
Chapter 1
Regular Languages
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• computation theory begins with the question: what is a 
computer?

• real computers are overly complicated for our uses

• instead, we use an idealized computer, or computational 
model

• we will use several different models with varying 
features

• the first is the finite state machine, or finite 
automaton
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• finite automata 

• useful

• limited memory

• common in everyday life

• example: automatic door controller with ground pads

• front pad: detect person about to walk through door

• rear pad: detect how long to hold the door, and to 
keep the door shut if someone is standing there
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• example: automatic door with ground pads (cont.)

• controller in one of two states: OPEN or CLOSED

• four possible input conditions

• FRONT: person standing on front pad

• REAR: person is standing on rear pad

• BOTH: people are standing on both pads

• NEITHER: no one is standing on either pad
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• example: automatic door with ground pads (cont.)

• controller moves between states OPEN and CLOSED 
depending on input

• state diagram
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• example: automatic door with ground pads (cont.)

• state transition table

• if controller is CLOSED and receives input:

• FRONT, REAR, NEITHER, FRONT, BOTH, 
NEITHER, REAR, and NEITHER

• it would go through states:

•CLOSED (starting), OPEN, OPEN, CLOSED, 
OPEN, OPEN, CLOSED, CLOSED, CLOSED
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• automatic door controller as finite automaton 

• controller: computer with single bit of memory to hold 
state

• other controllers might need larger memories

• elevator controller

• state for current floor

• inputs from buttons

• dishwashers, thermostats, digital watches, calculators

• Markov chains: useful for recognizing patterns in data

• speech processing, optical character recognition

• employ probabilistic state chains
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• sample finite automaton M1

• state diagram

• three states: q1, q2, q3

• start state: q1 indicated by arrow pointing from 
nowhere

• accept state: q2  with double circle

• transitions: other arrows



Finite Automata

9

• sample finite automaton M1

• when input string is received, e.g. 1101, the FA 
processes it and produces an output: accept or reject

• begins at start state of M1

• input string symbols processed one by one from 
left to right

• after reading each symbol, M1 moves from one 
state to another according to the symbol

• when the last symbol is read, M1 produces output 
accept if it is in the accept state; otherwise reject
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• sample finite automaton M1

• e.g. 1101

• start at state q1

• read 1, follow transition from q1 to q2

• read 1, follow transition from q2 to q2

• read 0, follow transition from q2 to q3

• read 1, follow transition from q3 to q2

• accept because M1 is in an accept state q2 at end of 
input
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• sample finite automaton M1

• other strings accepted

• 1, 01, 11, 01010101

•any string that ends with 1

• 100, 0100, 110000, 0101010000

•any string that ends with an even number of 0s

• rejected strings

• 0, 10, 101000
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• formal definition

• diagrams easier to understand, but formal definition 
needed because it is

• precise

• resolves uncertainties as to what is allowed

• notation

• helps express thoughts clearly
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• formal definition

• requires multiple parts (5-tuple)

• set of states

• rules for transitions between states depending on 
input

• input alphabet of allowable input symbols

• start state

• set of accept states (or final states)
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• concerning rules for transitions between states

• use transition functions, denoted by δ

• if FA has an arrow from state x to state y when it 
reads a 1, it will move from x to y when 1 is read

• δ (x, 1) = y
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• formal definition

• with this definition we see

• 0 accept states is allowable

• δ specifies exactly one next state for each state/input 
value
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• for example

• M1 can be described as M1 = (Q, Σ, δ, q1, F) where

• Q = {q1, q2, q3}

• Σ = {0, 1}

• δ is described as 

• q1 is the start state

• F = {q2}
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• if A is the set of all strings that M accepts

• A is the language of M

• L(M) = A 

• M recognizes A

• M accepts A

• a machine may accept multiple strings, but it only 
recognizes one language

• if it accepts no strings, it recognizes the empty 
language ∅

• M1 recognizes A where A = {w | w has at least one 1 and 
an even number of 0s follow the last 1}
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• example

• M2 = ({q1, q2}, {0, 1}, δ, q1, {q2}) where

• δ is described as 

• try sample strings

• What language does M2 recognize?

• all binary strings ending with a 1
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• example

• What language does M4 recognize?

• all strings of {a,b} beginning and ending with the 
same letter
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• example

• think about a counter or accumulator where RESET 
sets it back to 0

• What language does M5 recognize?

• accepts all strings with digits summing to 0 mod 3
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• for some FAs, a state diagram is not possible

• it may be too large to draw (but not infinite)

• description depends on an unspecified parameter

• a formal definition must then be used to specify the 
machine

• e.g., a generalization of the previous example
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• formal definition of computation

• let M = (Q, Σ, δ, q1, F) be a FA and w = w1w2…wn be a 
string where each wi is a member of the alphabet 

• M accepts w if a sequence of states r0,r1,…,rn in Q 
exists with three conditions:

• r0 = q0

• machine starts at start state

• δ (ri, wi+1) = ri+1 for i = 0, …, n-1

• machine goes from state to state according to 
transition function

• rn ∈ F

• machine accepts its input if it ends up in an accept 
state
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• formal definition of computation (cont.)

• M recognizes language A if

• A = {w | M accepts w}

• a language is called a regular language if some finite 
automaton recognizes it
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• designing finite automata

• cannot be prescribed easily

• put yourself in the place of the machine

• you receive a string an input string and must 
determine whether it is a member of the language 
the automaton is supposed to recognize

• process the symbols in the string one by one

• decide whether the string seen so far is in the 
language since you don’t know when the string will 
end
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• designing finite automata (cont.)

• determine what you need to remember about the string 
as you are reading it

• input could be very long, but you probably don’t need 
to remember the entire input string

• you have finite memory, e.g., a single sheet of paper

• what is the crucial information to remember?
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• designing finite automata

• example: construct a FA that recognizes the language 
of all bit strings with an odd number of 1s

• as you traverse the string, you don’t need to 
remember the entire string

• simply remember whether the number of 1’s seen so 
far is odd or even

• if you read a 1, flip the answer

• if you read a 0, leave the answer as is
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• designing finite automata

• example: construct a FA that recognizes the language 
of all bit strings with an odd number of 1s (cont.)

