 = q0

• machine starts at start state

• δ (ri, wi+1) = ri+1 for i = 0, …, n-1

• machine goes from state to state according to
transition function

• rn ∈ F

• machine accepts its input if it ends up in an accept
state

Finite Automata

23

• formal definition of computation (cont.)

• M recognizes language A if

• A = {w | M accepts w}

• a language is called a regular language if some finite
automaton recognizes it

Finite Automata

24

• designing finite automata

• cannot be prescribed easily

• put yourself in the place of the machine

• you receive a string an input string and must
determine whether it is a member of the language
the automaton is supposed to recognize

• process the symbols in the string one by one

• decide whether the string seen so far is in the
language since you don’t know when the string will
end

Finite Automata

25

• designing finite automata (cont.)

• determine what you need to remember about the string
as you are reading it

• input could be very long, but you probably don’t need
to remember the entire input string

• you have finite memory, e.g., a single sheet of paper

• what is the crucial information to remember?

Finite Automata

26

• designing finite automata

• example: construct a FA that recognizes the language
of all bit strings with an odd number of 1s

• as you traverse the string, you don’t need to
remember the entire string

• simply remember whether the number of 1’s seen so
far is odd or even

• if you read a 1, flip the answer

• if you read a 0, leave the answer as is

Finite Automata

27

• designing finite automata

• example: construct a FA that recognizes the language
of all bit strings with an odd number of 1s (cont.)

• once you have the necessary information to
remember, make a finite list of possibilities

• even so far

• odd so far

• assign a state to each of the possibilities

Finite Automata

28

• designing finite automata

• example: construct a FA that recognizes the language
of all bit strings with an odd number of 1s (cont.)

• assign transitions to go from one possibility to
another

• set the start state to qeven since 0 is an even number

• set qodd to be the accept state

Finite Automata

29

• designing finite automata
• example: construct a FA that recognizes the regular

language of all bit strings that contain 001
• e.g., 0010, 1001, 001, 11111001111, but not 11 and 000
• if you were the automaton, you would read symbols

from the beginning, skipping over all 1s
• if you read a 0, you may be seeing the start of 001
• if you read a 1 next, there are too few 0s, so go
back to skipping over 1s
• if you read a 0 next, you need to remember that
you have now seen two symbols of the pattern
•continue scanning until you see a 1 – if so,
remember that you have found the pattern, and
keep reading to the end of the string

Finite Automata

30

• designing finite automata

• example: construct a FA that recognizes the regular
language of all bit strings that contain 001 (cont.)

• four different possibilities

• you haven’t seen any symbols of the pattern

• you have seen just one 0

• you have seen 00

• you have seen the entire pattern 001

• assign states q, q0, q00, and q001 to these possibilities

Finite Automata

31

• designing finite automata
• example: construct a FA that recognizes the regular

language of all bit strings that contain 001 (cont.)
• assign the transitions

• from q
• if you read a 1, stay in q
• if you read a 0, go to q0

• from q0

• if you read a 1, return to q
• if you read a 0, go to q00

• from q00

• if you read a 1, go to q001

• if you read a 0, stay in q00

• from q001

• if you read a 0 or 1, stay in q001

Finite Automata

32

• designing finite automata

• example: construct a FA that recognizes the regular
language of all bit strings that contain 001 (cont.)

• start state is q

• accept state is q001

Finite Automata

33

• regular operations

• properties for finite automata

• help us design FA to recognize particular languages

• help us determine other languages are nonregular

• three regular operations

• union: A ∪ B = {x | x ∈ A or x ∈ B}

• concatenation: A ° B = { xy | x ∈ A and y ∈ B}

• star: A* = {x1x2…xk | k ≥ 0 and each xi ∈ A}

where A and B are regular languages

Finite Automata

34

• regular operations

• regular operation notes

• union: takes all strings in A and B and puts them into
one language

• concatenation: attaches a string from A in front of a
string from B in all possible ways to get the new
language

• star: unary rather than binary

• attaches any number (0 or more) of strings in A to
get a string in the new language

• empty string ε is always a member of A*

Finite Automata

35

• regular operations

• example: Σ = {a, b, …, z}, A = {good, bad}, B = {boy, girl}

• A ∪ B = {good, bad, boy, girl}

• A ° B = {goodboy, goodgirl, badboy, badgirl}

• A* = {ε, good, bad, goodgood, goodbad, badgood,
 badbad, goodgoodgood, goodgoodbad,
 goodbadgood, goodbadbad, …}

Finite Automata

36

• closure

• consider N = {1, 2, 3, …}

• N is closed under multiplication means that when we
multiply any two numbers from N, we get a product
that is also in N

• N is not closed under division (why?)

• in general, a collection of objects is closed under some
operation if the result of that operation is still in the
collection

Finite Automata

37

• closure

• regular languages are closed under union

• if A1 and A2 are regular languages, so is A1 ∪ A2

• proof idea: construct a FA M that recognizes A1 ∪ A2

• if M1 recognizes A1 and M2 recognizes A2, then M will
simulate both M1 and M2, accepting if either M1 or M2

accepts

• cannot simulate M1 and then M2

• cannot rewind the input

Finite Automata

38

• closure

• regular languages are closed under union (cont.)

• instead, simulate M1 and M2 simultaneously

• remember state each machine would be in if it had
read the input up to this point

• if M1 has k1 states and M2 has k2 states, the
number of pairs of states is k1 x k2

• each state in M will be a pair

• transitions go from pair to pair, updating the
current state of both M1 and M2

• accept states are those pairs where either M1 or
M2 is in an accept state

Finite Automata

39

• closure

• proof: regular languages are closed under union (cont.)

