Chapter 1 Regular Languages

Overview

2

- computation theory begins with the question: what is a computer?
 - real computers are overly complicated for our uses
 - $\boldsymbol{\cdot}$ instead, we use an idealized computer, or computational model
 - $\boldsymbol{\cdot}$ we will use several different models with varying features
 - the first is the finite state machine, or finite automaton

1

Finite Automata

- finite automata
 - useful
 - limited memory
- common in everyday life
- example: automatic door controller with ground pads
 front pad: detect person about to walk through door
- rear pad: detect how long to hold the door, and to

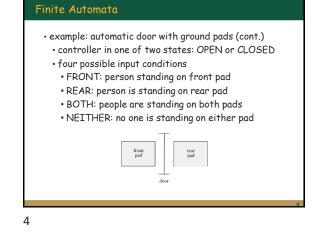
rear pad

keep the door shut if someone is standing there

dooi

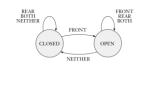
front pad

3



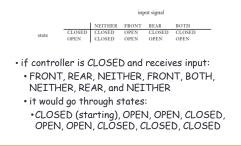
Finite Automata

- example: automatic door with ground pads (cont.)
 controller moves between states OPEN and CLOSED depending on input
 - state diagram



Finite Automata

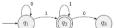
example: automatic door with ground pads (cont.)
 state transition table



- automatic door controller as finite automaton
- · controller: computer with single bit of memory to hold state
- other controllers might need larger memories
 - elevator controller
 - state for current floor
 - inputs from buttons
 - · dishwashers, thermostats, digital watches, calculators
 - Markov chains: useful for recognizing patterns in data speech processing, optical character recognition
 - employ probabilistic state chains

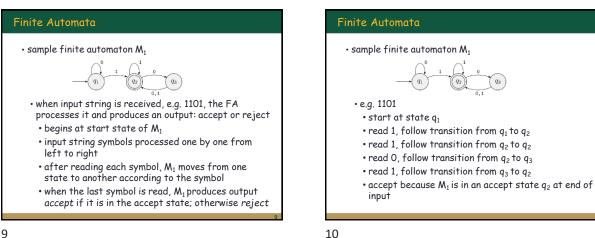
Finite Automata

sample finite automaton M₁



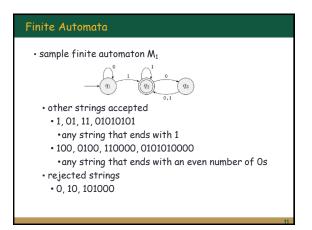
- state diagram
- three states: q₁, q₂, q₃
- start state: q1 indicated by arrow pointing from nowhere
- accept state: q2 with double circle
- transitions: other arrows

8



9

7



formal definition

- · diagrams easier to understand, but formal definition needed because it is
- precise
 - resolves uncertainties as to what is allowed

notation

• helps express thoughts clearly

- formal definition
 - requires multiple parts (5-tuple)
 - set of states
 - rules for transitions between states depending on input
 - input alphabet of allowable input symbols
 - start state
 - set of accept states (or final states)

Finite Automata

Finite Automata

• Q = {q₁, q₂, q₃}

δ is described as

• q1 is the start state

• $\Sigma = \{0, 1\}$

• F = $\{q_2\}$

16

• M_1 can be described as $M_1 = (Q, \Sigma, \delta, q_1, F)$ where

for example

- concerning rules for transitions between states \cdot use transition functions, denoted by δ
- if FA has an arrow from state x to state y when it reads a 1, it will move from x to y when 1 is read $\delta(x, 1) = y$

14

13

Finite Automata

formal definition

A finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$, where

- 1. Q is a finite set called the *states*,
- **2.** Σ is a finite set called the *alphabet*,
- **3.** $\delta: Q \times \Sigma \longrightarrow Q$ is the *transition function*, **4.** $q_0 \in Q$ is the *start state*, and
- 5. $F \subseteq Q$ is the set of accept states

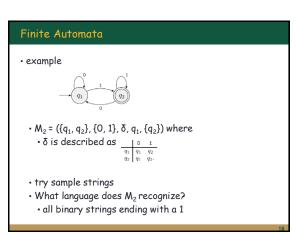
with this definition we see

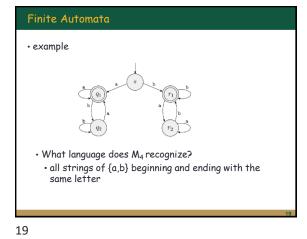
- O accept states is allowable
- $\cdot \, \delta$ specifies exactly one next state for each state/input value

15

Finite Automata

- if A is the set of all strings that M accepts
 - \cdot A is the language of M
 - L(M) = A
 - M recognizes A
 - M accepts A
- a machine may accept multiple strings, but it only recognizes one language
 - \bullet if it accepts no strings, it recognizes the empty language Ø
- M_1 recognizes A where A = {w | w has at least one 1 and an even number of 0s follow the last 1}





Finite Automata • example • example • think about a counter or accumulator where RESET sets it back to 0 • What language does M5 recognize? • accepts all strings with digits summing to 0 mod 3

20

Finite Automata

$\boldsymbol{\cdot}$ for some FAs, a state diagram is not possible

- it may be too large to draw (but not infinite)
- description depends on an unspecified parameter
- $\boldsymbol{\cdot}$ a formal definition must then be used to specify the machine
- e.g., a generalization of the previous example

Finite Automata

- formal definition of computation
- let M = (Q, Σ , δ , q_1 , F) be a FA and w = w_1w_2...w_n be a string where each w_i is a member of the alphabet
- M accepts w if a sequence of states r_0, r_1, \ldots, r_n in Q exists with three conditions:
 - r₀ = q₀
 - machine starts at start state
 - δ (r_i, w_{i+1}) = r_{i+1} for i = 0, ..., n-1
 - machine goes from state to state according to transition function

 $\cdot r_n \in F$

 machine accepts its input if it ends up in an accept state

22

Finite Automata

- \cdot formal definition of computation (cont.)
 - $\boldsymbol{\cdot}$ M recognizes language A if
 - A = {w | M accepts w}
 - a language is called a regular language if some finite automaton recognizes it

Finite Automata

- designing finite automata
 - cannot be prescribed easily
 - put yourself in the place of the machine
 - you receive a string an input string and must determine whether it is a member of the language the automaton is supposed to recognize
 - process the symbols in the string one by one
 decide whether the string seen so far is in the language since you don't know when the string will end

- designing finite automata (cont.)
- \cdot determine what you need to remember about the string as you are reading it
 - \bullet input could be very long, but you probably don't need to remember the entire input string
 - $\boldsymbol{\cdot}$ you have finite memory, e.g., a single sheet of paper
 - what is the crucial information to remember?