• once you have the necessary information to 
remember, make a finite list of possibilities

• even so far

• odd so far

• assign a state to each of the possibilities
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• designing finite automata

• example: construct a FA that recognizes the language 
of all bit strings with an odd number of 1s (cont.)

• assign transitions to go from one possibility to 
another

• set the start state to qeven since 0 is an even number

• set qodd to be the accept state
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• designing finite automata
• example: construct a FA that recognizes the regular 

language of all bit strings that contain 001
• e.g., 0010, 1001, 001, 11111001111, but not 11 and 000
• if you were the automaton, you would read symbols 

from the beginning, skipping over all 1s
• if you read a 0, you may be seeing the start of 001
• if you read a 1 next, there are too few 0s, so go 
back to skipping over 1s
• if you read a 0 next, you need to remember that 
you have now seen two symbols of the pattern
•continue scanning until you see a 1 – if so, 
remember that you have found the pattern, and 
keep reading to the end of the string
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• designing finite automata

• example: construct a FA that recognizes the regular 
language of all bit strings that contain 001 (cont.)

• four different possibilities

• you haven’t seen any symbols of the pattern

• you have seen just one 0

• you have seen 00

• you have seen the entire pattern 001

• assign states q, q0, q00, and q001 to these possibilities
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• designing finite automata
• example: construct a FA that recognizes the regular 

language of all bit strings that contain 001 (cont.)
• assign the transitions

• from q
• if you read a 1, stay in q
• if you read a 0, go to q0

• from q0

• if you read a 1, return to q
• if you read a 0, go to q00

• from q00

• if you read a 1, go to q001

• if you read a 0, stay in q00

• from q001

• if you read a 0 or 1, stay in q001
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• designing finite automata

• example: construct a FA that recognizes the regular 
language of all bit strings that contain 001 (cont.)

• start state is q

• accept state is q001
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• regular operations

• properties for finite automata

• help us design FA to recognize particular languages

• help us determine other languages are nonregular

• three regular operations

• union: A ∪ B = {x | x ∈ A or x ∈ B}

• concatenation: A ° B = { xy | x ∈ A and y ∈ B}

• star: A* = {x1x2…xk | k ≥ 0 and each xi ∈ A}

where A and B are regular languages
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• regular operations

• regular operation notes

• union: takes all strings in A and B and puts them into 
one language

• concatenation: attaches a string from A in front of a 
string from B in all possible ways to get the new 
language

• star: unary rather than binary

• attaches any number (0 or more) of strings in A to 
get a string in the new language

• empty string ε is always a member of A*
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• regular operations

• example: Σ = {a, b, …, z},  A = {good, bad},  B = {boy, girl}

• A ∪ B = {good, bad, boy, girl}

• A ° B = {goodboy, goodgirl, badboy, badgirl}

• A* = {ε, good, bad, goodgood, goodbad, badgood,
         badbad, goodgoodgood, goodgoodbad,
         goodbadgood, goodbadbad, …}
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• closure

• consider N = {1, 2, 3, …}

• N is closed under multiplication means that when we 
multiply any two numbers from N, we get a product 
that is also in N

• N is not closed under division (why?)

• in general, a collection of objects is closed under some 
operation if the result of that operation is still in the 
collection
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• closure

• regular languages are closed under union

• if A1 and A2 are regular languages, so is A1 ∪ A2

• proof idea: construct a FA M that recognizes A1 ∪ A2

• if M1 recognizes A1 and M2 recognizes A2, then M will 
simulate both M1 and M2, accepting if either M1 or M2 

accepts

• cannot simulate M1 and then M2

• cannot rewind the input
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• closure

• regular languages are closed under union (cont.)

• instead, simulate M1 and M2 simultaneously

• remember state each machine would be in if it had 
read the input up to this point

• if M1 has k1 states and M2 has k2 states, the 
number of pairs of states is k1 x k2

• each state in M will be a pair

• transitions go from pair to pair, updating the 
current state of both M1 and M2

• accept states are those pairs where either M1 or 
M2 is in an accept state
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• closure

• proof: regular languages are closed under union (cont.)

• let M1 recognize A1 where M1 = {Q1, Σ, δ1, q1, F1)

• let M2 recognize A2 where M2 = {Q2, Σ, δ2, q2, F2)
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• closure

• proof: regular languages are closed under union (cont.)

•  construct M = {Q, Σ, δ, q0, F) to recognize A1 ∪ A2

• Q = {(r1, r2) | r1 ∈ Q1 and r2 ∈ Q2}

•cartesian product for all pairs of states Q1 x Q2

• Σ alphabet for both

• δ transition function for each (r1, r2) ∈ Q and a ∈ Σ

•δ ((r1, r2), a) = (δ1 (r1, a), δ2 (r2, a))

•moves from state pair to state pair based on a

• q0 is the pair (q1, q2)

• F is set of pairs where M1 or M2 is in an accept state

•F = {(r1, r2) | r1 ∈ F1  or r2 ∈ F2}           not and
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• closure

• regular languages are closed under union example

• let M1 recognize A1 where M1 = {Q1, Σ, δ1, q1, F1}

 M1 = {{q1,q2}, {0,1}, δ1, q1, {q2}}

   binary strings ending in 1

• let M2 recognize A2 where M2 = {Q2, Σ, δ2, q2, F2)

 M2 = {{q1,q2,q3}, {0,1}, δ2, q1, {q2}}

   binary strings with 1 followed by even number of 0s
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• closure

• regular languages are closed under union example

• let M1 recognize A1 where M1 = {Q1, Σ, δ1, q1, F1}

• let M2 recognize A2 where M2 = {Q2, Σ, δ2, q2, F2)

  new states: q11, q12, q13, q21, q22, q23

  Σ = {0, 1}

  start state: q11

  accept states: {q12, q21, q22, q23}

  accepts binary strings ending with 1

     or containing a 1 followed by an even # of 0s
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• closure

      union                                       simplified
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• closure

