
10/15/2024

1

Chapter 2
Context-Free Languages

Overview

2

• so far, we have looked at FA’s and regular expressions

• different, though equivalent

• some simple languages, such as 0n1n cannot be
described in these ways

Overview

3

• we now turn to context-free grammars (CFGs)

• more powerful way to describe languages

• can describe recursive structures of languages

• first used to study human languages

• relationships between parts of language (noun, verb,
etc.) lead to recursion

• e.g., noun phrases may appear inside verb phrases
and vice versa

• context-free grammars help organize and
understand such relationships

Overview

4

• another important application is in the specification of
programming languages

• a grammar for a programming language can help people
learn about the language syntax

• compiler and interpreter designers often start with
the grammar for a programming language

• parser: extracts meaning from code before
execution

• some tools can automatically generate a parser from
the grammar

Overview

5

• the collection of languages associated with context-free
grammars are context-free languages

• include all regular languages

• plus other languages

• we will study

• context-free grammars

• formal definition of context-free grammars

• properties of context-free languages

• pushdown automata: machines recognizing context-free
languages

• help us realize the power of context-free grammars

Context-Free Grammars

6

• example: CFG G1

A → 0A1
A → B
B → #

• a grammar consists of
• substitution rules, or productions

• each rule appears as a line in the grammar
• lhs: variable or nonterminal
• derivation symbol
• rhs: variables or terminals

• common notation
• nonterminals: capital letters
• terminals: lowercase letters, numbers, symbols

1 2

3 4

5 6

10/15/2024

2

Context-Free Grammars

7

• example: CFG G1

A → 0A1

A → B

B → #

• start variable: lhs of first production

• G1 has

• two variables: A, B

• start variable: A

• terminals: 0, 1, #

Context-Free Grammars

8

• process for generating strings in the language using the
grammar

• write down the start variable

• lhs of top rule, unless otherwise stated

• find a variable that is written down and a rule that
starts with that variable

• replace the variable with rhs of that rule

• repeat replacements until no variable remains

Context-Free Grammars

9

• example: CFG G1

A → 0A1

A → B

B → #

• we can generate string 000#111 with the following
derivation (or sequence of substitutions)

A → 0A1

 → 00A11

 → 000A111

 → 000B111

 → 000#111

Context-Free Grammars

10

• example: CFG G1

A → 0A1

A → B

B → #

• derivation can also be shown with a parse tree

Context-Free Grammars

11

• all strings generated from derivations constitute the
language of the grammar, L(G)

• L(G1) = {0n#1n | n ≥ 0}

• any language that can be generated by a CFG is called a
context-free language (CFL)

• for convenience, we can replace

 A → 0A1

 A → B

with

 A → 0A1 | B

Context-Free Grammars

12

• example: CFG G2 describes part of the English language

• 10 variables (nonterminals)

• 27 terminals (26 alphabet letters plus space)

• 18 rules

7 8

9 10

11 12

10/15/2024

3

Context-Free Grammars

13

• strings in L(G2)

a boy sees

the boy sees a flower

a girl with a flower likes the boy

• example derivation of 'a boy sees'

Context-Free Grammars

14

• formal definition of CFG

• in grammar G1

• V = {A, B}

• Σ = {0, 1, #}

• S = A

• R is the collection of rules in the grammar

Context-Free Grammars

15

• formal definition of CFG notes

• for u, v, w (strings of variables and terminals)

• A → w is a rule

• uAv yields uwv, or uAv ⇒ uwv

• u derives v, or u ⇒* v if u = v or if u1, u2, … , uk exists
for k ≥ 0 and u ⇒ u1 ⇒ u2 ⇒ … ⇒ uk ⇒ v

• the language of the grammar is {w ∈ Σ* | S ⇒* w}

Context-Free Grammars

16

• example: grammar G2

• Σ = {a, b, c, … ,z, " "}

• " " represents blank space

• can specify grammar by just writing rules

• identify variables as appearing on lhs

• all other symbols are terminals

• start variable is lhs of first rule

Context-Free Grammars

17

• example: grammar G3

• G3 = ({S}, {a, b}, R, S)

