Chapter 2 Context-Free Languages

- · so far, we have looked at FA's and regular expressions
 - different, though equivalent
 - \cdot some simple languages, such as 0^n1^n cannot be described in these ways

- we now turn to context-free grammars (CFGs)
 - more powerful way to describe languages
 - can describe recursive structures of languages
 - first used to study human languages
 - relationships between parts of language (noun, verb, etc.) lead to recursion
 - e.g., noun phrases may appear inside verb phrases and vice versa
 - context-free grammars help organize and understand such relationships

- another important application is in the specification of programming languages
 - a grammar for a programming language can help people learn about the language syntax
 - compiler and interpreter designers often start with the grammar for a programming language
 - parser: extracts meaning from code before execution
 - some tools can automatically generate a parser from the grammar

- the collection of languages associated with context-free grammars are context-free languages
 - include all regular languages
 - plus other languages
- · we will study
 - context-free grammars
 - formal definition of context-free grammars
 - properties of context-free languages
 - pushdown automata: machines recognizing context-free languages
 - help us realize the power of context-free grammars

- example: CFG G_1 $A \rightarrow 0A1$ $A \rightarrow B$ $B \rightarrow \#$
- a grammar consists of
 - substitution rules, or productions
 - each rule appears as a line in the grammar
 - Ihs: variable or nonterminal
 - derivation symbol
 - · rhs: variables or terminals
 - common notation
 - nonterminals: capital letters
 - terminals: lowercase letters, numbers, symbols

- example: $CFG G_1$
 - $A \rightarrow 0A1$
 - $A \rightarrow B$
 - B → #
- start variable: Ihs of first production
- $\cdot G_1$ has
 - two variables: A, B
 - start variable: A
 - terminals: 0, 1, #

- process for generating strings in the language using the grammar
 - write down the start variable
 - · Ihs of top rule, unless otherwise stated
 - find a variable that is written down and a rule that starts with that variable
 - replace the variable with rhs of that rule
 - repeat replacements until no variable remains

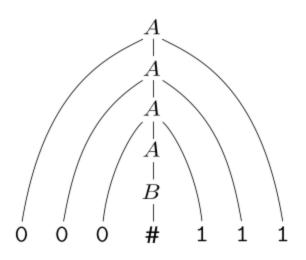
- example: CFG G₁
 - $A \rightarrow 0A1$
 - $A \rightarrow B$
 - B → #
- we can generate string 000#111 with the following derivation (or sequence of substitutions)
 - $A \rightarrow 0A1$
 - $\rightarrow 00A11$
 - $\rightarrow 000A111$
 - → 000B111
 - → 000#111

• example: $CFGG_1$

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

derivation can also be shown with a parse tree



- all strings generated from derivations constitute the language of the grammar, L(G)
 - $L(G_1) = \{0^n \# 1^n \mid n \ge 0\}$
 - any language that can be generated by a CFG is called a context-free language (CFL)
- for convenience, we can replace

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

with

$$A \rightarrow 0A1 \mid B$$

• example: $CFG G_2$ describes part of the English language

```
\langle \text{SENTENCE} \rangle \rightarrow \langle \text{NOUN-PHRASE} \rangle \langle \text{VERB-PHRASE} \rangle
\langle \text{NOUN-PHRASE} \rangle \rightarrow \langle \text{CMPLX-NOUN} \rangle | \langle \text{CMPLX-NOUN} \rangle \langle \text{PREP-PHRASE} \rangle
\langle \text{VERB-PHRASE} \rangle \rightarrow \langle \text{CMPLX-VERB} \rangle | \langle \text{CMPLX-VERB} \rangle \langle \text{PREP-PHRASE} \rangle
\langle \text{PREP-PHRASE} \rangle \rightarrow \langle \text{PREP} \rangle \langle \text{CMPLX-NOUN} \rangle
\langle \text{CMPLX-NOUN} \rangle \rightarrow \langle \text{ARTICLE} \rangle \langle \text{NOUN} \rangle
\langle \text{CMPLX-VERB} \rangle \rightarrow \langle \text{VERB} \rangle | \langle \text{VERB} \rangle \langle \text{NOUN-PHRASE} \rangle
\langle \text{ARTICLE} \rangle \rightarrow \text{a} | \text{the}
\langle \text{NOUN} \rangle \rightarrow \text{boy} | \text{girl} | \text{flower}
\langle \text{VERB} \rangle \rightarrow \text{touches} | \text{likes} | \text{sees}
\langle \text{PREP} \rangle \rightarrow \text{with}
```

- 10 variables (nonterminals)
- 27 terminals (26 alphabet letters plus space)
- 18 rules

• strings in $L(G_2)$ a boy sees the boy sees a flower a girl with a flower likes the boy

\(\text{NOUN-PHRASE} \) → \(\text{CMPLX-NOUN} \) \| \(\text{CMPLX-NOUN} \\ \) \(\text{PREP-PHRASE} \) \\
\(\text{VERB-PHRASE} \) → \(\text{CMPLX-VERB} \) \| \(\text{CMPLX-VERB} \\ \) \(\text{PREP-PHRASE} \) \\
\(\text{CMPLX-NOUN} \) → \(\text{ARTICLE} \\ \text{NOUN} \) \\
\(\text{CMPLX-VERB} \) → \(\text{VERB} \\ \) \| \(\text{VERB} \\ \) \| \(\text{VERB} \\ \) \\
\(\text{ARTICLE} \) → \(\text{a} \| \text{the} \)
\(\text{ARTICLE} \) → \(\text{a} \| \text{the} \)
\(\text{VERB} \) → \(\text{bouches} \| \text{likes} \| \text{sees} \\
\(\text{VERB} \) → \(\text{with} \)