• regular languages are closed under concatenation 

• let M1 recognize A1 where M1 = {Q1, Σ, δ1, q1, F1)

• let M2 recognize A2 where M2 = {Q2, Σ, δ2, q2, F2)

• construct M to accept input first for M1, then for M2

• BUT, M doesn’t know where to break its input

• where the first part ends and the second part 
begins

• we need to introduce a new technique called 
nondeterminism
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• so far, we have considered only deterministic finite 
automata (DFA)

• i.e., when a machine is in a given state and reads the 
next input symbol, there is only one state that can be 
the next state

• in a nondeterministic machine, several choices may exist 
for the next state

• nondeterminism is a generalization of determinism

• what do you  notice that is different in this NFA?
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• differences between DFAs and NFAs

• DFAs: states may have exactly one exiting arrow for
   each symbol
NFAs: a state may have zero, one, or many exiting
   arrows for each symbol

• DFAs: labels on transition arrows are symbols from the 
   alphabet
NFAs: labels on transition arrows are symbols from the
   alphabet or ε; zero, one, or many arrows may exit
   from each state with label ε
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• how does an NFA compute?

• if multiple ways to proceed exist after reading a 
symbol, the machine splits into multiple copies of itself 
and follows all possibilities in parallel

• machine also splits for all ε branches that can be taken

• each copy takes one of the possible ways to proceed 
and continues as before

• each machine continues to split as needed

• if the next input symbol does not match an exiting 
arrow for a machine’s current state, that copy of the 
machine dies, along with its branch of computation

• if any one of the copies reaches an accept state at the 
end of the input, the NFA accepts the input string
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• nondeterminism can be viewed as a parallel computation

• multiple independent “processes” or “threads” can be 
running concurrently

• each split corresponds to a process forking into 
multiple children, with each proceeding separately

• if at least one of these processes accepts, then the 
entire computation accepts
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• nondeterminism can be viewed as a tree of possibilities

• root is the start of the computation

• branches signify the machine splitting across multiple 
choices

• machine accepts if at least one branch ends in an 
accept state
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• example: NFA N1 on 010110

• keep track of possibilities by placing fingers over each 
state where a machine could be

• what about 010?

• what language does this
accept?

• all strings with 101 or 11
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• NFAs are useful in several ways

• every NFA can be converted directly into a DFA

• constructing NFAs is sometimes easier than directly 
constructing DFAs

• an NFA may be much smaller or easier to understand 
than its corresponding DFA
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• example NFA N2

• what language does it accept?

• all binary strings with 1 in third-to-last position
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• example NFA N2

• can think of it as staying in the start state until it 
guesses that it is three places from the end

• at that point, if the next symbol is 1, it branches to q2 
and uses q3 and q4 to check its guess
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• example NFA N2

• this NFA can be converted to an equivalent DFA, but 
with more states and transitions

• smallest equivalent DFA
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• example NFA N2

• what language would N2 recognize if edges with labels ε 
were added from q2 to q3 and from q3 to q4?

• all binary strings containing a 1 in any of the last 
three positions

• how would the corresponding DFA change?
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• example NFA N3

• unary alphabet {0}

• what language does this accept?
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• example NFA N3

• accepts ε, 00, 000, 0000, 000000 but not 0, 00000

• accepts all strings 0k where k is 0 or a multiple of 2 or 3
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• example NFA N3

• think of the machine as guessing whether to test for 
multiples of 2 or 3

• could use a DFA instead, but N3 is easiest to understand
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• example NFA N4

• accepts ε, a, baba, baa

• does not accept b, bb, babba

• so, the language consists of ε and strings composed of 
a’s and b’s, but always ending in a

• more limitations, but this language cannot be easily 
and succinctly described
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• formal definition of NFA

• similar to DFA, but transition functions are different

• in NFA, transition function takes a state and an input 
symbol *or the empty string* and produces a *set* 
of possible next states

• recall P(Q) is the power set (set of all subsets)

• alphabet must add ε

• Σε = Σ ∪ {ε}
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• formal definition of NFA
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• example N1

• formal definition

• Q = {q1, q2, q3, q4}

• Σ = {0, 1}

• δ is given as 

• q1 is the start state

• F = {q4}



Nondeterminism

63

• formal definition of computation
• similar to DFA
• let N = (Q, Σ, δ, q0, F) be a NFA and w a string over 

alphabet Σ
• N accepts w if we can write w as w = y1y2…yn where each yi is 

a member of Σε and the sequence of states r0, r1,…rn in Q 
exists with three conditions:
• r0 = q0

• machine starts at start state
• ri+1 ∈ δ (ri, yi+1)  for i = 0, …, m-1

• machine goes from state ri to ri+1 which is a member of 
the set of allowable next states according to transition 
function

• rm ∈ F
• machine accepts its input if it ends up in an accept 

state
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• equivalence of NFAs and DFAs

• deterministic and nondeterministic FAs recognize the 
same class of languages

• surprising since NFAs seem more powerful

• useful because NFAs are often easier to construct and 
understand

• two machines are equivalent if they recognize the same 
language
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• Theorem: every nondeterministic finite automaton has an 
equivalent deterministic finite automaton

• proof idea

• convert NFA to equivalent DFA that simulates it

• consider what happens as input is read

• what do you need to keep track of?

• various branches of computation by placing fingers 
over active states

• if the NFA has k states, there are 2k subsets of 
states

• each subset corresponds to one state the DFA will 
need to keep track of, so the DFA will have 2k states

• set start and accept states for DFA
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• proof
• let N = (Q, Σ, δ, q0, F) be the NFA recognizing A

• construct DFA M = (Q’, Σ, δ’, q0’, F’) recognizing A
• first consider case where N has no ε edges

• Q’ = P(Q)
• every state of M is a set of states of N

• let δ’ (R, a) = {q ∈ Q | q ∈ δ (r, a) for some r ∈ R} where 
R ∈ Q
• if R is a state of M, it is also a set of states of N; 

when M reads a symbol a in R, it goes to one or more 
states in R, so δ’ (R, a) = Ur ∈ R δ (r, a) 

• q0’ = {q0}
• M starts in the state corresponding to the collection 

containing just the start state of N
• F’ = {R ∈ Q’ | R contains an accept state of N}

• machine accepts if one of the possible states that N 
could be in at this point is an accept state
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• proof (cont.)