• let M1 recognize A1 where M1 = {Q1, Σ, δ1, q1, F1)

• let M2 recognize A2 where M2 = {Q2, Σ, δ2, q2, F2)

Finite Automata

40

• closure

• proof: regular languages are closed under union (cont.)

• construct M = {Q, Σ, δ, q0, F) to recognize A1 ∪ A2

• Q = {(r1, r2) | r1 ∈ Q1 and r2 ∈ Q2}

•cartesian product for all pairs of states Q1 x Q2

• Σ alphabet for both

• δ transition function for each (r1, r2) ∈ Q and a ∈ Σ

•δ ((r1, r2), a) = (δ1 (r1, a), δ2 (r2, a))

•moves from state pair to state pair based on a

• q0 is the pair (q1, q2)

• F is set of pairs where M1 or M2 is in an accept state

•F = {(r1, r2) | r1 ∈ F1 or r2 ∈ F2} not and

Finite Automata

41

• closure

• regular languages are closed under union example

• let M1 recognize A1 where M1 = {Q1, Σ, δ1, q1, F1}

 M1 = {{q1,q2}, {0,1}, δ1, q1, {q2}}

 binary strings ending in 1

• let M2 recognize A2 where M2 = {Q2, Σ, δ2, q2, F2)

 M2 = {{q1,q2,q3}, {0,1}, δ2, q1, {q2}}

 binary strings with 1 followed by even number of 0s

Finite Automata

42

• closure

• regular languages are closed under union example

• let M1 recognize A1 where M1 = {Q1, Σ, δ1, q1, F1}

• let M2 recognize A2 where M2 = {Q2, Σ, δ2, q2, F2)

 new states: q11, q12, q13, q21, q22, q23

 Σ = {0, 1}

 start state: q11

 accept states: {q12, q21, q22, q23}

 accepts binary strings ending with 1

 or containing a 1 followed by an even # of 0s

Finite Automata

43

• closure

 union simplified

Finite Automata

44

• closure

• regular languages are closed under concatenation

• let M1 recognize A1 where M1 = {Q1, Σ, δ1, q1, F1)

• let M2 recognize A2 where M2 = {Q2, Σ, δ2, q2, F2)

• construct M to accept input first for M1, then for M2

• BUT, M doesn’t know where to break its input

• where the first part ends and the second part
begins

• we need to introduce a new technique called
nondeterminism

Nondeterminism

45

• so far, we have considered only deterministic finite
automata (DFA)

• i.e., when a machine is in a given state and reads the
next input symbol, there is only one state that can be
the next state

• in a nondeterministic machine, several choices may exist
for the next state

• nondeterminism is a generalization of determinism

• what do you notice that is different in this NFA?

Nondeterminism

46

• differences between DFAs and NFAs

• DFAs: states may have exactly one exiting arrow for
 each symbol
NFAs: a state may have zero, one, or many exiting
 arrows for each symbol

• DFAs: labels on transition arrows are symbols from the
 alphabet
NFAs: labels on transition arrows are symbols from the
 alphabet or ε; zero, one, or many arrows may exit
 from each state with label ε

Nondeterminism

47

• how does an NFA compute?

• if multiple ways to proceed exist after reading a
symbol, the machine splits into multiple copies of itself
and follows all possibilities in parallel

• machine also splits for all ε branches that can be taken

• each copy takes one of the possible ways to proceed
and continues as before

• each machine continues to split as needed

• if the next input symbol does not match an exiting
arrow for a machine’s current state, that copy of the
machine dies, along with its branch of computation

• if any one of the copies reaches an accept state at the
end of the input, the NFA accepts the input string

Nondeterminism

48

• nondeterminism can be viewed as a parallel computation

• multiple independent “processes” or “threads” can be
running concurrently

• each split corresponds to a process forking into
multiple children, with each proceeding separately

• if at least one of these processes accepts, then the
entire computation accepts

Nondeterminism

49

• nondeterminism can be viewed as a tree of possibilities

• root is the start of the computation

• branches signify the machine splitting across multiple
choices

• machine accepts if at least one branch ends in an
accept state

Nondeterminism

50

• example: NFA N1 on 010110

• keep track of possibilities by placing fingers over each
state where a machine could be

• what about 010?

• what language does this
accept?

• all strings with 101 or 11

Nondeterminism

51

• NFAs are useful in several ways

• every NFA can be converted directly into a DFA

• constructing NFAs is sometimes easier than directly
constructing DFAs

• an NFA may be much smaller or easier to understand
than its corresponding DFA

Nondeterminism

52

• example NFA N2

• what language does it accept?

• all binary strings with 1 in third-to-last position

Nondeterminism

53

• example NFA N2

• can think of it as staying in the start state until it
guesses that it is three places from the end

• at that point, if the next symbol is 1, it branches to q2
and uses q3 and q4 to check its guess

Nondeterminism

54

• example NFA N2

• this NFA can be converted to an equivalent DFA, but
with more states and transitions

• smallest equivalent DFA

Nondeterminism

55

• example NFA N2

• what language would N2 recognize if edges with labels ε
were added from q2 to q3 and from q3 to q4?

• all binary strings containing a 1 in any of the last
three positions

• how would the corresponding DFA change?

Nondeterminism

56

• example NFA N3

• unary alphabet {0}

• what language does this accept?