 $\langle SENTENCE \rangle \rightarrow \langle NOUN-PHRASE \rangle \langle VERB-PHRASE \rangle$

example derivation of 'a boy sees'

```
\langle \text{SENTENCE} \rangle \Rightarrow \langle \text{NOUN-PHRASE} \rangle \langle \text{VERB-PHRASE} \rangle
\Rightarrow \langle \text{CMPLX-NOUN} \rangle \langle \text{VERB-PHRASE} \rangle
\Rightarrow \langle \text{ARTICLE} \rangle \langle \text{NOUN} \rangle \langle \text{VERB-PHRASE} \rangle
\Rightarrow \text{a } \langle \text{NOUN} \rangle \langle \text{VERB-PHRASE} \rangle
\Rightarrow \text{a boy } \langle \text{VERB-PHRASE} \rangle
\Rightarrow \text{a boy } \langle \text{CMPLX-VERB} \rangle
\Rightarrow \text{a boy } \langle \text{VERB} \rangle
\Rightarrow \text{a boy sees}
```

formal definition of CFG

A *context-free grammar* is a 4-tuple (V, Σ, R, S) , where

- 1. V is a finite set called the *variables*,
- 2. Σ is a finite set, disjoint from V, called the *terminals*,
- **3.** *R* is a finite set of *rules*, with each rule being a variable and a string of variables and terminals, and
- **4.** $S \in V$ is the start variable.
- in grammar G_1
 - $V = \{A, B\}$
 - $\Sigma = \{0, 1, \#\}$
 - S = A
 - R is the collection of rules in the grammar

- formal definition of CFG notes
 - for u, v, w (strings of variables and terminals)
 - $A \rightarrow w$ is a rule
 - uAv yields uwv, or uAv ⇒ uwv
 - u derives v, or $u \Rightarrow^* v$ if u = v or if $u_1, u_2, ..., u_k$ exists for $k \ge 0$ and $u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow ... \Rightarrow u_k \Rightarrow v$
 - the language of the grammar is $\{w \in \Sigma^* \mid S \Rightarrow^* w\}$

example: grammar G₂

```
V = \{\langle \text{SENTENCE} \rangle, \langle \text{NOUN-PHRASE} \rangle, \langle \text{VERB-PHRASE} \rangle, \\ \langle \text{PREP-PHRASE} \rangle, \langle \text{CMPLX-NOUN} \rangle, \langle \text{CMPLX-VERB} \rangle, \\ \langle \text{ARTICLE} \rangle, \langle \text{NOUN} \rangle, \langle \text{VERB} \rangle, \langle \text{PREP} \rangle \},
```

- $\Sigma = \{a, b, c, ..., z, ""\}$
 - " " represents blank space
- · can specify grammar by just writing rules
 - identify variables as appearing on lhs
 - all other symbols are terminals
 - start variable is lhs of first rule

- example: grammar G₃
 - $G_3 = (\{S\}, \{a, b\}, R, S)$
 - · rules:

$$S \rightarrow aSb \mid SS \mid \epsilon$$

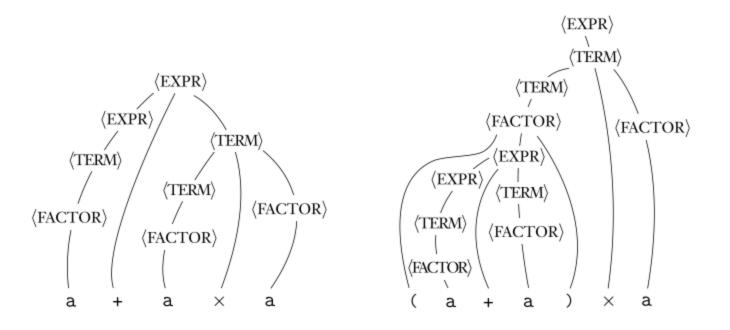
- · note ε
- example strings generated: abab, aaabbb, aababb, ε
 - can think of a and b as '(' and ')', respectively
 - strings generated are properly nested parentheses

- example: grammar $G_4 = (V, \Sigma, R, \langle EXPR \rangle)$
 - V = {<EXPR>, <TERM>, <FACTOR>}
 - $\Sigma = \{a, +, \times, (,)\}$
 - · R (rules) are

$$\rightarrow$$
 + | <
 \rightarrow \times | <

 describes part of a programming language for arithmetic expressions

- example: grammar $G_4 = (V, \Sigma, R, \langle EXPR \rangle)$
 - parse trees for strings a+axa and (a+a)xa
 - note precedence imposed



- designing CFGs
 - requires some creativity, as with FAs
 - helpful techniques
 - · first, many CFLs are the union of simpler CFLs
 - construct individual grammars for pieces
 - solving several simpler problems easier than solving one complicated problem
 - merge by combining rules and adding new rule where S_i are the start variables for the simpler grammars

$$S \rightarrow S_1 \mid S_2 \mid ... \mid S_k$$

- designing CFGs (cont.)
 - many CFLs are the union of simpler CFLs example: create a grammar for the language $\{0^n1^n\mid n\geq 0\}\cup\{1^n0^n\mid n\geq 0\}$
 - 1. construct grammar for $\{0^n1^n \mid n \ge 0\}$ $S_1 \to 0S_11 \mid \epsilon$
 - 2. construct grammar for $\{1^n0^n \mid n \ge 0\}$ $S_2 \to 1S_20 \mid \epsilon$
 - 3. add rule $S \rightarrow S_1 \mid S_2$ $S \rightarrow S_1 \mid S_2$ $S_1 \rightarrow 0S_11 \mid \epsilon$ $S_2 \rightarrow 1S_20 \mid \epsilon$