• rules:

S → aSb | SS | ε

• note ε

• example strings generated:

 abab, aaabbb, aababb, ε

• can think of a and b as '(' and ')', respectively

• strings generated are properly nested parentheses

Context-Free Grammars

18

• example: grammar G4 = (V, Σ, R, <EXPR>)

• V = {<EXPR>, <TERM>, <FACTOR>}

• Σ = {a, +, x, (,)}

• R (rules) are

<EXPR> → <EXPR> + <TERM> | <TERM>

<TERM> → <TERM> x <FACTOR> | <FACTOR>

<FACTOR> → <EXPR> | a

• describes part of a programming language for
arithmetic expressions

13 14

15 16

17 18

10/15/2024

4

Context-Free Grammars

19

• example: grammar G4 = (V, Σ, R, <EXPR>)

• parse trees for strings a+axa and (a+a)xa

• note precedence imposed

Context-Free Grammars

20

• designing CFGs

• requires some creativity, as with FAs

• helpful techniques

• first, many CFLs are the union of simpler CFLs

• construct individual grammars for pieces

• solving several simpler problems easier than solving
one complicated problem

• merge by combining rules and adding new rule
where Si are the start variables for the simpler
grammars

 S → S1 | S2 |…| Sk

Context-Free Grammars

21

• designing CFGs (cont.)

• many CFLs are the union of simpler CFLs

example: create a grammar for the language

 {0n1n | n ≥ 0} ∪ {1n0n | n ≥ 0}

1. construct grammar for {0n1n | n ≥ 0}
 S1 → 0S11 | ε

2. construct grammar for {1n0n | n ≥ 0}
 S2 → 1S20 | ε

3. add rule S → S1 | S2

 S → S1 | S2

 S1 → 0S11 | ε

 S2 → 1S20 | ε

Context-Free Grammars

22

• designing CFGs (cont.)

• helpful techniques

• second, constructing a CFG for a regular language is
easy if you can construct a DFA first

• convert DFA into CFG

•make a variable R for each state qi of the DFA

•add rule Ri → aRj if δ(qi, a) = qj is transition in DFA

•add rule Ri → ε if qi is an accept state of the DFA

•R0 is the start variable where q0 is the start state

Context-Free Grammars

23

• designing CFGs (cont.)

• helpful techniques

• third, certain CFLs contain strings with two substrings
that are linked in such a way that a FA would need to
remember

• e.g., {0n1n | n ≥ 0}

• construct a CFG to handle this situation by using a
rule of the form R → uRv where the numbers of u’s
and v’s are the same

Context-Free Grammars

24

• designing CFGs (cont.)

• helpful techniques

• finally, in more complex languages, the strings may
contain certain structures that appear recursively as
part of other (or the same) structures

• e.g., G4 that generates arithmetic expressions

•any time an a appears, an entire parenthesized
expression might appear recursively instead

•place the variable symbol generating the structure
in the location of the rules corresponding to where
that structure may recursively appear

19 20

21 22

23 24

10/15/2024

5

Context-Free Grammars

25

• ambiguity

• sometimes a grammar can generate a string in several
different ways

• must be different parse trees

• undesirable in certain applications, such as
programming languages, since a program should have
only one interpretation

• string is derived ambiguously

• if grammar generates strings ambiguously, grammar
is ambiguous

Context-Free Grammars

26

• ambiguity (cont.)

• example: grammar G5
 <EXPR> → <EXPR> + <EXPR> | <EXPR> x <EXPR> | (<EXPR>) | a

• generates string a+axa ambiguously

• note precedence

Context-Free Grammars

27

• ambiguity (cont.)

• G4 generates the same language as G5, but every string
has a unique parse tree

• G4 is unambiguous whereas G5 is ambiguous

• G2 is ambiguous because the following sentence has two
different derivations resulting in different parse trees

 the girl touches the boy with the flower

Context-Free Grammars

28

• ambiguity (cont.)