Finite Automata

- designing finite automata
- example: construct a FA that recognizes the language of all bit strings with an odd number of 1s
- as you traverse the string, you don't need to remember the entire string
- \bullet simply remember whether the number of 1's seen so far is odd or even
- if you read a 1, flip the answer
- if you read a 0, leave the answer as is

25

Finite Automata

- designing finite automata
 - example: construct a FA that recognizes the language of all bit strings with an odd number of 1s (cont.)
 - once you have the necessary information to remember, make a finite list of possibilities
 - even so far
 odd so far

 $\boldsymbol{\cdot}$ assign a state to each of the possibilities

 $q_{\rm odd}$

27

Finite Automata

- designing finite automata
 - example: construct a FA that recognizes the regular language of all bit strings that contain 001
 - e.g., 0010, 1001, 001, 11111001111, but not 11 and 000
 - if you were the automaton, you would read symbols from the beginning, skipping over all 1s
 - if you read a 0, you may be seeing the start of 001
 if you read a 1 next, there are too few 0s, so go back to skipping over 1s
 - •if you read a 0 next, you need to remember that you have now seen two symbols of the pattern
 - continue scanning until you see a 1 if so, remember that you have found the pattern, and keep reading to the end of the string

Finite Automata

- designing finite automata
- example: construct a FA that recognizes the language of all bit strings with an odd number of 1s (cont.)
 - assign transitions to go from one possibility to another $$\bigcirc^\circ$$

- set the start state to q_{even} since 0 is an even number - set q_{odd} to be the accept state

28

26

Finite Automata

designing finite automata

- example: construct a FA that recognizes the regular language of all bit strings that contain 001 (cont.)
 - four different possibilities
 - you haven't seen any symbols of the pattern
 - you have seen just one 0
 - you have seen 00
 - you have seen the entire pattern 001

• assign states q, q_0 , q_{00} , and q_{001} to these possibilities

• ex lai	gning finite automata tample: construct a FA that recognizes the regular tguage of all bit strings that contain 001 (cont.) assign the transitions • from q • if you read a 1, stay in q • if you read a 0, go to q ₀ • from q ₀ • if you read a 1, return to q • if you read a 0, go to q ₀₀ • from q ₀₀ • if you read a 1, go to q ₀₀₁ • if you read a 0, stay in q ₀₀₀ • from q ₀₀₁
	• if you read a 0 or 1, stay in q ₀₀₁

31

Finite Automata

regular operations

- properties for finite automata
 - help us design FA to recognize particular languages
 - $\boldsymbol{\cdot}$ help us determine other languages are nonregular
- three regular operations
 - union: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
 - concatenation: A \circ B = { xy | x \in A and y \in B}
 - star: $A^* = \{x_1x_2...x_k \mid k \ge 0 \text{ and each } x_i \in A\}$

where A and B are regular languages

33

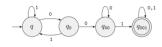
Finite Automata

regular operations

- example: Σ = {a, b, ..., z}, A = {good, bad}, B = {boy, girl}
 A ∪ B = {good, bad, boy, girl}
 - A B = {goodboy, goodgirl, badboy, badgirl}
 - A* = {ε, good, bad, goodgood, goodbad, badgood, badbad, goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, ...}

Finite Automata

- designing finite automata
- example: construct a FA that recognizes the regular language of all bit strings that contain 001 (cont.)
 start state is q
 - accept state is q₀₀₁



32

Finite Automata

- regular operations
 - regular operation notes
 - union: takes all strings in A and B and puts them into one language
 - concatenation: attaches a string from A in front of a string from B in all possible ways to get the new language
 - star: unary rather than binary
 - attaches any number (0 or more) of strings in A to get a string in the new language
 - empty string ε is always a member of A*

34

Finite Automata

closure

- consider N = {1, 2, 3, ...}
 - \bullet N is closed under multiplication means that when we multiply any two numbers from N, we get a product that is also in N
- N is not closed under division (why?)
- in general, a collection of objects is closed under some operation if the result of that operation is still in the collection

- closure
 - regular languages are closed under union
 - if A_1 and A_2 are regular languages, so is $A_1 \cup A_2$
 - proof idea: construct a FA M that recognizes $A_1 \cup A_2$
 - if M_1 recognizes A_1 and M_2 recognizes A_2 , then M will simulate both M_1 and M_2 , accepting if either M_1 or M_2 accepts
 - cannot simulate M_1 and then M_2
 - cannot rewind the input

37

Finite Automata

- closure
 - proof: regular languages are closed under union (cont.)
 - let M_1 recognize A_1 where $M_1 = \{Q_1, \Sigma, \delta_1, q_1, F_1\}$
 - let M_2 recognize A_2 where $M_2 = \{Q_2, \Sigma, \delta_2, q_2, F_2\}$

39

Finite Automata

closure

• regular languages are closed under union example • let M_1 recognize A_1 where $M_1 = \{Q_1, \Sigma, \delta_1, q_1, F_1\}$

M₁ = {{q₁,q₂}, {0,1}, δ₁, q₁, {q₂}} binary strings ending in 1

• let M_2 recognize A_2 where M_2 = {Q₂, Σ , δ_2 , q_2 , F_2)

 $M_{2} = \{\{q_{1}, q_{2}, q_{3}\}, \{0, 1\}, \delta_{2}, q_{1}, \{q_{2}\}\} \xrightarrow{1} (q_{1})$

binary strings with 1 followed by even number of 0s

Finite Automata

closure

- regular languages are closed under union (cont.)
 - instead, simulate $M_1\, \text{and}\, M_2$ simultaneously remember state each machine would be in if it had
 - read the input up to this point • if M_1 has k_1 states and M_2 has k_2 states, the number of pairs of states is $k_1 \times k_2$
 - each state in M will be a pair
 - \bullet transitions go from pair to pair, updating the current state of both $M_1\, and \, M_2$
 - accept states are those pairs where either $M^{}_1\,\text{or}\,$ $M^{}_2\,\text{is}$ in an accept state

38

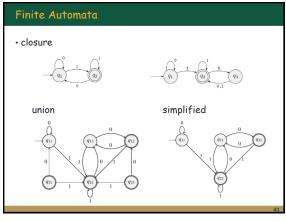
Finite Automata

closure

- proof: regular languages are closed under union (cont.)
 - construct $M = \{Q, \Sigma, \delta, q_0, F\}$ to recognize $A_1 \cup A_2$ • $Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\}$ • cartesian product for all pairs of states $Q_1 \times Q_2$
 - $\bullet\,\Sigma$ alphabet for both
 - $\label{eq:stars} \begin{array}{l} \bullet \ \delta \ \text{transition function for each} \ (r_1, r_2) \in Q \ \text{and} \ a \in \Sigma \\ \bullet \ \delta \ ((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)) \end{array}$
 - •moves from state pair to state pair based on a • q_0 is the pair (q_1 , q_2)
 - F is set of pairs where M_1 or M_2 is in an accept state •F = { $(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2$ } not and

40

Finite Automata • closure • regular languages are closed under union example • let M_1 recognize A_1 where $M_1 = \{Q_1, \Sigma, \delta_1, q_1, F_1\}$ • let M_2 recognize A_2 where $M_2 = \{Q_2, \Sigma, \delta_2, q_2, F_2\}$ new states: $q_{11}, q_{12}, q_{13}, q_{21}, q_{22}, q_{23}$ $\Sigma = \{0, 1\}$ start state: q_{11} accept states: $\{q_{12}, q_{21}, q_{22}, q_{23}\}$ accepts binary strings ending with 1 or containing a 1 followed by an even # of 0s



43

Nondeterminism

- so far, we have considered only deterministic finite automata (DFA)
- i.e., when a machine is in a given state and reads the next input symbol, there is only one state that can be the next state
- in a nondeterministic machine, several choices may exist for the next state
 - nondeterminism is a generalization of determinism

0, e (q3)

• what do you notice that is different in this NFA?