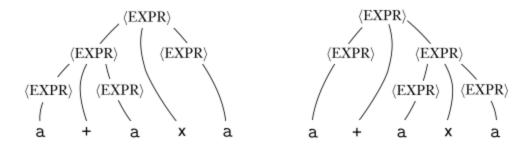
- designing CFGs (cont.)
 - helpful techniques
 - second, constructing a CFG for a regular language is easy if you can construct a DFA first
 - convert DFA into CFG
 - make a variable R for each state q_i of the DFA
 - •add rule $R_i \rightarrow aR_j$ if $\delta(q_i, a) = q_j$ is transition in DFA
 - •add rule $R_i \rightarrow \epsilon$ if q_i is an accept state of the DFA
 - $\cdot R_0$ is the start variable where q_0 is the start state

- designing CFGs (cont.)
 - helpful techniques
 - third, certain CFLs contain strings with two substrings that are linked in such a way that a FA would need to remember
 - e.g., $\{0^n1^n \mid n \geq 0\}$
 - construct a CFG to handle this situation by using a rule of the form $R \to uRv$ where the numbers of u's and v's are the same

- designing CFGs (cont.)
 - helpful techniques
 - finally, in more complex languages, the strings may contain certain structures that appear recursively as part of other (or the same) structures
 - e.g., G_4 that generates arithmetic expressions
 - any time an a appears, an entire parenthesized expression might appear recursively instead
 - place the variable symbol generating the structure in the location of the rules corresponding to where that structure may recursively appear

- ambiguity
 - sometimes a grammar can generate a string in several different ways
 - must be different parse trees
 - undesirable in certain applications, such as programming languages, since a program should have only one interpretation
 - string is derived ambiguously
 - if grammar generates strings ambiguously, grammar is ambiguous

- ambiguity (cont.)
 - example: grammar G_5 $\langle EXPR \rangle \rightarrow \langle EXPR \rangle + \langle EXPR \rangle \mid \langle EXPR \rangle \mid \langle EXPR \rangle \mid \langle example \rangle \mid a$
 - generates string a+axa ambiguously



note precedence

- ambiguity (cont.)
 - G_4 generates the same language as G_5 , but every string has a unique parse tree
 - G_4 is unambiguous whereas G_5 is ambiguous
 - G_2 is ambiguous because the following sentence has two different derivations resulting in different parse trees the girl touches the boy with the flower

- ambiguity (cont.)
 - formally, a grammar is ambiguous if there is more than one parse tree for deriving the same string
 - not just more than one derivation
 - derivations may differ only in order of replacements, not structure
 - we can focus on structure by replacing variables in a fixed order
 - •leftmost derivation: replace the leftmost variable in each step of the derivation

A string w is derived *ambiguously* in context-free grammar G if it has two or more different leftmost derivations. Grammar G is *ambiguous* if it generates some string ambiguously.

- ambiguity (cont.)
 - sometimes we can find an unambiguous grammar that generates the same language as an ambiguous one
 - some CFLs can only be generated by ambiguous grammars

- Chomsky normal form
 - convenient to have CFGs in simplified form

A context-free grammar is in *Chomsky normal form* if every rule is of the form

$$A \to BC$$

 $A \to a$

where a is any terminal and A, B, and C are any variables—except that B and C may not be the start variable. In addition, we permit the rule $S \to \varepsilon$, where S is the start variable.

- Chomsky normal form
 - any context-free language is generated by a contextfree grammar in Chomsky normal form
 - proof idea
 - conversion has several stages where rules that violate the conditions are replaced with equivalent ones that fulfill the requirements
 - add a new start variable
 - •eliminate all ε -rules of the form $A \to \varepsilon$
 - •eliminate all unit rules $A \rightarrow B$
 - convert remaining rules into proper form
 - verify that new grammar generates same language

- Chomsky normal form (cont.)
 - any context-free language is generated by a contextfree grammar in Chomsky normal form
 - proof
 - add a new start variable, S_0 and the rule $S_0 \rightarrow S$ where S was the original start state
 - •guarantees that the start variable does not appear on the rhs of a rule

- Chomsky normal form (cont.)
 - any context-free language is generated by a contextfree grammar in Chomsky normal form
 - proof
 - eliminate all ϵ -rules of the form $A \to \epsilon$ (where A is not the start variable)
 - wherever A appears on the rhs of a rule, add a new rule with that occurrence deleted
 - if $R \rightarrow uAv$ is a rule, add rule $R \rightarrow uv$
 - •add rule for each occurrence of A, so R \rightarrow uAvAw results in adding R \rightarrow uvAw, R \rightarrow uAvw, and R \rightarrow uvw
 - •if we had $R \rightarrow A$, add $R \rightarrow \epsilon$ unless we already removed that rule
 - •repeat until all ε-rules removed not using start var

- Chomsky normal form (cont.)
 - any context-free language is generated by a contextfree grammar in Chomsky normal form
 - proof
 - remove unit rules $A \rightarrow B$
 - •when a rule B \rightarrow u appears, add rule A \rightarrow u unless this unit rule was previously removed
 - repeat until all unit rules removed

- Chomsky normal form (cont.)
 - any context-free language is generated by a contextfree grammar in Chomsky normal form
 - proof
 - convert all remaining rules into proper form
 - •replace rule $A \rightarrow u_1u_2...u_k$ where $k \ge 3$ and each u_i is a variable or terminal symbol with the rules $A \rightarrow u_1A_1, A_1 \rightarrow u_2A_2, A_2 \rightarrow u_3A_3, ... A_{k-2} \rightarrow u_{k-1}u_k$
 - Ai's are new variables
 - •replace any terminal u_i in the preceding rule(s) with new variable U_i and add rule $U_i \rightarrow u_i$