Nondeterminism

57

• example NFA N3

• accepts ε, 00, 000, 0000, 000000 but not 0, 00000

• accepts all strings 0k where k is 0 or a multiple of 2 or 3

Nondeterminism

58

• example NFA N3

• think of the machine as guessing whether to test for
multiples of 2 or 3

• could use a DFA instead, but N3 is easiest to understand

Nondeterminism

59

• example NFA N4

• accepts ε, a, baba, baa

• does not accept b, bb, babba

• so, the language consists of ε and strings composed of
a’s and b’s, but always ending in a

• more limitations, but this language cannot be easily
and succinctly described

Nondeterminism

60

• formal definition of NFA

• similar to DFA, but transition functions are different

• in NFA, transition function takes a state and an input
symbol *or the empty string* and produces a *set*
of possible next states

• recall P(Q) is the power set (set of all subsets)

• alphabet must add ε

• Σε = Σ ∪ {ε}

Nondeterminism

61

• formal definition of NFA

Nondeterminism

62

• example N1

• formal definition

• Q = {q1, q2, q3, q4}

• Σ = {0, 1}

• δ is given as

• q1 is the start state

• F = {q4}

Nondeterminism

63

• formal definition of computation
• similar to DFA
• let N = (Q, Σ, δ, q0, F) be a NFA and w a string over

alphabet Σ
• N accepts w if we can write w as w = y1y2…yn where each yi is

a member of Σε and the sequence of states r0, r1,…rn in Q
exists with three conditions:
• r0 = q0

• machine starts at start state
• ri+1 ∈ δ (ri, yi+1) for i = 0, …, m-1

• machine goes from state ri to ri+1 which is a member of
the set of allowable next states according to transition
function

• rm ∈ F
• machine accepts its input if it ends up in an accept

state

Nondeterminism

64

• equivalence of NFAs and DFAs

• deterministic and nondeterministic FAs recognize the
same class of languages

• surprising since NFAs seem more powerful

• useful because NFAs are often easier to construct and
understand

• two machines are equivalent if they recognize the same
language

Nondeterminism

65

• Theorem: every nondeterministic finite automaton has an
equivalent deterministic finite automaton

• proof idea

• convert NFA to equivalent DFA that simulates it

• consider what happens as input is read

• what do you need to keep track of?

• various branches of computation by placing fingers
over active states

• if the NFA has k states, there are 2k subsets of
states

• each subset corresponds to one state the DFA will
need to keep track of, so the DFA will have 2k states

• set start and accept states for DFA

Nondeterminism

66

• proof
• let N = (Q, Σ, δ, q0, F) be the NFA recognizing A

• construct DFA M = (Q’, Σ, δ’, q0’, F’) recognizing A
• first consider case where N has no ε edges

• Q’ = P(Q)
• every state of M is a set of states of N

• let δ’ (R, a) = {q ∈ Q | q ∈ δ (r, a) for some r ∈ R} where
R ∈ Q
• if R is a state of M, it is also a set of states of N;

when M reads a symbol a in R, it goes to one or more
states in R, so δ’ (R, a) = Ur ∈ R δ (r, a)

• q0’ = {q0}
• M starts in the state corresponding to the collection

containing just the start state of N
• F’ = {R ∈ Q’ | R contains an accept state of N}

• machine accepts if one of the possible states that N
could be in at this point is an accept state

Nondeterminism

67

• proof (cont.)

• now consider ε edges

• for any state R of M, E(R) is the collection of states
that can be reached from members of R by following
ε arrows, including the members of R themselves

• E(R) = {q | q can be reached from R by 0 or more ε
 arrows}

• modify transition function to include states reached
by ε arrows

• δ’ (R, a) = {q ∈ Q | q ∈ E(δ (r, a)) for some r ∈ R}

• modify start state q0’ = E({q0})

Nondeterminism

68

• corollary

• a language is regular if and only if some
nondeterministic finite automaton recognizes it

Nondeterminism

69

• convert NFA N4 to a DFA

Nondeterminism

70

• convert NFA N4 to a DFA

• N4 = (Q, {a, b}, δ, 1, {1}) where Q = {1, 2, 3}

• DFA D’s states will be

• P(Q) = {Ø, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}

• D’s start state = E({1}) = {1, 3}

• D’s accept states = {{1}, {1,2}, {1,3}, {1,2,3}}

• anything containing the N4‘s accept states

Nondeterminism

71

• convert NFA N4 to a DFA (cont.)

• D’s transition function

• each of D’s states must go to one place on input a and
one place on input b

• state {2} goes to {2,3} on a and {3} on b

• state {1} goes to Ø on a and {2} on b

•note: follow ε arrows as a new state is entered
(start state or state reached by input symbol)

Nondeterminism

72

• convert NFA N4 to a DFA (cont.)

• D’s transition function (cont.)

• state {3} goes to {1,3} on a and Ø on b

• state {1,2} goes to {2,3} on a and {2,3} on b

• etc.

Nondeterminism

73

• convert NFA N4 to a DFA (cont.)

• DFA D

• DFA D simplified

• remove states
that cannot be
reached

Nondeterminism

74

• closure under the regular operations

• remember that we started this topic on nondeterminism
because we needed NFA to prove regular operations
were closed under

• union

• concatenation

• star

Nondeterminism

75

• closure under union

• we proved closure under union before by simulating both
machines simultaneously

• the new proof using nondeterminism is easier

Nondeterminism

76

• closure under union (cont.)

• if A1 and A2 are regular languages, so is A1 ∪ A2

• proof idea: construct NFA N that recognizes A1 ∪ A2

• if N1 recognizes A1 and N2 recognizes A2, then N will
combine N1 and N2, accepting if either N1 or N2 accepts

• N has new start state that branches to the start
states of N1 and N2 with ε arrows

• N nondeterministically guesses which machine
accepts the input

• if either N1 or N2 accepts, N will accept, too

Nondeterminism

77

• closure under union (cont.)