• formally, a grammar is ambiguous if there is more than
one parse tree for deriving the same string

• not just more than one derivation

• derivations may differ only in order of replacements,
not structure

• we can focus on structure by replacing variables in a
fixed order

• leftmost derivation: replace the leftmost variable
in each step of the derivation

Context-Free Grammars

29

• ambiguity (cont.)

• sometimes we can find an unambiguous grammar that
generates the same language as an ambiguous one

• some CFLs can only be generated by ambiguous
grammars

Context-Free Grammars

30

• Chomsky normal form

• convenient to have CFGs in simplified form

25 26

27 28

29 30

10/15/2024

6

Context-Free Grammars

31

• Chomsky normal form

• any context-free language is generated by a context-
free grammar in Chomsky normal form

• proof idea

• conversion has several stages where rules that
violate the conditions are replaced with equivalent
ones that fulfill the requirements

•add a new start variable

•eliminate all ε–rules of the form A → ε

•eliminate all unit rules A → B

•convert remaining rules into proper form

•verify that new grammar generates same language

Context-Free Grammars

32

• Chomsky normal form (cont.)

• any context-free language is generated by a context-
free grammar in Chomsky normal form

• proof

• add a new start variable, S0 and the rule S0 → S
where S was the original start state

•guarantees that the start variable does not appear
on the rhs of a rule

Context-Free Grammars

33

• Chomsky normal form (cont.)
• any context-free language is generated by a context-
free grammar in Chomsky normal form
• proof

• eliminate all ε–rules of the form A → ε (where A is
not the start variable)
•wherever A appears on the rhs of a rule, add a new
rule with that occurrence deleted

• if R → uAv is a rule, add rule R → uv
•add rule for each occurrence of A, so R → uAvAw
results in adding R → uvAw, R → uAvw, and R → uvw

• if we had R → A, add R → ε unless we already
removed that rule

•repeat until all ε–rules removed not using start var

Context-Free Grammars

34

• Chomsky normal form (cont.)

• any context-free language is generated by a context-
free grammar in Chomsky normal form

• proof

• remove unit rules A → B

•when a rule B → u appears, add rule A → u unless
this unit rule was previously removed

•repeat until all unit rules removed

Context-Free Grammars

35

• Chomsky normal form (cont.)

• any context-free language is generated by a context-
free grammar in Chomsky normal form

• proof

• convert all remaining rules into proper form

•replace rule A → u1u2…uk where k ≥ 3 and each ui is a
variable or terminal symbol with the rules
A → u1A1, A1 → u2A2, A2 → u3A3, … Ak-2 → uk-1uk

•Ai’s are new variables

•replace any terminal ui in the preceding rule(s) with
new variable Ui and add rule Ui → ui

Context-Free Grammars

36

• example: convert the CFG G6 into Chomsky normal form

1. add new start state (old on left; new on right)

2. remove ε-rules: B → ε on left, A → ε on right

31 32

33 34

35 36

10/15/2024

7

Context-Free Grammars

37

• example: convert the CFG G6 into Chomsky normal form

3a. remove unit rules: S → S on left, and S0 → S on right

3b. remove unit rules: A → B on left, and A → S on right

Context-Free Grammars

38

• example: convert the CFG G6 into Chomsky normal form

4. convert remaining rules into proper form by adding
 variables and rules; final grammar is equivalent to G6;
 final grammar simplified

Pushdown Automata

39

• pushdown automata (PDA)

• like NFA, but includes a stack

• provides additional memory

• therefore allows PDA to recognize some nonregular
languages

• equivalent to CFGs

• now we have two options for proving a language is
context-free by providing either

• CFG generating the language

• PDA recognizing the language

• some languages are more easily described by
generators, while others by recognizers