- example: convert the CFG G_6 into Chomsky normal form
 - 1. add new start state (old on left; new on right)

$$\begin{array}{c} S \rightarrow ASA \mid \mathtt{a}B \\ A \rightarrow B \mid S \\ B \rightarrow \mathtt{b} \mid \varepsilon \end{array}$$

$$S_0 o S$$

 $S o ASA \mid aB$
 $A o B \mid S$
 $B o b \mid \varepsilon$

2. remove ϵ -rules: $B \to \epsilon$ on left, $A \to \epsilon$ on right

$$S_0 o S$$

 $S o ASA \mid aB \mid a$
 $A o B \mid S \mid \varepsilon$
 $B o b \mid \varepsilon$

$$S_0 o S$$
 $S o ASA \mid aB \mid a$ $S_0 o S$ $S o ASA \mid aB \mid a \mid SA \mid AS \mid S$ $A o B \mid S \mid \varepsilon$ $A o B \mid S \mid \varepsilon$ $A o B \mid S \mid \varepsilon$ $B o b \mid \varepsilon$

Context-Free Grammars

• example: convert the CFG G_6 into Chomsky normal form 3a. remove unit rules: $S \to S$ on left, and $S_0 \to S$ on right

3b. remove unit rules: $A \rightarrow B$ on left, and $A \rightarrow S$ on right

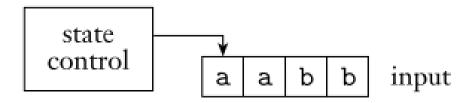
Context-Free Grammars

- \cdot example: convert the CFG G_6 into Chomsky normal form
 - 4. convert remaining rules into proper form by adding variables and rules; final grammar is equivalent to G_6 ; final grammar simplified

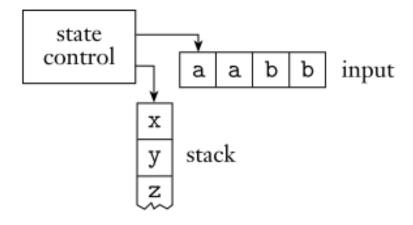
$$S_0 \rightarrow AA_1 \mid UB \mid \mathtt{a} \mid SA \mid AS \\ S \rightarrow AA_1 \mid UB \mid \mathtt{a} \mid SA \mid AS \\ A \rightarrow \mathtt{b} \mid AA_1 \mid UB \mid \mathtt{a} \mid SA \mid AS \\ A_1 \rightarrow SA \\ U \rightarrow \mathtt{a} \\ B \rightarrow \mathtt{b}$$

- pushdown automata (PDA)
 - like NFA, but includes a stack
 - provides additional memory
 - therefore allows PDA to recognize some nonregular languages
 - equivalent to CFGs
 - now we have two options for proving a language is context-free by providing either
 - CFG generating the language
 - PDA recognizing the language
 - some languages are more easily described by generators, while others by recognizers

- schematic of a finite automaton
 - control represents states and transition function
 - tape contains the input string
 - arrow is the input head, which points at the next input symbol to be read



- · schematic of a PDA
 - add a stack to preceding schematic



- PDA can write symbols on the stack and read them back later
 - writing a symbol pushes other symbols on the stack
 - reading a symbol pops it from the stack
 - all access to the stack takes place at the top (LIFO)
 - analogy: cafeteria plate dispenser

- stacks are useful in PDAs
 - hold an unlimited amount of information
 - FAs typically have very little memory
 - example: the language $\{0^n1^n \mid n \ge 0\}$ cannot be recognized by a FA, but can by a PDA
 - PDA uses its stack to store the number of Os it has seen (can store numbers of unlimited size)
 - push Os on the stack as they are read
 - pop off a O for each 1 that is read
 - if reading is finished exactly when the stack becomes empty, accept
 - if empty while 1s remain, or if 1s are finished and 0s remain on stack, or 0s in input after the 1s, reject

- nondeterministic PDAs
 - not equivalent in power to deterministic PDAs
 - recognize certain languages no deterministic PDA can
 - DFAs and NFAs recognize the same class of languages
 - · so, PDAs are different
 - our focus is on nondeterministic PDAs since they are equivalent in power to CFGs

- PDA formal definition
 - similar to FA, except for the stack
 - stack: device containing symbols from an alphabet
 - · may be different from symbols in input
 - input alphabet: Σ
 - stack alphabet:

- PDA formal definition (cont.)
 - transition function
 - $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$
 - $\Gamma_{\varepsilon} = \Gamma \cup \{\varepsilon\}$
 - domain: $Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon}$
 - current state, next input symbol read, and top symbol of the stack determine the next transition
 - \bullet either symbol may be ϵ , causing the machine to move without reading a symbol from the input or from the stack

- PDA formal definition (cont.)
 - transition function
 - what can the automaton do in transitions?
 - enter a new state and write a symbol on the stack
 - δ can return a member of Q and a member of Γ_{ϵ}
 - domain: $Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon}$
 - due to nondeterminism, several legal next moves may be possible
 - a set of members from $Q \times \Gamma_{\epsilon}$ may be returned
 - i.e., a member of $P(Q \times \Gamma_{\epsilon})$
 - therefore, $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to P(Q \times \Gamma_{\varepsilon})$

PDA formal definition (cont.)