Nondeterminism

78

• closure under union (cont.)
• proof: regular languages are closed under union

• let N1 recognize A1 where N1 = {Q1, Σ, δ1, q1, F1)
• let N2 recognize A2 where N2 = {Q2, Σ, δ2, q2, F2)
• construct N = {Q, Σ, δ, q0, F) to recognize A1 ∪ A2

• Q = {q0} ∪ Q1 ∪ Q2

• the states of N are all states of N1 and N2 with new start
state q0

• Σ alphabet for both
• δ transition function for each q ∈ Q and a ∈ Σε

• δ (q, a) = δ1 (q, a) q ∈ Q1
• δ (q, a) = δ2 (q, a) q ∈ Q2
• δ (q, a) = {q1, q2} q = q0 and a = ε
• δ (q, a) = Ø q = q0 and a ≠ ε

• q0 is the start state of N
• F = F1 ∪ F2

• the accept states of N are all the accept states of N1 and N2
so that N accepts if either N1 or N2 accepts

Nondeterminism

79

• closure under concatenation

• we tried earlier to prove closure under concatenation,
but we didn’t finish because it was too difficult

• the new proof using nondeterminism is easier

Nondeterminism

80

• closure under concatenation (cont.)
• if A1 and A2 are regular languages, so is A1 ° A2

• proof idea: construct NFA N that recognizes A1 ° A2

• if N1 recognizes A1 and N2 recognizes A2, then N will
combine N1 and N2

• start state of N is assigned to the start state of N1
• the accept states of N1 have additional ε arrows that

nondeterministically allow branching to N2 whenever
N1 is in an accept state
• i.e., the first part of the concatenation has been

found
• accept states of N are the accept states of N2 only
• accepts when input split into two parts: N1 and N2

• nondeterministically guesses where to make split

Nondeterminism

81

• closure under concatenation (cont.)

• closure under concatenation (cont.)
• proof: regular languages are closed under concatenation

• let N1 recognize A1 where N1 = {Q1, Σ, δ1, q1, F1)
• let N2 recognize A2 where N2 = {Q2, Σ, δ2, q2, F2)
• construct N = {Q, Σ, δ, q0, F) to recognize A1 ° A2

• Q = Q1 ∪ Q2

• the states of N are all states of N1 and N2

• Σ alphabet for both
• δ transition function for any q ∈ Q and any a ∈ Σε

•δ (q, a) = δ1 (q, a) q ∈ Q1 and q ∈ F1

•δ (q, a) = δ1 (q, a) q ∈ F1 and a ≠ ε
•δ (q, a) = δ1 (q, a) ∪ {q2} q ∈ F1 and a = ε
•δ (q, a) = δ2 (q, a) q ∈ Q2

• q1 is the start state of N
• F = F2

• the accept states of N are all the accept states of N2

Nondeterminism

82

/

Nondeterminism

83

• closure under star

• if A1 is a regular languages, so is A1*

• proof idea: construct NFA N that recognizes A1*

• modify N1 that recognizes A1 to produce N

• N will accept its input whenever it can be broken into
several pieced and N1 accepts each piece

Nondeterminism

84

• closure under star (cont.)

• proof idea: construct NFA N that recognizes A1*

• modify N1 that recognizes A1 to produce N

• N will be similar to N1, but with additional ε arrows
returning to the start state from the accept states

• when processing gets to the end of a piece that N1

accepts, you can jump back to the start state to try
to read another piece that N1 accepts

• N must also accept ε, which is always a member of A1*

• could add start state to set of accept states, but
may cause other bad strings to be accepted

• instead, add a new start state that is also an accept
state and that has an ε arrow to the old start state

Nondeterminism

85

• closure under star (cont.)

Nondeterminism

86

• closure under star (cont.)
• proof: regular languages are closed under star

• let N1 recognize A1 where N1 = {Q1, Σ, δ1, q1, F1)
• construct N = {Q, Σ, δ, q0, F) to recognize A1*

• Q = {q0} ∪ Q1
• the states of N are states of N1 plus new start state

• Σ alphabet
• δ transition function for each q ∈ Q and a ∈ Σε

• δ (q, a) = δ1 (q, a) q ∈ Q1 and q ∈ F1

• δ (q, a) = δ1 (q, a) q ∈ F1 and a ≠ ε
• δ (q, a) = δ1 (q, a) ∪ {q1} q ∈ F1 and a = ε
• δ (q, a) = {q1} q = q0 and a = ε
• δ (q, a) = Ø q = q0 and a ≠ ε

• q0 is the new start state of N
• F = {q0} ∪ F1
• the accept states are old accept states plus new start state

/

Regular Expressions

87

• in arithmetic, we can use operations + and x to build
expressions

• (5 + 3) x 4

• value?

• similarly, we use regular expression operations to build up
regular expressions

• (0 ∪ 1)0*

• value: a language consisting of all strings starting with 0
or 1 followed by any number of 0s

Regular Expressions

88

• similarly, we use regular expression operations to build up
regular expressions (cont.)

• (0 ∪ 1)0*

• in this example

• (0 ∪ 1) is short for ({0} ∪ {1})

• value is language {0, 1}

• 0* means {0}*

• value is language of all strings containing any number
of 0s

• concatenation symbol can be implicit

• instead of (0 ∪ 1) ° 0*, it’s just (0 ∪ 1)0*

• like multiplication

Regular Expressions

89

• regular expressions are important in computer science
applications

• e.g., search for strings with specific patterns

• regular expressions are used in

• awk and grep in Unix/Linux

• Perl

• e.g., $myfilesearch =~ s/"//g;

• text editors

Regular Expressions

90

• e.g., (0 ∪ 1)*

• value is language of all possible strings of 0s and 1s

• if Σ = {0, 1}

• Σ is shorthand for (0 ∪ 1)

• Σ describes language consisting of all strings of length
1 over this alphabet

• Σ* describes language consisting of all strings over
this alphabet

• Σ*1 is all strings that end in 1

• (0Σ*) ∪ (Σ*1) is all strings that start with 0 or end
with 1

Regular Expressions

91

• in arithmetic, x has precedence over +

• 2 + 3 x 4

• value?