Pushdown Automata

40

• schematic of a finite automaton

• control represents states and transition function

• tape contains the input string

• arrow is the input head, which points at the next input
symbol to be read

Pushdown Automata

41

• schematic of a PDA

• add a stack to preceding schematic

Pushdown Automata

42

• PDA can write symbols on the stack and read them back
later

• writing a symbol pushes other symbols on the stack

• reading a symbol pops it from the stack

• all access to the stack takes place at the top (LIFO)

• analogy: cafeteria plate dispenser

37 38

39 40

41 42

10/15/2024

8

Pushdown Automata

43

• stacks are useful in PDAs

• hold an unlimited amount of information

• FAs typically have very little memory

• example: the language {0n1n | n ≥ 0} cannot be recognized
by a FA, but can by a PDA

• PDA uses its stack to store the number of 0s it has
seen (can store numbers of unlimited size)

• push 0s on the stack as they are read

• pop off a 0 for each 1 that is read

• if reading is finished exactly when the stack
becomes empty, accept

• if empty while 1s remain, or if 1s are finished and 0s
remain on stack, or 0s in input after the 1s, reject

Pushdown Automata

44

• nondeterministic PDAs

• not equivalent in power to deterministic PDAs

• recognize certain languages no deterministic PDA can

• DFAs and NFAs recognize the same class of languages

• so, PDAs are different

• our focus is on nondeterministic PDAs since they are
equivalent in power to CFGs

Pushdown Automata

45

• PDA formal definition

• similar to FA, except for the stack

• stack: device containing symbols from an alphabet

• may be different from symbols in input

• input alphabet: Σ

• stack alphabet: Γ

Pushdown Automata

46

• PDA formal definition (cont.)

• transition function

• Σε = Σ ∪ {ε}

• Γε = Γ ∪ {ε}

• domain: Q x Σε x Γε

• current state, next input symbol read, and top symbol
of the stack determine the next transition

• either symbol may be ε, causing the machine to move
without reading a symbol from the input or from the
stack

Pushdown Automata

47

• PDA formal definition (cont.)

• transition function

• what can the automaton do in transitions?

• enter a new state and write a symbol on the stack

• δ can return a member of Q and a member of Γε

• domain: Q x Σε x Γε

• due to nondeterminism, several legal next moves may
be possible

• a set of members from Q x Γε may be returned

• i.e., a member of P(Q x Γε)

• therefore, δ: Q x Σε x Γε → P(Q x Γε)

Pushdown Automata

48

• PDA formal definition (cont.)

43 44

45 46

47 48

10/15/2024

9

Pushdown Automata

49

• PDA formal definition (cont.)
• a PDA M = (Q, Σ, Γ, δ, q0, F) computes as follows

• accepts input w if it can be written as
 w = w1w2…wm where each wi ∈ Σε
and sequences of states
 r0,r1, … ,rm ∈ Q
and strings
 s0,s1, … ,sm ∈ Γ (sequence of stack contents)
exist that satisfy the following three conditions
• r0 = q0 and s0 = ε

• i.e., M starts at the start state with an empty stack
• for i = 0,…,m-1, (ri+1, b) ∈ δ(ri, wi+1, a) where si = at and

si+1 = bt for some a,b ∈ Γε and t ∈ Γ*
• i.e., M moves properly according to state, stack, and
next input symbol

• rm ∈ F
• i.e., an accept state occurs at the end of input

Pushdown Automata

50

• example: PDA that recognizes {0n1n | n ≥ 0}

• let M1 = (Q, Σ, Γ, δ, q1, F) where

• Q = {q1, q2, q3, q4}

• Σ = {0, 1}

• Γ = {0, $}

• F = {q1, q4}

• δ is given by the table where blank entries are Ø

Pushdown Automata

51

• example: PDA that recognizes {0n1n | n ≥ 0}

• we can use a state diagram to describe the PDA

• similar to state diagrams for FA, but modified for
stack updates

• a,b → c means when a is read from input, it may
replace b on the top of the stack with c

• a,b, or c may be ε

• if a = ε, no symbol read from input

• if b = ε, no symbol popped from stack

• if c = ε, no symbol written on stack

Pushdown Automata

52

• example: PDA that recognizes {0n1n | n ≥ 0} (cont.)