45

Nondeterminism

- how does an NFA compute?
 - if multiple ways to proceed exist after reading a symbol, the machine splits into multiple copies of itself and follows all possibilities in parallel
 - machine also splits for all ε branches that can be taken
 - each copy takes one of the possible ways to proceed and continues as before
 - each machine continues to split as needed
 - if the next input symbol does not match an exiting arrow for a machine's current state, that copy of the machine dies, along with its branch of computation
 - if any one of the copies reaches an accept state at the end of the input, the NFA accepts the input string

Finite Automata

closure

- regular languages are closed under concatenation
 - let M_1 recognize A_1 where $M_1 = \{Q_1, \Sigma, \delta_1, q_1, F_1\}$
- let M_2 recognize A_2 where $M_2 = \{Q_2, \Sigma, \delta_2, q_2, F_2\}$
- construct M to accept input first for M_1 , then for M_2
- BUT, M doesn't know where to break its input
 where the first part ends and the second part begins
- we need to introduce a new technique called nondeterminism

44

Nondeterminism

- differences between DFAs and NFAs
 - DFAs: states may have exactly one exiting arrow for each symbol
 - NFAs: a state may have zero, one, or many exiting arrows for each symbol
 - DFAs: labels on transition arrows are symbols from the alphabet
 - NFAs: labels on transition arrows are symbols from the alphabet or $\epsilon;$ zero, one, or many arrows may exit from each state with label ϵ

0,ε

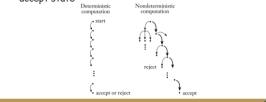
46

Nondeterminism

- nondeterminism can be viewed as a parallel computation
- multiple independent "processes" or "threads" can be running concurrently
- each split corresponds to a process forking into multiple children, with each proceeding separately
- $\boldsymbol{\cdot}$ if at least one of these processes accepts, then the entire computation accepts

Nondeterminism

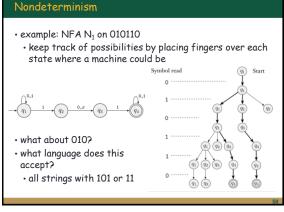
- nondeterminism can be viewed as a tree of possibilities
- root is the start of the computation
- $\boldsymbol{\cdot}$ branches signify the machine splitting across multiple choices
- machine accepts if at least one branch ends in an accept state



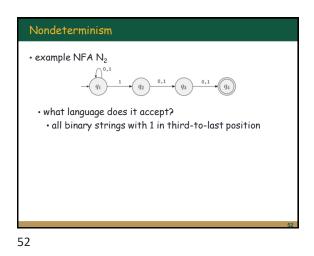
49

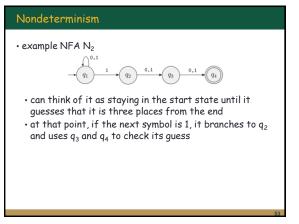
Nondeterminism

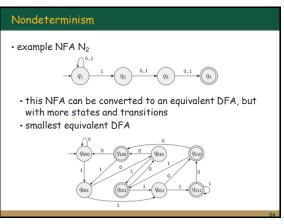
- NFAs are useful in several ways
 - $\boldsymbol{\cdot}$ every NFA can be converted directly into a DFA
 - \bullet constructing NFAs is sometimes easier than directly constructing DFAs
 - an NFA may be much smaller or easier to understand than its corresponding DFA

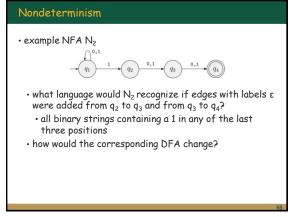


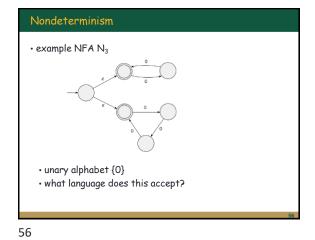
50



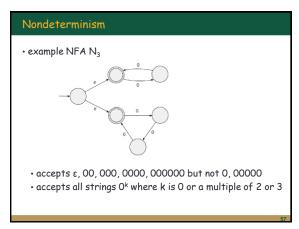




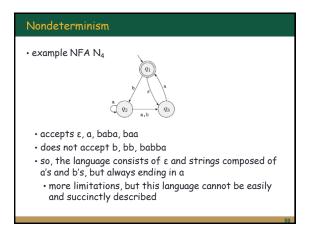


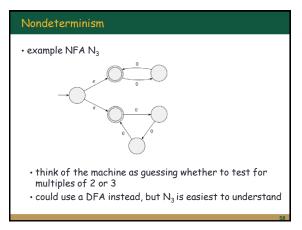


55



57





58

Nondeterminism

formal definition of NFA

- similar to DFA, but transition functions are different • in NFA, transition function takes a state and an input
- symbol *or the empty string* and produces a *set* of possible next states
- $\boldsymbol{\cdot}$ recall P(Q) is the power set (set of all subsets)
- $\boldsymbol{\cdot}$ alphabet must add $\boldsymbol{\epsilon}$

• $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$

Nondeterminism

formal definition of NFA

A nondeterministic finite automaton is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$,

- where
- 1. Q is a finite set of states,
- Σ is a finite alphabet,
 δ: Q × Σ_c→P(Q) is the transition function,
- **4.** $q_0 \in Q$ is the start state, and
- **5.** $F \subseteq Q$ is the set of accept states.

61

Nondeterminism

- formal definition of computation
 - similar to DFA
 - let N = (Q, $\Sigma, \, \delta, \, q_0, \, F)$ be a NFA and w a string over alphabet Σ
- N accepts w if we can write w as $w = y_1y_2...y_n$ where each y_i is a member of Σ_c and the sequence of states $r_0, r_1,...r_n$ in Q exists with three conditions:
 - r₀ = q₀
 - machine starts at start state
 - $r_{i+1} \in \delta(r_i, y_{i+1})$ for i = 0, ..., m-1
 - machine goes from state r_i to r_{i+1} which is a member of the set of allowable next states according to transition function
 - $r_m \in F$
 - machine accepts its input if it ends up in an accept state

63

Nondeterminism

- Theorem: every nondeterministic finite automaton has an equivalent deterministic finite automaton
 - proof idea
 - convert NFA to equivalent DFA that simulates it
 - consider what happens as input is read
 - what do you need to keep track of?
 - various branches of computation by placing fingers over active states
 - if the NFA has k states, there are 2^k subsets of states
 - each subset corresponds to one state the DFA will need to keep track of, so the DFA will have 2k states • set start and accept states for DFA

- equivalence of NFAs and DFAs
 - deterministic and nondeterministic FAs recognize the same class of languages
 - surprising since NFAs seem more powerful
- useful because NFAs are often easier to construct and understand
- two machines are equivalent if they recognize the same language