• now consider ε edges

• for any state R of M, E(R) is the collection of states 
that can be reached from members of R by following 
ε arrows, including the members of R themselves

• E(R) = {q | q can be reached from R by 0 or more ε
            arrows}

• modify transition function to include states reached 
by ε arrows

• δ’ (R, a) = {q ∈ Q | q ∈ E(δ (r, a)) for some r ∈ R} 

• modify start state q0’ = E({q0})
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• corollary

• a language is regular if and only if some 
nondeterministic finite automaton recognizes it
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• convert NFA N4 to a DFA



Nondeterminism

70

• convert NFA N4 to a DFA

• N4 = (Q, {a, b}, δ, 1, {1})  where Q = {1, 2, 3}

• DFA D’s states will be 

• P(Q) = {Ø, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}

• D’s start state = E({1}) = {1, 3}

• D’s accept states = {{1}, {1,2}, {1,3}, {1,2,3}}

• anything containing the N4‘s accept states
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• convert NFA N4 to a DFA (cont.)

• D’s transition function

• each of D’s states must go to one place on input a and 
one place on input b

• state {2} goes to {2,3} on a and {3} on b

• state {1} goes to Ø on a and {2} on b

•note: follow ε arrows as a new state is entered 
(start state or state reached by input symbol)
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• convert NFA N4 to a DFA (cont.)

• D’s transition function (cont.)

• state {3} goes to {1,3} on a and Ø on b

• state {1,2} goes to {2,3} on a and {2,3} on b

• etc.
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• convert NFA N4 to a DFA (cont.)

• DFA D

• DFA D simplified

• remove states
that cannot be
reached
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• closure under the regular operations

• remember that we started this topic on nondeterminism 
because we needed NFA to prove regular operations 
were closed under

• union

• concatenation

• star
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• closure under union

• we proved closure under union before by simulating both 
machines simultaneously

• the new proof using nondeterminism is easier
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• closure under union (cont.)

• if A1 and A2 are regular languages, so is A1 ∪ A2

• proof idea: construct NFA N that recognizes A1 ∪ A2

• if N1 recognizes A1 and N2 recognizes A2, then N will 
combine N1 and N2, accepting if either N1 or N2 accepts

• N has new start state that branches to the start 
states of N1 and N2 with ε arrows

• N nondeterministically guesses which machine 
accepts the input

• if either N1 or N2 accepts, N will accept, too
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• closure under union (cont.)
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• closure under union (cont.)
• proof: regular languages are closed under union

• let N1 recognize A1 where N1 = {Q1, Σ, δ1, q1, F1)
• let N2 recognize A2 where N2 = {Q2, Σ, δ2, q2, F2)
• construct N = {Q, Σ, δ, q0, F) to recognize A1 ∪ A2

• Q = {q0} ∪ Q1 ∪ Q2

• the states of N are all states of N1 and N2 with new start 
state q0

• Σ alphabet for both
• δ transition function for each q ∈ Q and a ∈ Σε

• δ (q, a) = δ1 (q, a)   q ∈ Q1 
• δ (q, a) = δ2 (q, a)   q ∈ Q2 
• δ (q, a) = {q1, q2}     q = q0 and a = ε
• δ (q, a) = Ø             q = q0 and a ≠ ε

• q0 is the start state of N
• F = F1 ∪ F2

• the accept states of N are all the accept states of N1 and N2 
so that N accepts if either N1 or N2 accepts



Nondeterminism

79

• closure under concatenation

• we tried earlier to prove closure under concatenation, 
but we didn’t finish because it was too difficult

• the new proof using nondeterminism is easier
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• closure under concatenation (cont.)
• if A1 and A2 are regular languages, so is A1 ° A2

• proof idea: construct NFA N that recognizes A1 ° A2

• if N1 recognizes A1 and N2 recognizes A2, then N will 
combine N1 and N2

• start state of N is assigned to the start state of N1 
• the accept states of N1 have additional ε arrows that 

nondeterministically allow branching to N2 whenever 
N1 is in an accept state
• i.e., the first part of the concatenation has been 

found
• accept states of N are the accept states of N2 only
• accepts when input split into two parts: N1 and N2

• nondeterministically guesses where to make split



Nondeterminism

81

• closure under concatenation (cont.)



• closure under concatenation (cont.)
• proof: regular languages are closed under concatenation

• let N1 recognize A1 where N1 = {Q1, Σ, δ1, q1, F1)
• let N2 recognize A2 where N2 = {Q2, Σ, δ2, q2, F2)
• construct N = {Q, Σ, δ, q0, F) to recognize A1 ° A2

• Q = Q1 ∪ Q2

• the states of N are all states of N1 and N2

• Σ alphabet for both
• δ transition function for any q ∈ Q and any a ∈ Σε

•δ (q, a) = δ1 (q, a)       q ∈ Q1 and q ∈ F1

•δ (q, a) = δ1 (q, a)        q ∈ F1 and a ≠ ε
•δ (q, a) = δ1 (q, a) ∪ {q2} q ∈ F1 and a = ε
•δ (q, a) = δ2 (q, a)           q ∈ Q2 

• q1 is the start state of N
• F = F2

• the accept states of N are all the accept states of N2

Nondeterminism

82

/
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• closure under star

• if A1 is a regular languages, so is A1*

• proof idea: construct NFA N that recognizes A1*

• modify N1 that recognizes A1 to produce N

• N will accept its input whenever it can be broken into 
several pieced and N1 accepts each piece
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• closure under star (cont.)