• to change the precedence, must use parentheses

• (2 + 3) x 4

• precedence in regular expressions

• ()

• *

• concatenation

• union

Regular Expressions

92

• R is a regular expression if R is

• a for some a in Σ

• ε

• Ø

• (R1 ∪ R2) where R1 and R2 are regular expressions

• (R1 ° R2) where R1 and R2 are regular expressions

• (R1*) where R1 is a regular expressions

• careful with ε and Ø

• ε – the language containing one string: the empty string

• Ø - the language containing no strings

• using R1 and R2 in definition not circular, but inductive

Regular Expressions

93

• R+ - shorthand for RR*

• R* - 0 or more concatenations from R

• R+ - 1 or more concatenations from R

• R+ ∪ ε = R*

• Rk – k concatenations of R

• L(R) – language of R

Regular Expressions

94

• regular expression exercises
• 0*10* =

• {w | w contains a single 1}
• Σ*1Σ* =

• {w | w contains at least one 1}
• Σ*001Σ* =

• {w | w contains the substring 001}
• 1*(01+)* =

• {w | every 0 in w is followed by at least one 1}
• (ΣΣ)* =

• {w | w is a string of even length}
• (ΣΣΣ)* =

• {w | the length of w is a multiple of 3}

Regular Expressions

95

• regular expression exercises (cont.)
• 01 ∪ 10 =

• {01, 10}
• 0Σ*0 ∪ 1Σ*1 ∪ 0 ∪ 1 =

• {w | w starts and end with the same symbol}
• (0 ∪ ε)1* =

• 01* ∪ 1*
• (0 ∪ ε) (1 ∪ ε) =

• {ε, 0, 1, 01}
• 1*Ø =

• Ø
• Ø* =

• {ε}

Regular Expressions

96

• regular expression identities

• R ∪ Ø = R

• R ° ε = R

• R ∪ ε may not = R

• if R = 0 then L(R) = {0} but L(R ∪ ε) = {0, ε}

• R ° Ø may not = R

• if R = 0 then L(R) = {0} but L(R ° Ø) = Ø

Regular Expressions

97

• regular expressions are useful for designing compilers for
programming languages

• tokens, such as constants or variable names, may be
described using regular expressions

• e.g., numerical constant that may include a fractional
part and/or a sign can be described as

 (+ ∪ - ∪ ε) (D+ ∪ D+.D* ∪ D*.D+)

• examples: 72, 3.14159, +7., and -.01

• once syntax has been described with regular
expressions in terms of its tokens, a lexical analyzer
that processes the program can be generated

Regular Expressions

98

• regular expressions are equivalent to finite automata

• surprising since they appear to be quite different

• a regular expression that describes a language can be
converted into a FA that recognizes that language, and
vice versa

• Theorem: A language is regular if and only if some regular
expression describes it.

• iff requires proof in each direction

Regular Expressions

99

• Proof:

• if a language is described by a regular expression, it is
regular

• Proof idea: convert R describing A into an NFA
recognizing A

• Proof: consider 6 cases

1. R = a for some a ∈ Σ, so L(R) = {a} that can be
recognized by the following NFA (easier than DFA)

• note that this is an NFA (why?)

• N = {{q1, q2}, Σ, δ, q1, {q2}) where δ is shown above

Regular Expressions

100

• Proof: (cont.)

• Proof: consider 6 cases

2. R = ε, so L(R) = {ε} that can be recognized by the
following NFA (easier than DFA)

• N = {{q1}, Σ, δ, q1, {q1}) where

• δ (r, b) = Ø for any r and b

Regular Expressions

101

• Proof: (cont.)

• Proof: consider 6 cases

3. R = Ø, so L(R) = Ø that can be recognized by the
following NFA

• N = {{q}, Σ, δ, q, Ø) where

• δ (r, b) = Ø for any r and b

Regular Expressions

102

• Proof: (cont.)

• Proof: consider 6 cases

4. R = R1
 ∪ R2

5. R = R1

° R2

6. R = R1*

• for these last three cases, we use constructions
given in the proofs of regular languages closed under
these operations

Regular Expressions

103

• example: build an NFA from the RE (ab ∪ a)*

• start with smallest and build up

• this technique generally does not result in an NFA with
the fewest states (2 states for this NFA)

• example: build an NFA from the RE (a ∪ b)*aba

 follows from
 def of concat

Regular Expressions

104

Regular Expressions

105

• Proof: (cont.)

• if a language is regular, then it is described by a regular
expression

• Proof idea: if A is regular, it is accepted by a DFA;
convert the DFA into an equivalent regular expression

• break procedure into two parts using a GNFA
(generalized nondeterministic finite automaton)

•convert DFA to GNFA

•GNFA to regular expression

Regular Expressions

106

• Proof: (cont.)

• GNFA (generalized nondeterministic finite automaton)

• NFA with transition arrows that may have regular
expressions as labels

• can read blocks of symbols instead of just one at a
time

• moves along transition arrow by reading a block of
symbols representing a string described by the RE on
that arrow

• nondeterministic so may have different ways to
process the same input string

• accepts if in an accept state at end of input

Regular Expressions

107

• Proof: (cont.)

• example: GNFA

Regular Expressions

108

• Proof: (cont.)