A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

- **1.** Q is the set of states,
- 2. Σ is the input alphabet,
- **3.** Γ is the stack alphabet,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
- **5.** $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

- PDA formal definition (cont.)
 - a PDA M = $(Q, \Sigma, \Gamma, \delta, q_0, F)$ computes as follows
 - accepts input w if it can be written as $w = w_1 w_2 ... w_m \quad \text{where each } w_i \in \Sigma_\epsilon \text{ and sequences of states}$

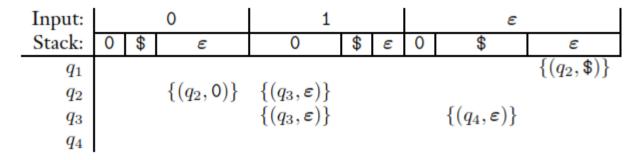
 $r_0, r_1, \dots, r_m \in Q$

and strings

 $s_0,s_1,\dots,s_m\in\Gamma$ (sequence of stack contents) exist that satisfy the following three conditions

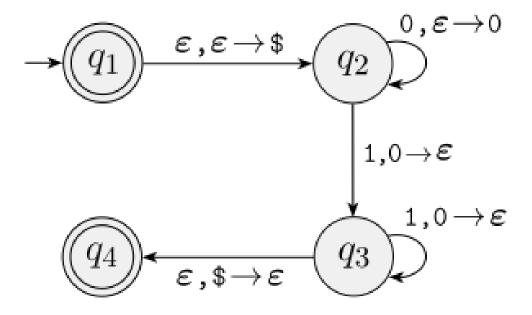
- $r_0 = q_0$ and $s_0 = \varepsilon$
 - i.e., M starts at the start state with an empty stack
- for i = 0,...,m-1, $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$ where s_i = at and s_{i+1} = bt for some $a,b \in \Gamma_\epsilon$ and $t \in \Gamma^*$
 - i.e., M moves properly according to state, stack, and next input symbol
- $r_m \in F$
 - i.e., an accept state occurs at the end of input

- example: PDA that recognizes $\{0^n1^n \mid n \ge 0\}$
 - let $M_1 = (Q, \Sigma, \Gamma, \delta, q_1, F)$ where
 - Q = $\{q_1, q_2, q_3, q_4\}$
 - $\Sigma = \{0, 1\}$
 - $\cdot \Gamma = \{0, \$\}$
 - $F = \{q_1, q_4\}$
 - \bullet δ is given by the table where blank entries are \varnothing



- example: PDA that recognizes $\{0^n1^n \mid n \ge 0\}$
 - we can use a state diagram to describe the PDA
 - similar to state diagrams for FA, but modified for stack updates
 - a,b \rightarrow c means when a is read from input, it may replace b on the top of the stack with c
 - a,b, or c may be ε
 - if $a = \varepsilon$, no symbol read from input
 - if $b = \varepsilon$, no symbol popped from stack
 - if $c = \varepsilon$, no symbol written on stack

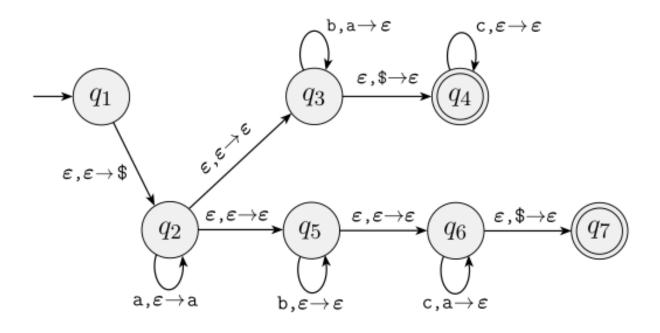
- example: PDA that recognizes $\{0^n1^n \mid n \ge 0\}$ (cont.)
 - state diagram



- PDA formal definition contains no test for empty stack
 - instead, initially place a \$ on the stack
 - if \$ is seen again, the stack is empty
- PDAs cannot test explicitly for reaching end of input string
 - accept state takes effect only when machine is at end of input
 - thus, we assume that PDAs can check for end of input

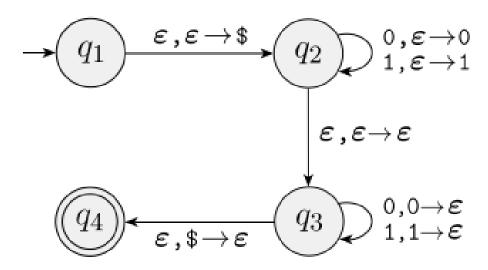
- example: PDA that recognizes $\{a^ib^jc^k| i,j,k \ge 0 \text{ and } i=j \text{ or } i=k\}$
 - first read and push a's
 - now it can match them with the b's or c's
 - but don't know which to match
 - using nondeterminism, PDA can guess whether to match b's or c's
 - · use two branches: one for each possible guess
 - if either matches, that branch accepts

- example: PDA that recognizes $\{a^ib^jc^k| i,j,k \ge 0 \text{ and } i=j \text{ or } i=k\}$ (cont.)
 - state diagram



- example: PDA M_3 recognizes $\{ww^R \mid w \in \{0, 1\}^*\}$
 - · w^R means w written backwards
 - begin by pushing read symbols on stack
 - at each point, nondeterministically guess that the middle of the string has been reached
 - change into popping off the stack for each symbol
 - check to see if popped symbol is the same as read symbol
 - if all are the same, and stack empties when input is finished, accept
 - otherwise, reject