• proof idea: construct NFA N that recognizes A1*

• modify N1 that recognizes A1 to produce N

• N will be similar to N1, but with additional ε arrows 
returning to the start state from the accept states

• when processing gets to the end of a piece that N1 

accepts, you can jump back to the start state to try 
to read another piece that N1 accepts

• N must also accept ε, which is always a member of A1*

• could add start state to set of accept states, but 
may cause other bad strings to be accepted

• instead, add a new start state that is also an accept 
state and that has an ε arrow to the old start state
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• closure under star (cont.)
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• closure under star (cont.)
• proof: regular languages are closed under star

• let N1 recognize A1 where N1 = {Q1, Σ, δ1, q1, F1)
• construct N = {Q, Σ, δ, q0, F) to recognize A1*

• Q = {q0} ∪ Q1 
• the states of N are states of N1 plus new start state

• Σ alphabet
• δ transition function for each q ∈ Q and a ∈ Σε

• δ (q, a) = δ1 (q, a)            q ∈ Q1 and q ∈ F1

• δ (q, a) = δ1 (q, a)            q ∈ F1 and a ≠ ε
• δ (q, a) = δ1 (q, a) ∪ {q1}   q ∈ F1 and a = ε
• δ (q, a) = {q1}                  q = q0 and a = ε
• δ (q, a) = Ø                     q = q0 and a ≠ ε

• q0 is the new start state of N
• F = {q0} ∪ F1 
• the accept states are old accept states plus new start state

/
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• in arithmetic, we can use operations + and x to build 
expressions

• (5 + 3) x 4

• value?

• similarly, we use regular expression operations to build up 
regular expressions

• (0 ∪ 1)0*

• value: a language consisting of all strings starting with 0 
or 1 followed by any number of 0s



Regular Expressions

88

• similarly, we use regular expression operations to build up 
regular expressions (cont.)

• (0 ∪ 1)0*

• in this example

• (0 ∪ 1) is short for ({0} ∪ {1})

• value is language {0, 1}

• 0* means {0}*

• value is language of all strings containing any number 
of 0s

• concatenation symbol can be implicit

• instead of (0 ∪ 1) ° 0*, it’s just (0 ∪ 1)0*

• like multiplication
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• regular expressions are important in computer science 
applications

• e.g., search for strings with specific patterns

• regular expressions are used in

• awk and grep in Unix/Linux

• Perl

• e.g., $myfilesearch =~ s/"//g;

• text editors
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• e.g., (0 ∪ 1)*

• value is language of all possible strings of 0s and 1s

• if Σ = {0, 1}

• Σ is shorthand for (0 ∪ 1)

• Σ describes language consisting of all strings of length 
1 over this alphabet

• Σ* describes language consisting of all strings over 
this alphabet

• Σ*1 is all strings that end in 1 

• (0Σ*) ∪ (Σ*1) is all strings that start with 0 or end 
with 1
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• in arithmetic, x has precedence over +

• 2 + 3 x 4

• value?

• to change the precedence, must use parentheses

• (2 + 3) x 4

• precedence in regular expressions

• ()

• *

• concatenation

• union
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• R is a regular expression if R is

• a for some a in Σ

• ε

• Ø

• (R1 ∪ R2) where R1 and R2 are regular expressions

• (R1 ° R2) where R1 and R2 are regular expressions

• (R1*) where R1 is a regular expressions

• careful with ε and Ø

• ε – the language containing one string: the empty string

• Ø - the language containing no strings

• using R1 and R2 in definition not circular, but inductive
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• R+ - shorthand for RR*

• R* - 0 or more concatenations from R

• R+ - 1 or more concatenations from R

• R+ ∪ ε = R*

• Rk – k concatenations of R

• L(R) – language of R
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• regular expression exercises
• 0*10* = 

• {w | w contains a single 1}
• Σ*1Σ* = 

• {w | w contains at least one 1}
• Σ*001Σ* = 

• {w | w contains the substring 001}
• 1*(01+)* = 

• {w | every 0 in w is followed by at least one 1}
• (ΣΣ)* = 

• {w | w is a string of even length}
• (ΣΣΣ)* = 

• {w | the length of w is a multiple of 3}
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• regular expression exercises (cont.)
• 01 ∪ 10 = 

• {01, 10}
• 0Σ*0 ∪ 1Σ*1 ∪ 0 ∪ 1 = 

• {w | w starts and end with the same symbol}
• (0 ∪ ε)1* = 

• 01* ∪ 1*
• (0 ∪ ε) (1 ∪ ε) = 

• {ε, 0, 1, 01}
• 1*Ø = 

• Ø
• Ø* = 

• {ε}
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• regular expression identities

• R ∪ Ø = R

• R ° ε = R

• R ∪ ε may not = R

• if R = 0 then L(R) = {0} but L(R ∪ ε) = {0, ε}

• R ° Ø may not = R

• if R = 0 then L(R) = {0} but L(R ° Ø) = Ø
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• regular expressions are useful for designing compilers for 
programming languages

• tokens, such as constants or variable names, may be 
described using regular expressions

• e.g., numerical constant that may include a fractional 
part and/or a sign can be described as

     (+ ∪ - ∪ ε) (D+ ∪ D+.D* ∪ D*.D+)

• examples: 72, 3.14159, +7., and -.01

• once syntax has been described with regular 
expressions in terms of its tokens, a lexical analyzer 
that processes the program can be generated
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• regular expressions are equivalent to finite automata

• surprising since they appear to be quite different

• a regular expression that describes a language can be 
converted into a FA that recognizes that language, and 
vice versa

• Theorem: A language is regular if and only if some regular 
expression describes it.

• iff requires proof in each direction
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• Proof:

• if a language is described by a regular expression, it is 
regular

• Proof idea: convert R describing A into an NFA 
recognizing A

• Proof: consider 6 cases

1. R = a for some a ∈ Σ, so L(R) = {a} that can be 
recognized by the following NFA (easier than DFA)

• note that this is an NFA (why?)

• N = {{q1, q2}, Σ, δ, q1, {q2}) where δ is shown above
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• Proof: (cont.)