• for convenience, we will require GNFAs to have a
special form

• the start state has transition arrows going to every
other state but no arrows coming in from any other
state

• only one accept state with arrows coming in from
every other state but no arrows going to any other
states; cannot be the same as the start state

• except for the start and accept states, one arrow
goes from every state to every other state and to
itself

Regular Expressions

109

• Proof: (cont.)

• easy to convert a GNFA into a RE

• if GNFA has k states, k ≥ 2 since at least a start and
accept state

• if k > 2, we can construct an equivalent GNFA with
k - 1 states

• this step can be repeated on a GNFA until it is
reduced to just 2 states

• if k = 2, the GNFA has a single arrow from start to
accept state with the label being the equivalent of
the RE

Regular Expressions

110

• Proof: (cont.)

• stages to convert a GNFA into a RE

Regular Expressions

111

• Proof: (cont.)

• constructing an equivalent GNFA with one fewer state
when k > 2

• select a state, rip it out of the machine, and repair
the remaining machine so the language is still
recognized

• any state can be ripped out except the start or
accept states

• ripped state termed qrip

• after removing qrip, repair the machine by altering
the RE on the labels of the remaining arrows

•compensate for absence of qrip by adding back
lost computations

Regular Expressions

112

• Proof: (cont.)

• constructing an equivalent GNFA with one fewer state

Regular Expressions

113

• Proof: (cont.)
• in the old machine, if

• qi goes to qrip with an arrow labeled R1,
• qrip goes to itself with an arrow labeled R2,
• qrip goes to qj with an arrow labeled R3, and
• qi goes to qj with an arrow labeled R4

• then in the new machine, the arrow from qi to qj gets
the label

 (R1)(R2) * (R3) ∪ (R4)
• make this change for any arrow from qi to qj, even

when qi = qj

• the new machine recognizes the original language

Regular Expressions

114

• Proof: (cont.)

• formal definition of a GNFA (similar to NFA but diff δ)

 δ: (Q – {qaccept}) x (Q – {qstart}) → R

• R: all regular expressions over alphabet Σ

• if δ(qi, qj) = R, the arrow from qi to qj has RE R as its
label

• an arrow connects every state to every other state

• no arrows coming from qaccept or going to qstart

Regular Expressions

115

• Proof: (cont.)

• formal definition of a GNFA

Regular Expressions

116

• Proof: (cont.)

• a GNFA accepts a string w in Σ* if

• w = w1w2…wk

• each wi is in Σ*

• a sequence of states q0, q1, …, qk exists

• such that

• q0 = qstart is the start state

• qk = qaccept is the accept state

• for each i, we have wi ∈ L(Ri) where

• Ri = δ(qi-1, qi)

• i.e., R is the RE on the arrow from qi-1 to qi

Regular Expressions

117

• Proof: (cont.)
• returning to the lemma proof: if a language is regular,

then it is described by a regular expression
• let M be the DFA for language A
• convert M to GNFA G
• add new start state (with ε arc to old start state)
• add new accept state (with ε arcs from old accept

states)
• add all other missing arcs and label with Ø
• use new procedure CONVERT(G)
•takes GNFA and returns equivalent RE
•recursive, but only calls itself with a GNFA with
one fewer state (to avoid infinite recursion)

Regular Expressions

118

• Proof: (cont.)
• CONVERT(G)
1. k is number of states of G
2. if k = 2, G has start state, accept state, and one arrow

connecting them labeled with RE R
3. if k > 2, select any state qrip ∈ Q (other than qstart and qaccept)

• let G’ = (Q’, Σ, δ’, qstart, qaccept)
• Q’ = Q – {qrip}
• for any qi ∈ Q’ - {qaccept} and any qj ∈ Q’ – {qstart} let

 δ’(qi, qj) = (R1)(R2)*(R3) ∪ (R4)
 for

•R1 = δ(qi, qrip), R2 = δ(qrip, qrip), R3 = δ(qrip, qj), and R4 = δ(qi, qj)
• if δ(qi, qj) = R, the arrow from qi to qj has RE R as its label

4. compute CONVERT(G’) and return this value

Regular Expressions

119

• Proof: (cont.)

• example: convert two-state DFA to a regular expression

Regular Expressions

120

• Proof: (cont.)

• example: convert two-state DFA to a regular expression

• create 4-state GNFA by adding new start and accept
states

• labeled s and a for diagram clarity

• do not draw arcs labeled Ø (i.e., s→2, s→a, 1→a, 2→1)

• replace label a,b with a ∪ b since only one transition
allowed per arc in GNFA

Regular Expressions

121

• Proof: (cont.)

• example: convert two-state DFA to a regular expression

• remove state 2 and update arc labels

• only arc that changes is 1 to a (step 3 in CONVERT)

•qi = 1, qj = a, qrip = 2

•R1 = b, R2 = a ∪ b, R3 = ε, and R4 = Ø

•new label: (b)(a ∪ b)*(ε) ∪ Ø, or just b(a ∪ b)*

Regular Expressions

122

• Proof: (cont.)

• example: convert two-state DFA to a regular expression

• remove state 1 and update arc labels

• only arc that changes is s to a (step 3 in CONVERT)

•qi = s, qj = a, qrip = 1

•R1 = ε, R2 = a*, R3 = b(a ∪ b)*, and R4 = Ø

•new label: (ε)(a*)b(a ∪ b)* ∪ Ø, or just a*b(a ∪ b)*

 final RE:

 a*b(a ∪ b)*

Regular Expressions

123

• Proof: (cont.)

• example: convert three-state DFA to a regular
expression

• steps are similar

 DFA

Regular Expressions

124

• Proof: (cont.)

• example: convert three-state DFA to a regular
expression

• steps are similar

 qrip = 1

Regular Expressions

125

• Proof: (cont.)