- example: PDA M_3 recognizes $\{ww^R \mid w \in \{0, 1\}^*\}$
 - state diagram



- context-free grammars and pushdown automata are equivalent in power
 - both capable of describing class of context-free languages
 - · can convert any CFG into a PDA and vice versa
 - recall that a CFL is any language that can be described with a CFG

- theorem: a language is context-free if and only if some PDA recognizes it
 - · for if and only if, we have to prove in both directions

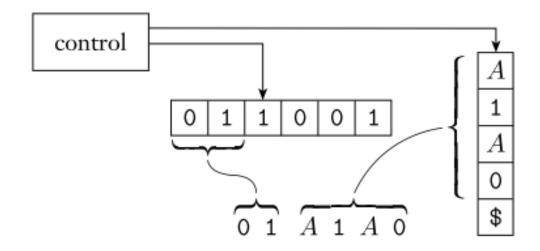
- · lemma: if a language is context-free, a PDA recognizes it
 - proof idea
 - · let A be a CFL
 - therefore, a CFG G generates it
 - convert G into equivalent PDA P
 - P will accept input w if G generates it by determining if there is a derivation for w
 - derivation: a sequence of substitutions made as a grammar generates a string
 - each step yields an intermediate string of variables and terminals
 - •P determines whether some series of substitutions from G can lead from the start variable to w

- · lemma: if a language is context-free, a PDA recognizes it
 - proof idea (cont.)
 - a difficulty in testing if a derivation for w exists is figuring out which substitutions to make
 - PDA's nondeterminism allows it to guess the sequence of correct substitutions
 - for each step, one of the rules for a particular variable is selected nondeterministically for the substitution

- · lemma: if a language is context-free, a PDA recognizes it
 - proof idea (cont.)
 - P begins by writing the start variable on its stack
 - P then goes through intermediate strings, making substitutions
 - if it arrives at a string with only terminal symbols, it has derived a string in the language
 - P accepts this string if it is identical to the one it received as input

- · lemma: if a language is context-free, a PDA recognizes it
 - proof idea (cont.)
 - how does the PDA store the intermediate strings as it goes from one state to another?
 - could just store it on the stack
 - won't work because P needs to find variables to replace and make substitutions
 - PDA can only access the top symbol on the stack, which may just be a terminal
 - · instead, keep only part of the string on the stack
 - the symbols starting with the first variable in the intermediate string
 - any terminals before the first variable are matched immediately with symbols in the input string

- · lemma: if a language is context-free, a PDA recognizes it
 - proof idea (cont.)
 - P representing the intermediate string 01A1A0

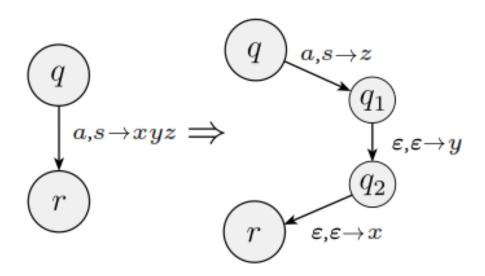


- · lemma: if a language is context-free, a PDA recognizes it
 - proof idea (cont.)
 - informal description of processing in P
 - push marker symbol \$ and start variable on stack
 - repeat the following forever
 - •if the top of the stack is a variable symbol A, nondeterministically select one of the rules for A and substitute with the rhs of the rule
 - •if the top of the stack is a terminal a, read the next symbol from the input and compare it to a; if they match, repeat; otherwise, reject on this branch of nondeterminism
 - •if the top of the stack is \$, enter accept state

- · lemma: if a language is context-free, a PDA recognizes it
 - proof
 - let P = (Q, Σ , Γ , δ , q_{start} , F)
 - for clarity, use shorthand notation for δ
 - provides a way to write an entire string on the stack in one step
 - simulate by adding states to write the string one symbol at a time
 - ·let q and r be states of the PDA
 - •let $a \in \Sigma_{\epsilon}$ and $s \in \Gamma_{\epsilon}$
 - •go from q to r when a is read and s is popped
 - •push string $u = u_1...u_1$ on stack at the same time

- · lemma: if a language is context-free, a PDA recognizes it
 - proof (cont.)
 - implement by adding new states $q_1,...q_{l-1}$ and setting the transition function as follows
 - • $\delta(q, a, s)$ to contain (q_1, u_1)
 - $\delta(q_1, \epsilon, \epsilon) = \{(q_2, u_{l-1})\}$
 - • $\delta(q_2, \epsilon, \epsilon) = \{(q_3, u_{l-2})\}$...
 - $\bullet \delta(q_{l-1}, \, \varepsilon, \, \varepsilon) = \{(r, \, u_1)\}$
 - $(r, u) \in \delta(q, a, s)$ means when q is the state of the automaton, a is the next input symbol and s is the symbol on top of the stack
 - PDA may read a and pop s, then push u on the stack and go to state r

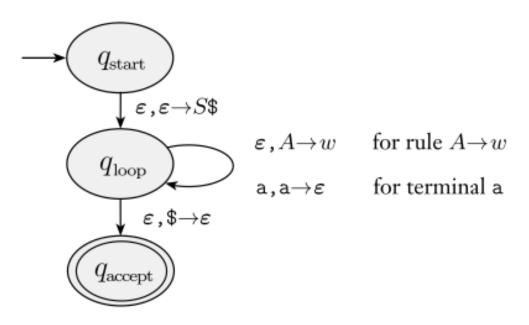
- · lemma: if a language is context-free, a PDA recognizes it
 - proof (cont.)
 - implementing shorthand $(r, xyz) \in \delta(q, a, s)$