• state diagram

Pushdown Automata

53

• PDA formal definition contains no test for empty stack

• instead, initially place a $ on the stack

• if $ is seen again, the stack is empty

• PDAs cannot test explicitly for reaching end of input
string

• accept state takes effect only when machine is at end
of input

• thus, we assume that PDAs can check for end of input

Pushdown Automata

54

• example: PDA that recognizes
 {aibjck| i,j,k ≥ 0 and i=j or i=k}

• first read and push a’s

• now it can match them with the b’s or c’s

• but don’t know which to match

• using nondeterminism, PDA can guess whether to
match b’s or c’s

• use two branches: one for each possible guess

• if either matches, that branch accepts

49 50

51 52

53 54

10/15/2024

10

Pushdown Automata

55

• example: PDA that recognizes
 {aibjck| i,j,k ≥ 0 and i=j or i=k} (cont.)

• state diagram

Pushdown Automata

56

• example: PDA M3 recognizes
 {wwR | w ∈ {0, 1}*}

• wR means w written backwards

• begin by pushing read symbols on stack

• at each point, nondeterministically guess that the middle
of the string has been reached

• change into popping off the stack for each symbol

• check to see if popped symbol is the same as read
symbol

• if all are the same, and stack empties when input is
finished, accept

• otherwise, reject

Pushdown Automata

57

• example: PDA M3 recognizes
 {wwR | w ∈ {0, 1}*}

• state diagram

Pushdown Automata

58

• context-free grammars and pushdown automata are
equivalent in power

• both capable of describing class of context-free
languages

• can convert any CFG into a PDA and vice versa

• recall that a CFL is any language that can be described
with a CFG

Pushdown Automata

59

• theorem: a language is context-free if and only if some
PDA recognizes it

• for if and only if, we have to prove in both directions

Pushdown Automata

60

• lemma: if a language is context-free, a PDA recognizes it

• proof idea

• let A be a CFL

• therefore, a CFG G generates it

• convert G into equivalent PDA P

• P will accept input w if G generates it by determining
if there is a derivation for w

•derivation: a sequence of substitutions made as a
grammar generates a string

•each step yields an intermediate string of variables
and terminals

•P determines whether some series of substitutions
from G can lead from the start variable to w

55 56

57 58

59 60

10/15/2024

11

Pushdown Automata

61

• lemma: if a language is context-free, a PDA recognizes it

• proof idea (cont.)

• a difficulty in testing if a derivation for w exists is
figuring out which substitutions to make

• PDA’s nondeterminism allows it to guess the sequence
of correct substitutions

• for each step, one of the rules for a particular
variable is selected nondeterministically for the
substitution

Pushdown Automata

62

• lemma: if a language is context-free, a PDA recognizes it

• proof idea (cont.)

• P begins by writing the start variable on its stack

• P then goes through intermediate strings, making
substitutions

• if it arrives at a string with only terminal symbols, it
has derived a string in the language

• P accepts this string if it is identical to the one it
received as input

Pushdown Automata

63

• lemma: if a language is context-free, a PDA recognizes it
• proof idea (cont.)

• how does the PDA store the intermediate strings as it
goes from one state to another?
• could just store it on the stack
• won’t work because P needs to find variables to

replace and make substitutions
• PDA can only access the top symbol on the stack,

which may just be a terminal
• instead, keep only part of the string on the stack

• the symbols starting with the first variable in the
intermediate string

• any terminals before the first variable are matched
immediately with symbols in the input string

Pushdown Automata

64

• lemma: if a language is context-free, a PDA recognizes it

• proof idea (cont.)

• P representing the intermediate string 01A1A0

Pushdown Automata

65

• lemma: if a language is context-free, a PDA recognizes it

• proof idea (cont.)