64

62

Nondeterminism

proof

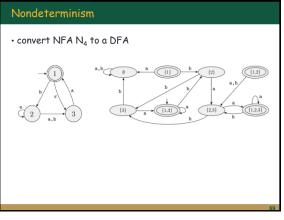
- let N = (Q, Σ , δ , q_0 , F) be the NFA recognizing A • construct DFA M = (Q', Σ , δ' , q_0' , F') recognizing A \cdot first consider case where N has no ϵ edges
- Q' = P(Q)
- every state of M is a set of states of N • let $\delta'_{(R, a)} = \{q \in Q \mid q \in \delta (r, a) \text{ for some } r \in R\}$ where
- $\mathsf{R} \in \mathsf{Q}$
- if R is a state of M, it is also a set of states of N; when M reads a symbol a in R, it goes to one or more states in R, so $\delta'(R, a) = U_{r \in R} \delta(r, a)$ • q₀' = {q₀}
- \bullet M starts in the state corresponding to the collection containing just the start state of N
- F' = {R $\in Q'$ | R contains an accept state of N} machine accepts if one of the possible states that N could be in at this point is an accept state



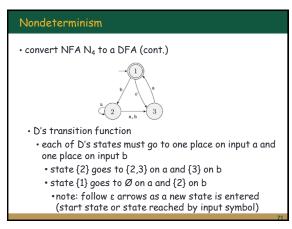
Nondeterminism

- proof (cont.)
 - $\boldsymbol{\cdot}$ now consider $\boldsymbol{\epsilon}$ edges
 - for any state R of M, E(R) is the collection of states that can be reached from members of R by following ϵ arrows, including the members of R themselves
 - $E(R) = \{q \mid q \text{ can be reached from } R \text{ by } 0 \text{ or more } \epsilon \text{ arrows} \}$
 - modify transition function to include states reached by $\boldsymbol{\epsilon}$ arrows
 - $\delta'(R, a) = \{q \in Q \mid q \in E(\delta(r, a)) \text{ for some } r \in R\}$
 - modify start state q₀' = E({q₀})

67



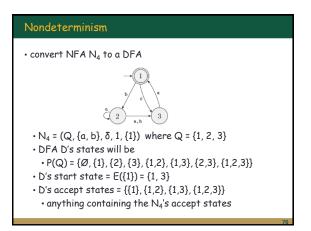
69

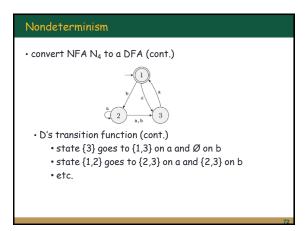


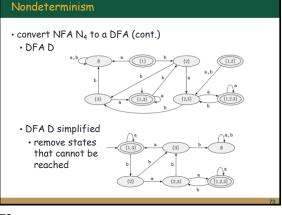
Nondeterminism

- corollary
 - a language is regular if and only if some nondeterministic finite automaton recognizes it

68







73

Nondeterminism

- closure under union
 - $\boldsymbol{\cdot}$ we proved closure under union before by simulating both machines simultaneously
 - the new proof using nondeterminism is easier

Nondeterminism

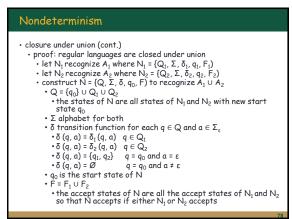
- closure under the regular operations
- remember that we started this topic on nondeterminism because we needed NFA to prove regular operations were closed under
 - union
 - concatenation
 - star

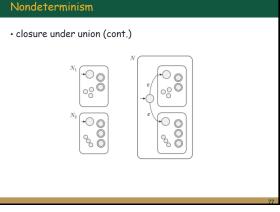
74

Nondeterminism

- closure under union (cont.)
 - $\boldsymbol{\cdot}$ if A_1 and A_2 are regular languages, so is $A_1\cup A_2$
 - proof idea: construct NFA N that recognizes $A_1 \cup A_2$
 - if N₁ recognizes A_1 and N₂ recognizes A_2 , then N will combine N₁ and N₂, accepting if either N₁ or N₂ accepts • N has new start state that branches to the start
 - states of N_1 and N_2 with ϵ arrows
 - N nondeterministically guesses which machine accepts the input
 - if either N1 or N2 accepts, N will accept, too

76





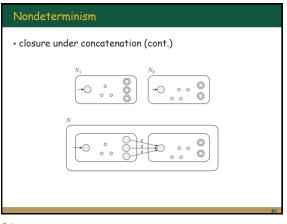
Nondeterminism

- closure under concatenation
 - we tried earlier to prove closure under concatenation, but we didn't finish because it was too difficult
 - the new proof using nondeterminism is easier

Nondeterminism

- closure under concatenation (cont.)
- $\boldsymbol{\cdot}$ if A_1 and A_2 are regular languages, so is $A_1 \circ A_2$
- proof idea: construct NFA N that recognizes A1 A2
- \bullet if N_1 recognizes A_1 and N_2 recognizes $A_2,$ then N will combine N_1 and N_2
- start state of N is assigned to the start state of N_1 • the accept states of N_1 have additional ϵ arrows that
- nondeterministically allow branching to $N_{\rm 2}$ whenever $N_{\rm I}$ is in an accept state
- $\boldsymbol{\cdot}$ i.e., the first part of the concatenation has been found
- accept states of N are the accept states of N_2 only accepts when input split into two parts: $N_1 \, and \, N_2$
- nondeterministically guesses where to make split

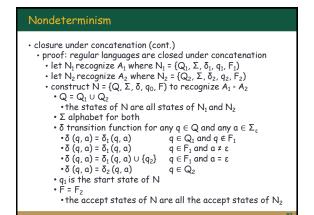
79



81

Nondeterminism

- closure under star
 - if A_1 is a regular languages, so is A_1^*
 - \cdot proof idea: construct NFA N that recognizes A_1^\star
 - modify N_1 that recognizes A_1 to produce N
 - N will accept its input whenever it can be broken into several pieced and $N_{\rm I}$ accepts each piece

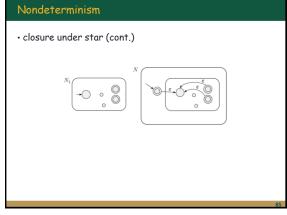


82

80

Nondeterminism

- closure under star (cont.)
 - \cdot proof idea: construct NFA N that recognizes A_1^\star
 - modify N_1 that recognizes A_1 to produce N
 - N will be similar to N₁, but with additional ε arrows returning to the start state from the accept states
 when processing gets to the end of a piece that N₁ accepts, you can jump back to the start state to try to read another piece that N₁ accepts
 - N must also accept ε, which is always a member of A₁*
 could add start state to set of accept states, but may cause other bad strings to be accepted
 - instead, add a new start state that is also an accept state and that has an ϵ arrow to the old start state



- \bullet in arithmetic, we can use operations + and x to build expressions
- $(5 + 3) \times 4$
- value?
- similarly, we use regular expression operations to build up regular expressions
 - (0 ∪ 1)0*
 - value: a language consisting of all strings starting with 0 or 1 followed by any number of 0s

87

Regular Expressions

- regular expressions are important in computer science applications
 - e.g., search for strings with specific patterns
 - regular expressions are used in
 - awk and grep in Unix/Linux
 - Perl
 - e.g., \$myfilesearch =~ s/"//g;
 - text editors