• example: convert three-state DFA to a regular
expression

• steps are similar

 qrip = 2

Regular Expressions

126

• Proof: (cont.)
• example: convert three-state DFA to a regular

expression
• steps are similar

 qrip = 3

 RE:

Nonregular Languages

127

• some languages cannot be recognized by FA

• ex.: B = {0n1n| n ≥ 0}

• machine would need to be able to remember how many 0s
were seen as it reads the input

• could be unlimited, so could not be done with a finite
number of states

• need a proof method to show a language is nonregular

• cannot use example above because though a language
appears to require unlimited memory does not mean that it
actually does

• examples

•C = {w | w has an equal number of 0s and 1s}

•D = {w | w has an equal number of 01 and 10 substrings}

• C is not regular, but D is

Nonregular Languages

128

• pumping lemma preliminary

• consider the NFA for the language A

• what is the smallest string in this language?

• is there a relationship between the number of symbols
in the smallest string and the number of states?

• what can you say about a string in the language whose
length is greater than or equal to the number of
states?

a ab

b

Nonregular Languages

129

• the pumping lemma

• all regular languages can be pumped if they are at least
as long as a special value termed the pumping length

• each such string contains a section that can be
repeated any number of times with the resulting
string remaining in the language

• if a language does not have this property, it is
nonregular

pumping

 length = 4 a ab

b

Nonregular Languages

130

• pumping lemma

• if A is a regular language, there is a number p (the
pumping length) where if s is any string in A of length
at least p, then s may be divided into three pieces,
s = xyz, satisfying the following conditions

• for each i ≥ 0, xyiz ∈ A

• |y| > 0

• |xy| ≤ p

a ab

b

Nonregular Languages

131

• pumping lemma (cont.)

• for each i ≥ 0, xyiz ∈ A

• |y| > 0

• |xy| ≤ p

• note that

• |s| is the length of string s

• yi means i copies of y are concatenated together

• y0 = ε

• x or z may be ε, but y ≠ ε

• x and y together have length at most p

Nonregular Languages

132

• pumping lemma

• proof idea:

• let M = {Q, Σ, δ, q1, F) is a DFA that recognizes A

• let pumping length p = number of states of M

• show that any string s in A can be broken into pieces
xyz satisfying the three conditions

• if no strings in A are of length at least p, the
theorem is vacuously true

• otherwise, three conditions hold

Nonregular Languages

133

• pumping lemma

• proof idea: (cont.)

• if s in A has length at least p, consider the sequence
of states M goes through with input s

• e.g., let’s say it starts with q1 (start state), then
goes on to q3, q20, q9, … until it reaches the end of s
in q13

• if s ∈ A, M must accept s, so q13 is an accept state

Nonregular Languages

134

• pumping lemma

• proof idea: (cont.)

• let n = |s| - therefore, the sequence of states q1, q3,
q20, q9,…,q13 has length n + 1

• because n is at least p, n + 1 > p (or |Q|)

• therefore, the sequence must contain a repeated
state due to the pigeonhole principle

• e.g.,

Nonregular Languages

135

• pumping lemma

• proof idea: (cont.)

• divide s into three pieces x, y, and z

• x appears before q9

• y is the part between the two q9’s

• z is the remaining part of s

Nonregular Languages

136

• pumping lemma

• proof idea: (cont.)

• so,

• x takes M from q1 to q9

• y takes M from q9 back to q9

• z takes M from q9 to the accept state q13

Nonregular Languages

137

• pumping lemma
• proof idea: (cont.)

• this division of xyz satisfies the three conditions on input
xyyz:
• for each i ≥ 0, xyiz ∈ A
•x takes M from q1 to q9

•y takes M from q9 back to q9, as does the second y
•z takes M to q13, the accept state, so M accepts xyyz
•similarly, it accepts xyiz for any i > 0
•for i = 0, xyiz = xz, which is also accepted

• |y| > 0
•since it was the part of s that occurred between two
different occurrences of state q9

• |xy| ≤ p
•make sure q9 is the first repetition in the sequence
•p+1 states must contain a repetition (pigeonhole
principle)

Nonregular Languages

138

• pumping lemma (cont.)

• proof is similar to proof idea

• use the pumping lemma to show that a language B is
nonregular

• assume B is regular and show a contradiction

• use the pumping lemma where all strings of B with at
least length p can be pumped

• find string s in B with length > p that can’t be pumped

• show s cannot be pumped by considering all ways of
dividing s into x, y, and z, and for each division, finding
an i where xyiz is not in B

• s contradicts pumping lemma, so B is nonregular

Nonregular Languages

139

• pumping lemma (cont.)

• finding s may take creative thinking

• try members of B that seem to exhibit B’s
nonregularity

• see following examples

Nonregular Languages

140

• example: let B = {0n1n| n ≥ 0} – use the pumping lemma to prove
by contradiction that B is not regular
• assume B is regular with p pumping length
• let s = 0p1p

• because of our assumption, s = xyz where xyiz is in B for
any i > 0

• three cases to show how this is impossible
• y consists of only 0s
•now xyyz has more 0s than 1s and is not in B, violating
condition 1 of the pumping lemma

• y consists of only 1s
•also a contradiction

• y consists of 0s and 1s
•xyyz may have same number of 0s and 1s, but they will
be out of order with some 1s before 0s (not in B)

Nonregular Languages

141

• let B = {0n1n| n ≥ 0} – use the pumping lemma to prove by
contradiction that B is not regular (cont.)