• Proof: consider 6 cases

2. R = ε, so L(R) = {ε} that can be recognized by the 
following NFA (easier than DFA)

• N = {{q1}, Σ, δ, q1, {q1}) where 

• δ (r, b) = Ø for any r and b
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• Proof: (cont.)

• Proof: consider 6 cases

3. R = Ø, so L(R) = Ø that can be recognized by the 
following NFA

• N = {{q}, Σ, δ, q, Ø) where 

• δ (r, b) = Ø for any r and b
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• Proof: (cont.)

• Proof: consider 6 cases

4. R = R1
 ∪ R2 

5. R = R1
 
° R2

6. R = R1*

• for these last three cases, we use constructions 
given in the proofs of regular languages closed under 
these operations
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• example: build an NFA from the RE (ab ∪ a)*

• start with smallest and build up

• this technique generally does not result in an NFA with 
the fewest states (2 states for this NFA)



• example: build an NFA from the RE (a ∪ b)*aba

                                                                        follows from 
                                                                         def of concat
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• Proof: (cont.)

• if a language is regular, then it is described by a regular 
expression

• Proof idea: if A is regular, it is accepted by a DFA; 
convert the DFA into an equivalent regular expression

• break procedure into two parts using a GNFA 
(generalized nondeterministic finite automaton)

•convert DFA to GNFA

•GNFA to regular expression
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• Proof: (cont.)

• GNFA (generalized nondeterministic finite automaton)

• NFA with transition arrows that may have regular 
expressions as labels

• can read blocks of symbols instead of just one at a 
time

• moves along transition arrow by reading a block of 
symbols representing a string described by the RE on 
that arrow

• nondeterministic so may have different ways to 
process the same input string

• accepts if in an accept state at end of input
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• Proof: (cont.)

• example: GNFA
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• Proof: (cont.)

• for convenience, we will require GNFAs to have a 
special form

• the start state has transition arrows going to every 
other state but no arrows coming in from any other 
state

• only one accept state with arrows coming in from 
every other state but no arrows going to any other 
states; cannot be the same as the start state

• except for the start and accept states, one arrow 
goes from every state to every other state and to 
itself



Regular Expressions

109

• Proof: (cont.)

• easy to convert a GNFA into a RE

• if GNFA has k states, k ≥ 2 since at least a start and 
accept state

• if k > 2, we can construct an equivalent GNFA with 
k - 1 states

• this step can be repeated on a GNFA until it is 
reduced to just 2 states

• if k = 2, the GNFA has a single arrow from start to 
accept state with the label being the equivalent of 
the RE
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• Proof: (cont.)

• stages to convert a GNFA into a RE
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• Proof: (cont.)

• constructing an equivalent GNFA with one fewer state 
when k > 2

• select a state, rip it out of the machine, and repair 
the remaining machine so the language is still 
recognized

• any state can be ripped out except the start or 
accept states

• ripped state termed qrip

• after removing qrip, repair the machine by altering 
the RE on the labels of the remaining arrows

•compensate for absence of qrip by adding back 
lost computations
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• Proof: (cont.)

• constructing an equivalent GNFA with one fewer state
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• Proof: (cont.)
• in the old machine, if

• qi goes to qrip with an arrow labeled R1,
• qrip goes to itself with an arrow labeled R2, 
• qrip goes to qj with an arrow labeled R3, and
• qi goes to qj with an arrow labeled R4

• then in the new machine, the arrow from qi to qj gets 
the label

  (R1)(R2) * (R3) ∪ (R4)
• make this change for any arrow from qi to qj, even 

when qi = qj

• the new machine recognizes the original language
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• Proof: (cont.)

• formal definition of a GNFA (similar to NFA but diff δ)

 δ: (Q – {qaccept}) x (Q – {qstart}) → R

• R: all regular expressions over alphabet Σ

• if δ(qi, qj) = R, the arrow from qi to qj has RE R as its 
label

• an arrow connects every state to every other state

• no arrows coming from qaccept or going to qstart



Regular Expressions

115

• Proof: (cont.)

• formal definition of a GNFA
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• Proof: (cont.)

• a GNFA accepts a string w in Σ* if

• w = w1w2…wk

• each wi is in Σ*

• a sequence of states q0, q1, …, qk exists

• such that

• q0 = qstart is the start state

• qk = qaccept is the accept state

• for each i, we have wi ∈ L(Ri) where

• Ri = δ(qi-1, qi)  

• i.e., R is the RE on the arrow from qi-1 to qi
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• Proof: (cont.)
• returning to the lemma proof: if a language is regular, 

then it is described by a regular expression
• let M be the DFA for language A
• convert M to GNFA G
• add new start state (with ε arc to old start state)
• add new accept state (with ε arcs from old accept 

states)
• add all other missing arcs and label with Ø
• use new procedure CONVERT(G) 
•takes GNFA and returns equivalent RE
•recursive, but only calls itself with a GNFA with 
one fewer state (to avoid infinite recursion)
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• Proof: (cont.)
• CONVERT(G)
1. k is number of states of G
2. if k = 2, G has start state, accept state, and one arrow 

connecting them labeled with RE R
3. if k > 2, select any state qrip ∈ Q (other than qstart and qaccept)

• let G’ = (Q’, Σ, δ’, qstart, qaccept)
• Q’ = Q – {qrip}
• for any qi ∈ Q’ - {qaccept} and any qj ∈ Q’ – {qstart} let

  δ’(qi, qj) = (R1)(R2)*(R3) ∪ (R4)
  for

•R1 = δ(qi, qrip), R2 = δ(qrip, qrip), R3 = δ(qrip, qj), and R4 = δ(qi, qj)
• if δ(qi, qj) = R, the arrow from qi to qj has RE R as its label

4. compute CONVERT(G’) and return this value
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• Proof: (cont.)

• example: convert two-state DFA to a regular expression
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• Proof: (cont.)

• example: convert two-state DFA to a regular expression

• create 4-state GNFA by adding new start and accept 
states

• labeled s and a for diagram clarity

• do not draw arcs labeled Ø (i.e., s→2, s→a, 1→a, 2→1)

• replace label a,b with a ∪ b since only one transition 
allowed per arc in GNFA
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• Proof: (cont.)