Nondeterminism

```
    closure under star (cont.)

  • proof: regular languages are closed under star
     • let N_1 recognize A_1 where N_1 = \{Q_1, \Sigma, \delta_1, q_1, F_1\}
      • construct N = {Q, \Sigma, \delta, q_0, F) to recognize A_1^*
         • Q = \{q_0\} \cup Q_1
            • the states of N are states of N_1 plus new start state

    Σ alphabet

         + \delta transition function for each q\in Q and a\in \Sigma_\epsilon
            • \delta(q, a) = \delta_1(q, a)
                                                q \in Q_1 \text{ and } q \notin F_1
            \bullet \delta(q, a) = \delta_1(q, a)
                                                q\in F_1 \text{ and } a \neq \epsilon
            \bullet \delta (q, a) = \delta_1 (q, a) \cup \{q_1\} \quad q \in F_1 \text{ and } a = \epsilon
            • \delta(q, a) = \{q_1\}
                                                q = q_0 and a = \epsilon
           • δ (q, a) = Ø
                                                q=q_0 \text{ and } a \neq \epsilon
         - q_0 \, is the new start state of N
         • F = \{q_0\} \cup F_1
           • the accept states are old accept states plus new start state
```

86

Regular Expressions

- similarly, we use regular expression operations to build up regular expressions (cont.)
 - (0 ∪ 1)0*
 - in this example
 - $\boldsymbol{\cdot}$ (0 \cup 1) is short for ({0} \cup {1})
 - value is language {0, 1}
 - 0* means {0}*
 - value is language of all strings containing any number of Os
 - concatenation symbol can be implicit
 - instead of (0 ∪ 1) ∘ 0*, it's just (0 ∪ 1)0*
 like multiplication

88

Regular Expressions

- e.g., (0 ∪ 1)*
 - $\boldsymbol{\cdot}$ value is language of all possible strings of 0s and 1s
- if Σ = {0, 1}
 - + Σ is shorthand for (0 \cup 1)
 - $\boldsymbol{\Sigma}$ describes language consisting of all strings of length 1 over this alphabet
 - $\cdot \ \Sigma^*$ describes language consisting of all strings over this alphabet
 - Σ *1 is all strings that end in 1
 - + (02*) \cup (2*1) is all strings that start with 0 or end with 1

- in arithmetic, x has precedence over +
- 2 + 3 × 4
- value?
- to change the precedence, must use parentheses \cdot (2 + 3) x 4
- precedence in regular expressions
 - ()
 - •*
 - concatenation
 - union

91

Regular Expressions

- $\cdot \mbox{ R}^{\scriptscriptstyle +}$ shorthand for RR*
 - R* 0 or more concatenations from R • R* - 1 or more concatenations from R • R* \cup ϵ = R*
- R^k k concatenations of R
- L(R) language of R

93

Regular Expressions

```
\begin{array}{l} \cdot \mbox{ regular expression exercises (cont.)} \\ \cdot \mbox{ } 01 \cup 10 = \\ \cdot \mbox{ } \{01, 10\} \\ \cdot \mbox{ } 0\Sigma^* 0 \cup 1\Sigma^* 1 \cup 0 \cup 1 = \\ \cdot \mbox{ } \{w \mid w \mbox{ starts and end with the same symbol}\} \\ \cdot \mbox{ } (0 \cup \epsilon) 1^* = \\ \cdot \mbox{ } (0 \cup \epsilon) 1^* = \\ \cdot \mbox{ } (0 \cup \epsilon) (1 \cup \epsilon) = \\ \cdot \mbox{ } \{\epsilon, 0, 1, 01\} \\ \cdot 1^* \varnothing = \\ \cdot \varnothing \\ \cdot \varnothing \\ \cdot \mbox{ } \{\epsilon\} \end{array}
```

Regular Expressions

- R is a regular expression if R is
- $\boldsymbol{\cdot}$ a for some a in $\boldsymbol{\Sigma}$
- 8
- ٠Ø
- $\boldsymbol{\cdot}$ (R₁ \cup R₂) where R₁ and R₂ are regular expressions
- $\boldsymbol{\cdot}$ (R_1 \circ R_2) where R_1 and R_2 are regular expressions
- $\boldsymbol{\cdot} \left(\mathsf{R}_{1}^{\star} \right)$ where R_{1} is a regular expressions

$\boldsymbol{\cdot}$ careful with $\boldsymbol{\epsilon}$ and $\boldsymbol{\varnothing}$

- $\cdot \epsilon$ the language containing one string: the empty string
- Ø the language containing no strings
- $\boldsymbol{\cdot}$ using R_1 and R_2 in definition not circular, but inductive

92

Regular Expressions

- regular expression exercises
- 0*10* =
 - {w | w contains a single 1}
- Σ*1Σ* =
- {w | w contains at least one 1}
- Σ*001Σ* =
 {w | w contains the substring 001}
- 1*(01⁺)* =
- {w | every 0 in w is followed by at least one 1} • $(\Sigma\Sigma)^* =$
- {w | w is a string of even length}
- (ΣΣΣ)* =
- {w | the length of w is a multiple of 3}

94

Regular Expressions • regular expression identities • $R \cup \emptyset = R$ • $R \circ \varepsilon = R$ • $R \cup \varepsilon$ may not = R • if R = 0 then $L(R) = \{0\}$ but $L(R \cup \varepsilon) = \{0, \varepsilon\}$ • $R \circ \emptyset$ may not = R • if R = 0 then $L(R) = \{0\}$ but $L(R \circ \emptyset) = \emptyset$

- regular expressions are useful for designing compilers for programming languages
 - tokens, such as constants or variable names, may be described using regular expressions
 - e.g., numerical constant that may include a fractional part and/or a sign can be described as

 $(+ \cup - \cup \varepsilon) (D^+ \cup D^+.D^* \cup D^*.D^+)$

- examples: 72, 3.14159, +7., and -.01
- once syntax has been described with regular expressions in terms of its tokens, a lexical analyzer that processes the program can be generated

97

Regular Expressions

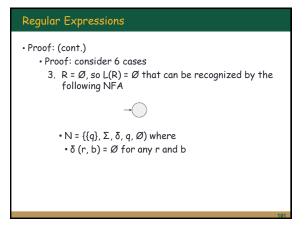
• Proof:

- if a language is described by a regular expression, it is regular
 - Proof idea: convert R describing A into an NFA recognizing A
 - Proof: consider 6 cases
 - 1. R = a for some $a \in \Sigma$, so L(R) = {a} that can be recognized by the following NFA (easier than DFA)

 $\rightarrow \bigcirc a \rightarrow \bigcirc$

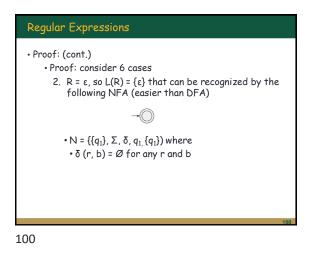
- note that this is an NFA (why?)
- N = {{q₁, q₂}, Σ , δ , q₁, {q₂}) where δ is shown above