- · lemma: if a language is context-free, a PDA recognizes it
 - proof (cont.)
 - P = (Q, Σ , Γ , δ , q_{start} , F) where
 - Q = $\{q_{\text{start}}, q_{\text{loop}}, q_{\text{accept}}\} \cup E$
 - ·E is the states needed for implementing shorthand
 - q_{start} is the start state
 - $F = \{q_{accept}\}$

- lemma: if a language is context-free, a PDA recognizes it
 - proof (cont.)
 - P = (Q, Σ , Γ , δ , q_{start} , F) where
 - δ is defined as follows
 - • $\delta(q_{\text{start}}, \epsilon, \epsilon) = \{(q_{\text{loop}}, S\$)\}$
 - initialize stack to contain \$ and \$, implementing step 1 in the informal description
 - • $\delta(q_{loop}, \epsilon, A) = \{(q_{loop}, w) \mid where A \rightarrow w \text{ is a rule in R}\}$
 - the top of the stack contains a variable
 - $\delta(q_{loop}, \alpha, \alpha) = \{(q_{loop}, \epsilon)\}$
 - the top of the stack contains a terminal
 - • $\delta(q_{loop}, \epsilon, \$) = \{(q_{accept}, \epsilon)\}$
 - empty stack marker \$ is on the top of the stack

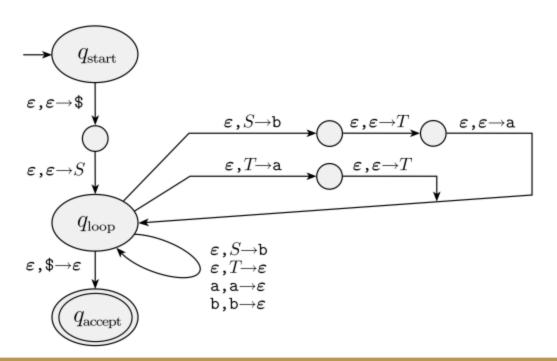
- · lemma: if a language is context-free, a PDA recognizes it
 - proof (cont.)
 - state diagram of P



- · lemma: if a language is context-free, a PDA recognizes it
 - \cdot example: use the procedure to construct a PDA P from the following CFG G

$$S \rightarrow aTb \mid b$$

 $T \rightarrow Ta \mid \epsilon$

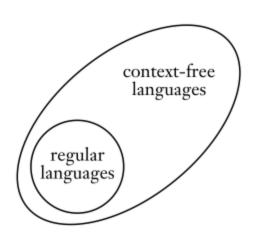


Pushdown Automata

- · lemma: if a PDA recognizes a language, it is context-free
 - proof idea
 - harder
 - we have PDA P and want to make CFG G that generates all the strings P accepts
 - or, G should generate a string if it causes the PDA to go from its start state to an accept state

Pushdown Automata

- we have shown that PDAs recognize the class of CFLs
 - we can now establish a relationship between the regular languages and the CFLs
 - since every regular language is recognized by a FA and every FA is automatically a PDA that ignores its stack, every regular language must also be a CFL

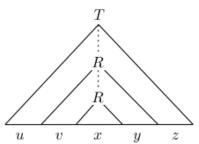


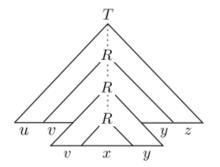
- we want to able to prove that some languages are noncontext-free
 - use pumping lemma for CFLs
 - every CFL has a pumping length such that all longer strings in the language can be pumped
 - string divided into 5 parts
 - 2nd and 4th parts may be repeated together any number of times with the resulting string in the language

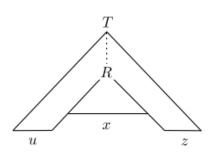
- pumping lemma for CFLs
 - if A is a context-free language, there is a number p
 (the pumping length) where if s is any string in A of
 length at least p, then s may be divided into five pieces,
 s = uvxyz, satisfying the following conditions
 - for each $i \ge 0$, $uv^i x y^i z \in A$
 - |vy| > 0
 - |vxy| ≤ p
 - condition 2: either v or y is not ε
 - otherwise, theorem trivially true
 - condition 3: max length useful in proving certain languages are not context-free

- pumping lemma for CFLs
 - proof idea
 - let A be a CFL and G be a CFG that generates it
 - show that any sufficiently long string s in A can be pumped and remain in A
 - let s be a very long string in A
 - s is derivable from G and therefore has a parse tree
 - parse tree is very tall because s is very long
 - parse tree contains some long path from the start variable at the root of the tree to one of the terminal symbols at a leaf
 - on this path, some R must repeat due to the pigeonhole principle

- pumping lemma for CFLs
 - · proof idea
 - this repetition allows us to replace the subtree under the second R with the subtree under the first R
 - therefore, we can cut s into 5 pieces uvxyz and repeat the 2^{nd} and 4^{th} pieces to obtain a string in the language





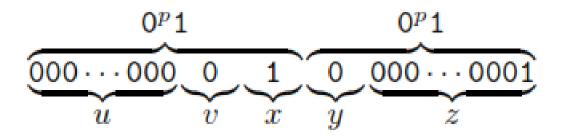


- pumping lemma for CFLs
 - example: use the pumping lemma to show $B = \{a^nb^nc^n \mid n \ge 0\}$ is not context-free
 - assume B is context-free with pumping length p
 - select string a^pb^pc^p
 - s is a member of B and of length at least p
 - show that no matter how we divide s into uvxyz, one of the three conditions of the lemma is violated
 - condition 2 ensures that either v or y is not ϵ consider 2 cases
 - when both v and y contain only one type of symbol, v does not contain both a's and b's or b's and c's, and same for y
 - the string uv^2xy^2z cannot contain an equal number of a's, b's, and c's
 - · when either v or y contain more than one type of symbol
 - the string uv^2xy^2z can contain an equal number of a's, b's, and c's, but in the wrong order
 - one of these cases must occur, but both result in a contradiction
 - therefore, B is not a CFL