• informal description of processing in P

• push marker symbol $ and start variable on stack

• repeat the following forever

• if the top of the stack is a variable symbol A,
nondeterministically select one of the rules for A
and substitute with the rhs of the rule

• if the top of the stack is a terminal a, read the
next symbol from the input and compare it to a; if
they match, repeat; otherwise, reject on this
branch of nondeterminism

• if the top of the stack is $, enter accept state

Pushdown Automata

66

• lemma: if a language is context-free, a PDA recognizes it

• proof

• let P = (Q, Σ, Γ, δ, qstart, F)

• for clarity, use shorthand notation for δ

• provides a way to write an entire string on the stack
in one step

• simulate by adding states to write the string one
symbol at a time

• let q and r be states of the PDA

• let a ∈ Σε and s ∈ Γε

•go from q to r when a is read and s is popped

•push string u = u1…ul on stack at the same time

61 62

63 64

65 66

10/15/2024

12

Pushdown Automata

67

• lemma: if a language is context-free, a PDA recognizes it

• proof (cont.)

• implement by adding new states q1,…ql-1 and setting
the transition function as follows

•δ(q, a, s) to contain (q1, ul)

•δ(q1, ε, ε) = {(q2, ul-1)}

•δ(q2, ε, ε) = {(q3, ul-2)} …

•δ(ql-1, ε, ε) = {(r, u1)}

• (r, u) ∈ δ(q, a, s) means when q is the state of the
automaton, a is the next input symbol and s is the
symbol on top of the stack

• PDA may read a and pop s, then push u on the stack
and go to state r

Pushdown Automata

68

• lemma: if a language is context-free, a PDA recognizes it

• proof (cont.)

• implementing shorthand (r, xyz) ∈ δ(q, a, s)

Pushdown Automata

69

• lemma: if a language is context-free, a PDA recognizes it

• proof (cont.)

• P = (Q, Σ, Γ, δ, qstart, F) where

• Q = {qstart, qloop, qaccept} ∪ E

•E is the states needed for implementing shorthand

• qstart is the start state

• F = {qaccept}

Pushdown Automata

70

• lemma: if a language is context-free, a PDA recognizes it
• proof (cont.)

• P = (Q, Σ, Γ, δ, qstart, F) where
• δ is defined as follows

•δ(qstart, ε, ε) = {(qloop, S$)}
• initialize stack to contain $ and S, implementing
step 1 in the informal description

•δ(qloop, ε, A) = {(qloop, w) | where A → w is a rule in R}
• the top of the stack contains a variable

•δ(qloop, a, a) = {(qloop, ε)}
• the top of the stack contains a terminal

•δ(qloop, ε, $) = {(qaccept, ε)}
• empty stack marker $ is on the top of the stack

Pushdown Automata

71

• lemma: if a language is context-free, a PDA recognizes it

• proof (cont.)

• state diagram of P

Pushdown Automata

72

• lemma: if a language is context-free, a PDA recognizes it

• example: use the procedure to construct a PDA P from
the following CFG G

 S → aTb | b

 T → Ta | ε

67 68

69 70

71 72

10/15/2024

13

Pushdown Automata

73

• lemma: if a PDA recognizes a language, it is context-free

• proof idea

• harder

• we have PDA P and want to make CFG G that generates
all the strings P accepts

• or, G should generate a string if it causes the PDA to
go from its start state to an accept state

Pushdown Automata

74

• we have shown that PDAs recognize the class of CFLs

• we can now establish a relationship between the regular
languages and the CFLs

• since every regular language is recognized by a FA and
every FA is automatically a PDA that ignores its stack,
every regular language must also be a CFL

Non-Context-Free Languages

75

• we want to able to prove that some languages are non-
context-free

• use pumping lemma for CFLs

• every CFL has a pumping length such that all longer
strings in the language can be pumped

• string divided into 5 parts

• 2nd and 4th parts may be repeated together any
number of times with the resulting string in the
language

• pumping lemma for CFLs

• if A is a context-free language, there is a number p
(the pumping length) where if s is any string in A of
length at least p, then s may be divided into five pieces,
s = uvxyz, satisfying the following conditions