99

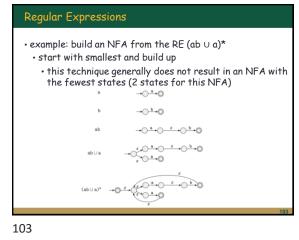


Regular Expressions

- regular expressions are equivalent to finite automata
- surprising since they appear to be quite different
 a regular expression that describes a language can be
- converted into a FA that recognizes that language, and vice versa
- Theorem: A language is regular if and only if some regular expression describes it.
 - iff requires proof in each direction

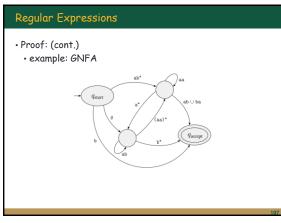


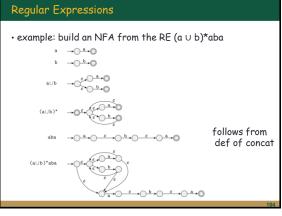
Regular Expressions
 Proof: (cont.) Proof: consider 6 cases 4. R = R₁ ∪ R₂ 5. R = R₁ ∘ R₂ 6. R = R₁*
 for these last three cases, we use constructions given in the proofs of regular languages closed under these operations



- Proof: (cont.)
 - \cdot if a language is regular, then it is described by a regular expression
 - Proof idea: if A is regular, it is accepted by a DFA; convert the DFA into an equivalent regular expression
 - break procedure into two parts using a GNFA (generalized nondeterministic finite automaton)
 - convert DFA to GNFA
 - •GNFA to regular expression

105





104

Regular Expressions

• Proof: (cont.)

- GNFA (generalized nondeterministic finite automaton)
 - NFA with transition arrows that may have regular expressions as labels
 - $\boldsymbol{\cdot}$ can read blocks of symbols instead of just one at a time
 - moves along transition arrow by reading a block of symbols representing a string described by the RE on that arrow
 - nondeterministic so may have different ways to process the same input string
- accepts if in an accept state at end of input

106

Regular Expressions

Proof: (cont.)

- for convenience, we will require GNFAs to have a special form
- the start state has transition arrows going to every other state but no arrows coming in from any other state
- only one accept state with arrows coming in from every other state but no arrows going to any other states; cannot be the same as the start state
- except for the start and accept states, one arrow goes from every state to every other state and to itself

- Proof: (cont.)
 - $\boldsymbol{\cdot}$ easy to convert a GNFA into a RE
 - \bullet if GNFA has k states, k \geqq 2 since at least a start and accept state
 - \bullet if k > 2, we can construct an equivalent GNFA with k 1 states
 - this step can be repeated on a GNFA until it is reduced to just 2 states
 - if k = 2, the GNFA has a single arrow from start to accept state with the label being the equivalent of the RE

109

Regular Expressions

- Proof: (cont.)
 - \cdot constructing an equivalent GNFA with one fewer state when k > 2
 - select a state, rip it out of the machine, and repair the remaining machine so the language is still recognized
 - any state can be ripped out except the start or accept states
 - ripped state termed q_{rip}
 - \bullet after removing $q_{\rm rip},$ repair the machine by altering the RE on the labels of the remaining arrows
 - -compensate for absence of $\mathsf{q}_{\mathsf{rip}}$ by adding back lost computations

111

Regular Expressions

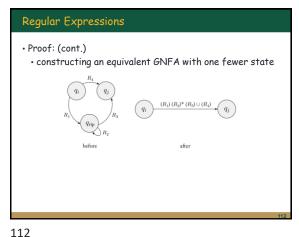
- Proof: (cont.)
 - in the old machine, if
 - \textbf{q}_i goes to \textbf{q}_{rip} with an arrow labeled $\textbf{R}_1,$
 - q_{rip} goes to itself with an arrow labeled R₂,
 - $\cdot q_{rip}$ goes to q_i with an arrow labeled R_3 , and
 - qi goes to qj with an arrow labeled R4
 - \bullet then in the new machine, the arrow from \textbf{q}_i to \textbf{q}_j gets the label
 - $(R_1)(R_2) * (R_3) \cup (R_4)$
 - make this change for any arrow from q_i to $q_j,$ even when q_i = q_j
 - the new machine recognizes the original language

Regular Expressions

Proof: (cont.)
 stages to convert a GNFA into a RE

 Image: Stage of the s

110



Regular Expressions

- Proof: (cont.)
 - \cdot formal definition of a GNFA (similar to NFA but diff $\delta)$

$$\delta: (Q - \{q_{accept}\}) \times (Q - \{q_{start}\}) \rightarrow R$$

- R: all regular expressions over alphabet Σ
- $\boldsymbol{\cdot}$ if $\boldsymbol{\delta}(q_i,q_j)$ = R, the arrow from q_i to q_j has RE R as its label
- an arrow connects every state to every other state • no arrows coming from q_{accept} or going to q_{start}

- Proof: (cont.)
- \cdot formal definition of a GNFA

A generalized nondeterministic finite automaton is a 5-tuple, $(Q, \Sigma, \delta, q_{max}, q_{cocel})$, where 1. Q is the finite set of states, 2. Σ is the input alphabet, 3. $\delta : (Q - (q_{scorel})) \times (Q - (q_{start})) \longrightarrow \mathcal{R}$ is the transition function, 4. q_{max} is the start state, and

5. q_{accept} is the accept state.

115

Regular Expressions

- Proof: (cont.)
 - returning to the lemma proof: if a language is regular, then it is described by a regular expression
 - let M be the DFA for language A
 - convert M to GNFA G
 - add new start state (with ε arc to old start state)
 - \bullet add new accept state (with ϵ arcs from old accept states)
 - add all other missing arcs and label with Ø
 - use new procedure CONVERT(G)
 - takes GNFA and returns equivalent RE
 recursive, but only calls itself with a GNFA with one fewer state (to avoid infinite recursion)

117

Regular Expressions

- Proof: (cont.)
 - example: convert two-state DFA to a regular expression

Regular Expressions

- Proof: (cont.)
 - $\boldsymbol{\cdot}$ a GNFA accepts a string w in $\boldsymbol{\Sigma}^{\star}$ if
 - w = w₁w₂...w_k
 - each w_i is in Σ^*
 - $\boldsymbol{\cdot}$ a sequence of states $q_0,\,q_1,\,...,\,q_k$ exists
- such that
 - $q_0 = q_{\text{start}}$ is the start state
 - $\cdot q_k = q_{accept}$ is the accept state
 - $\boldsymbol{\cdot}$ for each i, we have $w_i \in L(\mathsf{R}_i)$ where
 - R_i = δ(q_{i-1}, q_i)
 - i.e., R is the RE on the arrow from q_{i-1} to q_i