• example: convert two-state DFA to a regular expression

• remove state 2 and update arc labels

• only arc that changes is 1 to a (step 3 in CONVERT)

•qi = 1, qj = a, qrip = 2

•R1 = b, R2 = a ∪ b, R3 = ε, and R4 = Ø

•new label: (b)(a ∪ b)*(ε) ∪ Ø, or just b(a ∪ b)*
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• Proof: (cont.)

• example: convert two-state DFA to a regular expression

• remove state 1 and update arc labels

• only arc that changes is s to a (step 3 in CONVERT)

•qi = s, qj = a, qrip = 1

•R1 = ε, R2 = a*, R3 = b(a ∪ b)*, and R4 = Ø

•new label: (ε)(a*)b(a ∪ b)* ∪ Ø, or just a*b(a ∪ b)*

      final RE:

          a*b(a ∪ b)*
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• Proof: (cont.)

• example: convert three-state DFA to a regular 
expression

• steps are similar

  DFA    
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• Proof: (cont.)

• example: convert three-state DFA to a regular 
expression

• steps are similar

     qrip = 1
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• Proof: (cont.)

• example: convert three-state DFA to a regular 
expression

• steps are similar

  

     qrip = 2
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• Proof: (cont.)
• example: convert three-state DFA to a regular 

expression
• steps are similar

   qrip = 3

      RE:
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• some languages cannot be recognized by FA

• ex.: B = {0n1n| n ≥ 0}

• machine would need to be able to remember how many 0s 
were seen as it reads the input

• could be unlimited, so could not be done with a finite 
number of states

• need a proof method to show a language is nonregular

• cannot use example above because though a language 
appears to require unlimited memory does not mean that it 
actually does

• examples 

•C = {w | w has an equal number of 0s and 1s}

•D = {w | w has an equal number of 01 and 10 substrings}

• C is not regular, but D is
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• pumping lemma preliminary

• consider the NFA for the language A

• what is the smallest string in this language?

• is there a relationship between the number of symbols 
in the smallest string and the number of states?

• what can you say about a string in the language whose 
length is greater than or equal to the number of 
states?

a ab

b
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• the pumping lemma

• all regular languages can be pumped if they are at least 
as long as a special value termed the pumping length

• each such string contains a section that can be 
repeated any number of times with the resulting 
string remaining in the language

• if a language does not have this property, it is 
nonregular

pumping 

  length = 4  a ab

b



Nonregular Languages

130

• pumping lemma

• if A is a regular language, there is a number p (the 
pumping length) where if s is any string in A of length 
at least p, then s may be divided into three pieces, 
s = xyz, satisfying the following conditions

• for each i ≥ 0, xyiz ∈ A

• |y| > 0

• |xy| ≤ p

a ab

b
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• pumping lemma (cont.)

• for each i ≥ 0, xyiz ∈ A

• |y| > 0

• |xy| ≤ p

• note that 

• |s| is the length of string s

• yi means i copies of y are concatenated together

• y0 = ε

• x or z may be ε, but y ≠ ε

• x and y together have length at most p
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• pumping lemma

• proof idea:

• let M = {Q, Σ, δ, q1, F) is a DFA that recognizes A

• let pumping length p = number of states of M

• show that any string s in A can be broken into pieces 
xyz satisfying the three conditions

• if no strings in A are of length at least p, the 
theorem is vacuously true

• otherwise, three conditions hold
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• pumping lemma

• proof idea: (cont.)

• if s in A has length at least p, consider the sequence 
of states M goes through with input s

• e.g., let’s say it starts with q1 (start state), then 
goes on to q3, q20, q9, … until it reaches the end of s 
in q13

• if s ∈ A, M must accept s, so q13 is an accept state 
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• pumping lemma

• proof idea: (cont.)

• let n = |s| - therefore, the sequence of states q1, q3, 
q20, q9,…,q13 has length n + 1

• because n is at least p, n + 1 > p (or |Q|)

• therefore, the sequence must contain a repeated 
state due to the pigeonhole principle

• e.g., 
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• pumping lemma

• proof idea: (cont.)

• divide s into three pieces x, y, and z

• x appears before q9

• y is the part between the two q9’s

• z is the remaining part of s
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• pumping lemma

• proof idea: (cont.)

• so,

• x takes M from q1 to q9

• y takes M from q9 back to q9

• z takes M from q9 to the accept state q13
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• pumping lemma
• proof idea: (cont.)

• this division of xyz satisfies the three conditions on input 
xyyz:
• for each i ≥ 0, xyiz ∈ A
•x takes M from q1 to q9

•y takes M from q9 back to q9, as does the second y
•z takes M to q13, the accept state, so M accepts xyyz
•similarly, it accepts xyiz for any i > 0
•for i = 0, xyiz = xz, which is also accepted

• |y| > 0 
•since it was the part of s that occurred between two 
different occurrences of state q9

• |xy| ≤ p
•make sure q9 is the first repetition in the sequence
•p+1 states must contain a repetition (pigeonhole 
principle)
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• pumping lemma (cont.)

• proof is similar to proof idea

• use the pumping lemma to show that a language B is 
nonregular

• assume B is regular and show a contradiction

• use the pumping lemma where all strings of B with at 
least length p can be pumped

• find string s in B with length > p that can’t be pumped

• show s cannot be pumped by considering all ways of 
dividing s into x, y, and z, and for each division, finding 
an i where xyiz is not in B

• s contradicts pumping lemma, so B is nonregular
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• pumping lemma (cont.)