- pumping lemma for CFLs
 - example: use the pumping lemma to show B = $\{a^nb^nc^n \mid n \ge 0\}$ is not context-free
 - · example strings to help explain proof
 - select string $a^pb^pc^p$ if p = 3, string is aaabbbccc
 - since vxy must be <= 3, v and y are
 - both contain one type of symbol: both a's, both b's, or both c's
 - both contain one type of symbol: v is a's and y is b's, or v is b's and y is c's
 - v or y contain more than one type of symbol: v or y straddles a boundary so v
 is a's and y is b's and c's, v is a's and b's and y is b's, v is b's and y is b's and c's,
 or v is b's and c's and y is c's
 - either v or y is ϵ and the other is not (won't work because all three need to increase in number, but this will allow only two, at most, to do so)
 - condition 2 ensures that either v or y is not ϵ consider 2 cases
 - when both v and y contain only one type of symbol, v does not contain both a's and b's or b's and c's, and same for y
 - -the string uv^2xy^2z cannot contain an equal number of a's, b's, and c's
 - e.g., v=a, y=b: aaaabbbbccc
 - when either v or y contain more than one type of symbol
 - -the string uv^2xy^2z can contain an equal number of a's, b's, and c's, but in the wrong order (e.g., v=ab, y=b: aaababbbbccc)

- pumping lemma for CFLs
 - example: show $C = \{a^i b^j c^k \mid 0 \le i \le j \le k\}$ is not context-free
 - assume C is context-free with pumping length p
 - select string a^pb^pc^p, but must pump down as well as pump up
 - s is a member of C and of length at least p
 - show that no matter how we divide s into uvxyz, one of the three conditions of the lemma is violated
 - condition 2 ensures that either v or y is not ϵ consider 2 cases
 - when both v and y contain only one type of symbol, v does not contain both a's and b's or b's and c's, and same for y
 - · one of the symbols does not appear in v or y
 - three subcases
 - a's do not appear: try pumping down to $uv^0xy^0z = uxz$
 - contains same number of a's as s, but fewer b's or fewer c's
 - b's do not appear: try pumping down to $uv^0xy^0z = uxz$
 - either a's or c's must appear in v or y because both can't be ϵ
 - if a's appear, uv^2xy^2z has more a's than b's
 - if c's appear, uv⁰xy⁰z has more b's than c's
 - c's do not appear
 - uv^2xy^2z contains more a's or more b's than c's
 - when either v or y contain more than one type of symbol
 - uv^2xy^2z will not contain symbols in the correct order
 - · one of these cases must occur, but all result in a contradiction
 - therefore, C is not a CFL

- pumping lemma for CFLs
 - example: use the pumping lemma to show D = $\{ww | w \in \{0,1\}^*\}$ is not context-free
 - assume D is context-free with pumping length p
 - select string Op10p1
 - ·s is a member of D and of length at least p
 - · but this string can be pumped



- pumping lemma for CFLs
 - example: use the pumping lemma to show D = $\{ww \mid w \in \{0,1\}^*\}$ is not context-free
 - assume D is context-free with pumping length p
 - select string Op1pOp1p
 - · s is a member of D and of length at least p
 - by condition 3, |vxy| ≤ p
 - show that no matter how we divide s into uvxyz, one of the three conditions of the lemma is violated
 - •vxy must straddle the midpoint of s; otherwise, pumping s in the first half of the string up to uv^2xy^2z moves a 1 into the first position of the second half
 - if vxy occurs in the second half of s, uv²xy²z moves a 0 into the last position of the first half, so no longer in form ww
 - if vxy straddles the midpoint, pumping down to uv^0xy^0z results in $O^p1^iO^j1^p$ where i and j can't both be p, hence not ww
 - all cases result in contradiction
 - therefore, D is not a CFL

- properties of CFLs
 - the class of CFLs is closed under
 - union
 - if A and B are context-free, so is $A \cup B$
 - concatenation
 - if A and B are context-free, so is AB
 - star
 - if A is context-free, so is A*
 - reverse
 - if A is context-free, so is AR

- properties of CFLs
 - · the class of CFLs is not closed under
 - intersection
 - consider $A = \{a^nb^nc^m\}$ and $B = \{a^mb^nc^n\}$
 - complementation
 - note that $A \cap B = \overline{\overline{A} \cup \overline{B}}$
 - difference
 - note that $\overline{A} = \Sigma^* A$

- properties of CFLs
 - intersection with a regular language
 - if A is context-free and B is regular, then A \cap B is context-free
 - difference from a regular language
 - if A is context-free and B is regular, then A B is context-free
 - note that $A B = A \cap \overline{B}$

- properties of CFLs
 - use the previous properties to prove a language is context-free
 - use the previous properties to prove a language is noncontext-free if it does not pass the closure rules
 - example: prove A is not a CFL where
 A = {w ∈ {a,b,c}* | w has an equal number of a's, b's, and c's}

```
consider L = a*b*c* (regular)
```

if A is a CFL, $A \cap L = a^ib^ic^i$ should be a CFL, but it's not

Deterministic Context-Free Languages

- recall that DFAs and NFAs are equivalent in power
- but nondeterministic PDAs are more powerful than deterministic PDAs
 - certain CFLs cannot be recognized by DPDAs
 - languages that can be recognized by DPDAs are called deterministic context-free languages (DCFLs)
 - useful in parsers for programming languages