116

Regular Expressions

- Proof: (cont.)
 - · CONVERT(G)
 - 1. k is number of states of G
 - 2. if k = 2, G has start state, accept state, and one arrow connecting them labeled with RE R
 - if k > 2, select any state q_{rip} ∈ Q (other than q_{start} and q_{accept})
 let G' = (Q', Σ, δ', q_{start}, q_{accept})
 - Q' = Q {q_{rip}}
 - for any $q_i \in Q'$ $\{q_{accept}\}$ and any $q_j \in Q'$ $\{q_{start}\}$ let
 - $\delta'(\mathsf{q}_{\mathsf{i}},\,\mathsf{q}_{\mathsf{i}}) = (\mathsf{R}_1)(\mathsf{R}_2)^*(\mathsf{R}_3) \cup (\mathsf{R}_4)$

for

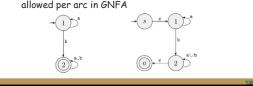
• R₁ = $\delta(q_i, q_{rip})$, R₂ = $\delta(q_{rip}, q_{rip})$, R₃ = $\delta(q_{rip}, q_j)$, and R₄ = $\delta(q_i, q_j)$ • if $\delta(q_i, q_j)$ = R, the arrow from q_i to q_j has RE R as its label

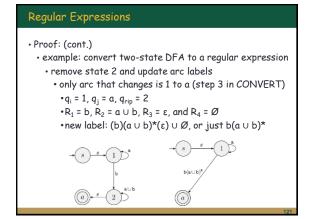
compute CONVERT(G') and return this value

118

Regular Expressions

- Proof: (cont.)
 - example: convert two-state DFA to a regular expression
 create 4-state GNFA by adding new start and accept states
 - labeled s and a for diagram clarity
 - do not draw arcs labeled \emptyset (i.e., $s \rightarrow 2$, $s \rightarrow a$, $1 \rightarrow a$, $2 \rightarrow 1$) • replace label a,b with $a \cup b$ since only one transition





• example: convert three-state DFA to a regular

121

123

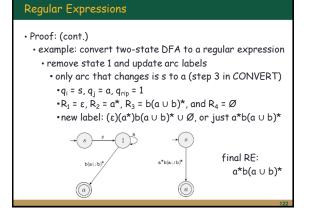
Regular Expressions

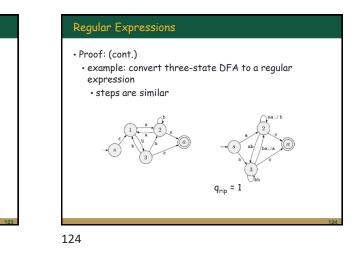
• steps are similar

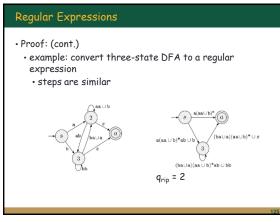
DFA

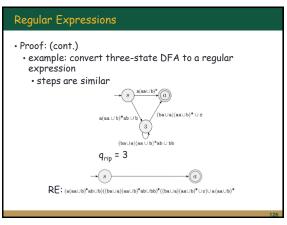
• Proof: (cont.)

expression









- some languages cannot be recognized by FA
 - ex.: $B = \{0^n 1^n | n \ge 0\}$
 - machine would need to be able to remember how many Os were seen as it reads the input
 - · could be unlimited, so could not be done with a finite number of states
 - need a proof method to show a language is nonregular
 - cannot use example above because though a language appears to require unlimited memory does not mean that it actually does
 - examples
 - $C = \{w \mid w \text{ has an equal number of 0s and 1s} \}$
 - D = {w | w has an equal number of 01 and 10 substrings}
 - C is not regular, but D is

127

Nonregular Languages

- the pumping lemma
 - all regular languages can be pumped if they are at least as long as a special value termed the pumping length
 - each such string contains a section that can be repeated any number of times with the resulting string remaining in the language
 - if a language does not have this property, it is nonregular

pumping length = 4

129

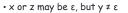
Nonregular Languages

• pumping lemma (cont.)

- for each i ≥ 0 , $xy^i z \in A$
- |y| > 0
- |xy| ≤ p

note that

- |s| is the length of string s
- yⁱ means i copies of y are concatenated together
- y⁰ = ε



• x and y together have length at most p

Nonregular Languages

Nonregular Languages

pumping lemma preliminary

• consider the NFA for the language A

in the smallest string and the number of states?

length is greater than or equal to the number of

• is there a relationship between the number of symbols

• what can you say about a string in the language whose

• what is the smallest string in this language?

pumping lemma

states?

128

• if A is a regular language, there is a number p (the pumping length) where if s is any string in A of length at least p, then s may be divided into three pieces, s = xyz, satisfying the following conditions • for each $i \ge 0$, $xy^i z \in A$ • |y| > 0 • |xy| ≤ p

130

Nonregular Languages

• pumping lemma

- proof idea:
 - let M = {Q, Σ , δ , q_1 , F) is a DFA that recognizes A
 - let pumping length p = number of states of M
 - show that any string s in A can be broken into pieces xyz satisfying the three conditions
 - if no strings in A are of length at least p, the theorem is vacuously true
 - otherwise, three conditions hold

- pumping lemma
 - proof idea: (cont.)
 - if s in A has length at least p, consider the sequence of states M goes through with input s
 - \bullet e.g., let's say it starts with q_1 (start state), then goes on to q_3, q_{20}, q_9, ... until it reaches the end of s in q_{13}
 - if $s \in A$, M must accept s, so q_{13} is an accept state

Nonregular Languages

- pumping lemma
 - proof idea: (cont.)
 - let n = |s| therefore, the sequence of states q_1 , q_3 , q_{20} , $q_{9,...}$, q_{13} has length n + 1
 - because n is at least p, n + 1 > p (or |Q|)
 - therefore, the sequence must contain a repeated state due to the pigeonhole principle

• e.g.,

134

Nonregular Languages • pumping lemma • proof idea: (cont.) • divide s into three pieces x, y, and z • x appears before q_9 • y is the part between the two q_9 's • z is the remaining part of s $s = s_1 s_2 s_3 s_4 s_5 s_6 \dots s_n t_{q_1 q_3 q_{20} (m)} q_{17} s_{p_1 q_6} \dots s_{q_{35} q_{13}}$

135

133

Nonregular Languages

pumping lemma

proof idea: (cont.)

 this division of xyz satisfies the three conditions on input xyyz:

- for each i ≥ 0 , $xy^iz \in A$
- •x takes M from q_1 to q_9
- •y takes M from q_9 back to q_9 , as does the second y
- z takes M to q13, the accept state, so M accepts xyyz
- similarly, it accepts xy'z for any i > 0
- for i = 0, xy'z = xz, which is also accepted
- |y| > 0

 \bullet since it was the part of s that occurred between two different occurrences of state q_9

• |×y| ≤ p

• make sure q9 is the first repetition in the sequence • p+1 states must contain a repetition (pigeonhole principle)

Nonregular Languages

- pumping lemma
- proof idea: (cont.)
 - S0,
 - x takes M from q_1 to q_9
 - y takes M from q₉ back to q₉
 - z takes M from q_9 to the accept state $q_{\rm 13}$

136

Nonregular Languages

• pumping lemma (cont.)