• finding s may take creative thinking

• try members of B that seem to exhibit B’s 
nonregularity

• see following examples
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• example: let B = {0n1n| n ≥ 0} – use the pumping lemma to prove 
by contradiction that B is not regular
• assume B is regular with p pumping length
• let s = 0p1p

• because of our assumption, s = xyz where xyiz is in B for 
any i > 0

• three cases to show how this is impossible
• y consists of only 0s
•now xyyz has more 0s than 1s and is not in B, violating 
condition 1 of the pumping lemma

• y consists of only 1s
•also a contradiction

• y consists of 0s and 1s
•xyyz may have same number of 0s and 1s, but they will 
be out of order with some 1s before 0s (not in B)
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• let B = {0n1n| n ≥ 0} – use the pumping lemma to prove by 
contradiction that B is not regular (cont.)

• in any of the cases, a contradiction is unavoidable

• can simplify argument by applying condition 3 of the 
pumping lemma to eliminate cases 2 and 3

• in this example, finding s was easy
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• example: let C = {w | w has an equal number of 0s and 1s} – 
show that C is not regular

• assume C is regular with p pumping length

• let s = 0p1p

• because of our assumption, s = xyz where xyiz is in C 
for any i > 0

• seems possible since if x and z are empty, and 
y = 0p1p, then xyiz always has an equal number of 0s 
and 1s

• but condition 3 of the pumping lemma states that 
|xy| ≤ p, so s cannot be pumped in this way

• if |xy| ≤ p, our only choice is y consists of all 0s, so 
xyyz is not in C, which leads to the contradiction
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• example: let C = {w | w has an equal number of 0s and 1s} – 
show that C is not regular (cont.)

• finding s was a bit harder here

• if we had let s = (01)p, it would not have worked since 
it can be pumped

• keep trying different values of s until you find one 
that cannot be pumped

• another way to prove C is nonregular is to use another 
language that we already know is nonregular, like B

• if C were regular, C ∩ 0*1* would also be regular due to 
closure under intersection (proved in the textbook)

• but C ∩ 0*1* = B, which is not regular
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• example: let F = {ww | w ∈ {0,1}*} – show that F is not 
regular

• assume F is regular with p pumping length

• let s = 0p10p1

• so s can be split into three pieces s = xyz satisfying 
the three conditions of the lemma

• could let x and z be ε, but y must consist of only 0s, 
so xyyz not in F

• we chose s to be a string that exhibits a nonregular 
language instead of say, 0p0p, even though it is a 
member since it can be pumped and fails the 
contradiction
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• example: let D = {1n2 | n ≥ 0} – show that D is not regular

• assume D is regular with p pumping length

• let s = 1p2

• so s can be split into three pieces s = xyz satisfying 
the three conditions of the lemma

• perfect squares: 0, 1, 4, 9, 16, 25, 36, 49, …

•gap between values gets greater as n increases
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• example: let D = {1n2 | n ≥ 0} – show that D is not regular

• assume D is regular with p pumping length (cont.)

• consider strings xyz and xy2z 

•differ by one repetition of y so lengths differ by |y|

•by condition 3, |xy| ≤ p so |y| ≤ p

•but |xyz| = p2 so |xy2z| ≤ p2 + p

•p2 + p < p2 + 2p + 1 = (p + 1)2

•y cannot be ε, so |xy2z| > p2

•thus |xy2z| lies between consecutive perfect 
squares p2 and (p + 1)2

•so length is not a perfect square (contradiction)

•thus xy2z not in D, and D is not regular
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• example: let E = {0i1j| i > j} – use the pumping lemma to 
prove by contradiction that E is not regular

• use pumping lemma to pump down

• assume E is regular with p pumping length

• let s = 0p+11p

• because of our assumption, s = xyz where xyiz is in E 
for any i ≥ 0

• by condition 3, y consists of only 0s

•now xyyz has even more 0s, which is in E, so we 
need to try another string

• try xy0z = xz (pumping down)

• since s had just one more 0 than 1s, xz cannot have 
more 0s than 1s -> contradiction
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• pumping lemma (cont.)

• additional notes

• we cannot use the pumping lemma to show that a 
language is regular

• some languages will pass the pumping lemma test, 
but still be nonregular

• the pumping lemma, therefore, is a necessary test, 
but not a sufficient test, to show that a language is 
regular

• we have other ways to show a language is regular

• no language that fails the pumping lemma test is 
regular
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• pumping lemma (cont.)

• additional notes

• consider the following DFA

• what strings can be accepted?

• divide the strings into three parts

• provide a regular expression

https://swaminathanj.github.io/fsm/pumpinglemma.html
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• pumping lemma (cont.)

• additional notes

• if loop at beginning x = ε and w = yz

• if loop at end z = ε and w = xy

• y cannot be ε (but y0 can!)
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• pumping lemma (cont.)

• additional notes

• shortest string accepted? if q2 is also accept state?

• longest string accepted without looping?

• longest string accepted by looping once (p)? 
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• pumping lemma (cont.)

• additional notes

• what is the pumping length for the following languages?

1. 1*

2. 01

3. 01*0

4. 11*

1. 1

2. 3

3. 3

4. 2
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• pumping lemma (cont.)

• additional notes

• remember that s is only one type of string found in 
the language

• try to choose s to be a string pattern we already 
know is nonregular

• use p strategically to limit the number of parts of 
the string that y can be assigned

• for xyiz, string must be in the language for all i ≥ 0 

• only one assignment to x, y, and z must work

•but for that assignment, it must work for all i ≥ 0 

• so you must try them all and explain why none of 
them work when considering all i ≥ 0 
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• pumping lemma (cont.)

• additional notes

• what about DFAs with multiple circuits?

• the pumping lemma seems too limited

      *Hermant Chetwani

• it still works since we can break down the strings 
into different cases of s where each s has only one 
circuit, e.g., a bi abb   and   babbabab bi
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• pumping lemma (cont.)

• proof requirements for proving A is nonregular

• Assume A is regular and therefore must pass the 
pumping lemma test

• let s = some string using p, such as 0p1p

• explain xyz assignment, such as x and y must consist 
entirely of 0s (from the limitations imposed by s)

• explain how xyiz would allow other strings to be 
generated with i = 0 or 2 that are not in A

• explain how there are no other options, or every other 
option would result in the same or similar condition

• state that this is a contradiction and therefore the 
pumping lemma does not hold; therefore, A is nonreg
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