• in any of the cases, a contradiction is unavoidable

• can simplify argument by applying condition 3 of the
pumping lemma to eliminate cases 2 and 3

• in this example, finding s was easy

Nonregular Languages

142

• example: let C = {w | w has an equal number of 0s and 1s} –
show that C is not regular

• assume C is regular with p pumping length

• let s = 0p1p

• because of our assumption, s = xyz where xyiz is in C
for any i > 0

• seems possible since if x and z are empty, and
y = 0p1p, then xyiz always has an equal number of 0s
and 1s

• but condition 3 of the pumping lemma states that
|xy| ≤ p, so s cannot be pumped in this way

• if |xy| ≤ p, our only choice is y consists of all 0s, so
xyyz is not in C, which leads to the contradiction

Nonregular Languages

143

• example: let C = {w | w has an equal number of 0s and 1s} –
show that C is not regular (cont.)

• finding s was a bit harder here

• if we had let s = (01)p, it would not have worked since
it can be pumped

• keep trying different values of s until you find one
that cannot be pumped

• another way to prove C is nonregular is to use another
language that we already know is nonregular, like B

• if C were regular, C ∩ 0*1* would also be regular due to
closure under intersection (proved in the textbook)

• but C ∩ 0*1* = B, which is not regular

Nonregular Languages

144

• example: let F = {ww | w ∈ {0,1}*} – show that F is not
regular

• assume F is regular with p pumping length

• let s = 0p10p1

• so s can be split into three pieces s = xyz satisfying
the three conditions of the lemma

• could let x and z be ε, but y must consist of only 0s,
so xyyz not in F

• we chose s to be a string that exhibits a nonregular
language instead of say, 0p0p, even though it is a
member since it can be pumped and fails the
contradiction

Nonregular Languages

145

• example: let D = {1n2 | n ≥ 0} – show that D is not regular

• assume D is regular with p pumping length

• let s = 1p2

• so s can be split into three pieces s = xyz satisfying
the three conditions of the lemma

• perfect squares: 0, 1, 4, 9, 16, 25, 36, 49, …

•gap between values gets greater as n increases

Nonregular Languages

146

• example: let D = {1n2 | n ≥ 0} – show that D is not regular

• assume D is regular with p pumping length (cont.)

• consider strings xyz and xy2z

•differ by one repetition of y so lengths differ by |y|

•by condition 3, |xy| ≤ p so |y| ≤ p

•but |xyz| = p2 so |xy2z| ≤ p2 + p

•p2 + p < p2 + 2p + 1 = (p + 1)2

•y cannot be ε, so |xy2z| > p2

•thus |xy2z| lies between consecutive perfect
squares p2 and (p + 1)2

•so length is not a perfect square (contradiction)

•thus xy2z not in D, and D is not regular

Nonregular Languages

147

• example: let E = {0i1j| i > j} – use the pumping lemma to
prove by contradiction that E is not regular

• use pumping lemma to pump down

• assume E is regular with p pumping length

• let s = 0p+11p

• because of our assumption, s = xyz where xyiz is in E
for any i ≥ 0

• by condition 3, y consists of only 0s

•now xyyz has even more 0s, which is in E, so we
need to try another string

• try xy0z = xz (pumping down)

• since s had just one more 0 than 1s, xz cannot have
more 0s than 1s -> contradiction

Nonregular Languages

148

• pumping lemma (cont.)

• additional notes

• we cannot use the pumping lemma to show that a
language is regular

• some languages will pass the pumping lemma test,
but still be nonregular

• the pumping lemma, therefore, is a necessary test,
but not a sufficient test, to show that a language is
regular

• we have other ways to show a language is regular

• no language that fails the pumping lemma test is
regular

Nonregular Languages

149

• pumping lemma (cont.)

• additional notes

• consider the following DFA

• what strings can be accepted?

• divide the strings into three parts

• provide a regular expression

https://swaminathanj.github.io/fsm/pumpinglemma.html

Nonregular Languages

150

• pumping lemma (cont.)

• additional notes

• if loop at beginning x = ε and w = yz

• if loop at end z = ε and w = xy

• y cannot be ε (but y0 can!)

Nonregular Languages

151

• pumping lemma (cont.)

• additional notes

• shortest string accepted? if q2 is also accept state?

• longest string accepted without looping?

• longest string accepted by looping once (p)?

Nonregular Languages

152

• pumping lemma (cont.)

• additional notes

• what is the pumping length for the following languages?

1. 1*

2. 01

3. 01*0

4. 11*

1. 1

2. 3

3. 3

4. 2

Nonregular Languages

153

• pumping lemma (cont.)

• additional notes

• remember that s is only one type of string found in
the language

• try to choose s to be a string pattern we already
know is nonregular

• use p strategically to limit the number of parts of
the string that y can be assigned

• for xyiz, string must be in the language for all i ≥ 0

• only one assignment to x, y, and z must work

•but for that assignment, it must work for all i ≥ 0

• so you must try them all and explain why none of
them work when considering all i ≥ 0

Nonregular Languages

154

• pumping lemma (cont.)

• additional notes

• what about DFAs with multiple circuits?

• the pumping lemma seems too limited

 *Hermant Chetwani

• it still works since we can break down the strings
into different cases of s where each s has only one
circuit, e.g., a bi abb and babbabab bi

Nonregular Languages

155

• pumping lemma (cont.)

• proof requirements for proving A is nonregular

• Assume A is regular and therefore must pass the
pumping lemma test

• let s = some string using p, such as 0p1p

• explain xyz assignment, such as x and y must consist
entirely of 0s (from the limitations imposed by s)

• explain how xyiz would allow other strings to be
generated with i = 0 or 2 that are not in A

• explain how there are no other options, or every other
option would result in the same or similar condition

• state that this is a contradiction and therefore the
pumping lemma does not hold; therefore, A is nonreg

	Slide 1: Chapter 1 Regular Languages
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155