- proof is similar to proof idea
- $\boldsymbol{\cdot}$ use the pumping lemma to show that a language B is nonregular
 - assume B is regular and show a contradiction
 - \cdot use the pumping lemma where all strings of B with at least length p can be pumped
 - find string s in B with length > p that can't be pumped
 - show s cannot be pumped by considering all ways of dividing s into x, y, and z, and for each division, finding an i where xyⁱz is not in B
 - s contradicts pumping lemma, so B is nonregular

- pumping lemma (cont.)
 - $\boldsymbol{\cdot}$ finding s may take creative thinking
 - try members of B that seem to exhibit B's nonregularity
 - see following examples

139

Nonregular Languages

- let B = $\{0^n1^n | n \ge 0\}$ use the pumping lemma to prove by contradiction that B is not regular (cont.)
 - $\boldsymbol{\cdot}$ in any of the cases, a contradiction is unavoidable
 - \cdot can simplify argument by applying condition 3 of the pumping lemma to eliminate cases 2 and 3
 - in this example, finding s was easy

141

Nonregular Languages

- \cdot example: let C = {w | w has an equal number of 0s and 1s} show that C is not regular (cont.)
 - finding s was a bit harder here
 - \cdot if we had let s = (01) $^{\text{p}},$ it would not have worked since it can be pumped
 - keep trying different values of s until you find one that cannot be pumped
 - another way to prove C is nonregular is to use another language that we already know is nonregular, like B
 - if C were regular, C ∩ 0*1* would also be regular due to closure under intersection (proved in the textbook)
 but C ∩ 0*1* = B, which is not regular

Nonregular Languages

- example: let B = {0^11 n \geq 0} use the pumping lemma to prove by contradiction that B is not regular
 - assume B is regular with p pumping length
 - let s = 0p1p
 - because of our assumption, s = xyz where xyiz is in B for any i > 0
 - three cases to show how this is impossible
 - y consists of only Os
 - now xyyz has more Os than 1s and is not in B, violating condition 1 of the pumping lemma
 - y consists of only 1s
 - also a contradiction
 - y consists of 0s and 1s
 - xyyz may have same number of 0s and 1s, but they will be out of order with some 1s before 0s (not in B)

140

Nonregular Languages

- example: let C = {w | w has an equal number of 0s and 1s} show that C is not regular
 - $\boldsymbol{\cdot}$ assume C is regular with p pumping length
 - let s = 0p1p
 - because of our assumption, s = xyz where xyiz is in C for any i > 0
 - seems possible since if x and z are empty, and y = 0P1P, then xy^iz always has an equal number of 0s and 1s
 - \bullet but condition 3 of the pumping lemma states that $|xy| \leq p,$ so s cannot be pumped in this way
 - if $|xy| \le p$, our only choice is y consists of all 0s, so xyyz is not in C, which leads to the contradiction

142

Nonregular Languages

- example: let F = {ww | $w \in \{0,1\}^*\}$ show that F is not regular
 - assume F is regular with p pumping length
 - let s = 0p10p1
 - so s can be split into three pieces s = xyz satisfying the three conditions of the lemma
 - could let x and z be $\epsilon,$ but y must consist of only 0s, so xyyz not in F
 - we chose s to be a string that exhibits a nonregular language instead of say, OPOP, even though it is a member since it can be pumped and fails the contradiction

- example: let D = $\{1^{n^2} | n \ge 0\}$ show that D is not regular
 - assume D is regular with p pumping length
 - let s = 1p2
 - so s can be split into three pieces s = xyz satisfying the three conditions of the lemma
 - perfect squares: 0, 1, 4, 9, 16, 25, 36, 49, ...
 - •gap between values gets greater as n increases

145

Nonregular Languages

- example: let $E = \{O^{i}1^{j} | i > j\}$ use the pumping lemma to prove by contradiction that E is not regular
 - use pumping lemma to pump down
 - assume E is regular with p pumping length
 - let s = 0^{p+1}1^p
 - because of our assumption, s = xyz where xy'z is in E for any i≥0
 - by condition 3, y consists of only 0s •now xyyz has even more Os, which is in E, so we need to try another string
 - try xy⁰z = xz (pumping down)

Nonregular Languages

• pumping lemma (cont.)

https://swaminathanj.github.io/fsm/pumpinglemma.html

additional notes

• since s had just one more 0 than 1s, xz cannot have more Os than 1s -> contradiction

147

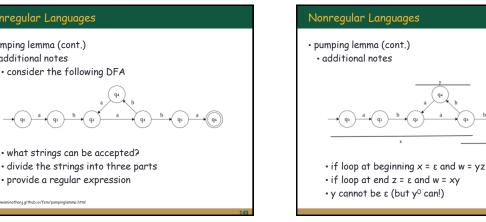
- example: let D = $\{1^{n^2} | n \ge 0\}$ show that D is not regular • assume D is regular with p pumping length (cont.)
 - consider strings xyz and xy²z • differ by one repetition of y so lengths differ by |y|•by condition 3, $|xy| \le p$ so $|y| \le p$

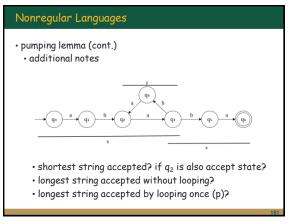
 - •but $|xyz| = p^2 \text{ so } |xy^2z| \le p^2 + p$
 - $p^{2} + p < p^{2} + 2p + 1 = (p + 1)^{2}$
 - •y cannot be ε , so $|xy^2z| > p^2$
 - thus |xy²z| lies between consecutive perfect squares p^2 and $(p + 1)^2$
 - so length is not a perfect square (contradiction)
 - •thus xy²z not in D, and D is not regular

146

Nonregular Languages

- pumping lemma (cont.)
 - additional notes
 - we cannot use the pumping lemma to show that a language is regular
 - some languages will pass the pumping lemma test, but still be nonregular
 - the pumping lemma, therefore, is a necessary test, but not a sufficient test, to show that a language is regular
 - we have other ways to show a language is regular
 - no language that fails the pumping lemma test is regular





151

Nonregular Languages

- pumping lemma (cont.)
 - additional notes
 - \bullet remember that s is only one type of string found in the language
 - try to choose s to be a string pattern we already know is nonregular
 - $\mbox{ }$ use p strategically to limit the number of parts of the string that y can be assigned
 - \bullet for xy^iz, string must be in the language for all i $\geqq 0$
 - only one assignment to x, y, and z must work
 - •but for that assignment, it must work for all i \geqq 0
 - so you must try them all and explain why none of them work when considering all i ≥ 0

153

Nonregular Languages

- pumping lemma (cont.)
 - proof requirements for proving A is nonregular
 - Assume A is regular and therefore must pass the pumping lemma test
 - let s = some string using p, such as O^p1^p
 - explain xyz assignment, such as x and y must consist entirely of 0s (from the limitations imposed by s)
 - \bullet explain how xy'z would allow other strings to be generated with i = 0 or 2 that are not in A
 - explain how there are no other options, or every other option would result in the same or similar condition
 - state that this is a contradiction and therefore the pumping lemma does not hold; therefore, A is nonreg

Nonregular Languages

Nonregular Languages

pumping lemma (cont.)

additional notes

1. 1* 2. 01 3. 01*0 4. 11*

1. 1

2. 3

3. 3

4. 2

152

- pumping lemma (cont.)
 - additional notes
 - what about DFAs with multiple circuits?
 the pumping lemma seems too limited

• what is the pumping length for the following languages?

• it still works since we can break down the strings into different cases of s where each s has only one circuit, e.g., a b' abb and babbabab b'

*Hermant Chetwan