• for each i ≥ 0, uvixyiz ∈ A

• |vy| > 0

• |vxy| ≤ p

• condition 2: either v or y is not ε

• otherwise, theorem trivially true

• condition 3: max length useful in proving certain
languages are not context-free

Non-Context-Free Languages

76

• pumping lemma for CFLs

• proof idea

• let A be a CFL and G be a CFG that generates it

• show that any sufficiently long string s in A can be
pumped and remain in A

• let s be a very long string in A

• s is derivable from G and therefore has a parse tree

• parse tree is very tall because s is very long

• parse tree contains some long path from the start
variable at the root of the tree to one of the
terminal symbols at a leaf

• on this path, some R must repeat due to the
pigeonhole principle

Non-Context-Free Languages

77

• pumping lemma for CFLs

• proof idea

• this repetition allows us to replace the subtree under
the second R with the subtree under the first R

• therefore, we can cut s into 5 pieces uvxyz and repeat
the 2nd and 4th pieces to obtain a string in the language

Non-Context-Free Languages

78

73 74

75 76

77 78

10/15/2024

14

• pumping lemma for CFLs
• example: use the pumping lemma to show B = {anbncn | n ≥ 0} is not

context-free
• assume B is context-free with pumping length p
• select string apbpcp

• s is a member of B and of length at least p
• show that no matter how we divide s into uvxyz, one of the

three conditions of the lemma is violated
• condition 2 ensures that either v or y is not ε – consider 2

cases
• when both v and y contain only one type of symbol, v does
not contain both a’s and b’s or b’s and c’s, and same for y
• the string uv2xy2z cannot contain an equal number of a’s,

b’s, and c’s
• when either v or y contain more than one type of symbol
• the string uv2xy2z can contain an equal number of a’s, b’s,

and c’s, but in the wrong order
• one of these cases must occur, but both result in a

contradiction
• therefore, B is not a CFL

Non-Context-Free Languages

79

• pumping lemma for CFLs

• example: use the pumping lemma to show B = {anbncn | n ≥ 0} is not context-free

• example strings to help explain proof

• select string apbpcp if p = 3, string is aaabbbccc

• since vxy must be <= 3, v and y are

• both contain one type of symbol: both a’s, both b’s, or both c’s

• both contain one type of symbol: v is a’s and y is b’s, or v is b’s and y is c’s

• v or y contain more than one type of symbol: v or y straddles a boundary so v
is a’s and y is b’s and c’s, v is a’s and b’s and y is b’s, v is b’s and y is b’s and c’s,
or v is b’s and c’s and y is c’s

• either v or y is ε and the other is not (won’t work because all three need to
increase in number, but this will allow only two, at most, to do so)

• condition 2 ensures that either v or y is not ε – consider 2 cases

• when both v and y contain only one type of symbol, v does not contain both a’s
and b’s or b’s and c’s, and same for y

−the string uv2xy2z cannot contain an equal number of a’s, b’s, and c’s

• e.g., v=a, y=b: aaaabbbbccc

• when either v or y contain more than one type of symbol

−the string uv2xy2z can contain an equal number of a’s, b’s, and c’s, but in the
wrong order (e.g., v=ab, y=b: aaababbbbccc)

Non-Context-Free Languages

80

• pumping lemma for CFLs
• example: show C = {aibjck | 0 ≤ i ≤ j ≤ k} is not context-free

• assume C is context-free with pumping length p
• select string apbpcp, but must pump down as well as pump up

• s is a member of C and of length at least p
• show that no matter how we divide s into uvxyz, one of the three conditions of the

lemma is violated
• condition 2 ensures that either v or y is not ε – consider 2 cases

• when both v and y contain only one type of symbol, v does not contain both a’s
and b’s or b’s and c’s, and same for y
• one of the symbols does not appear in v or y
• three subcases

• a’s do not appear: try pumping down to uv0xy0z = uxz
• contains same number of a’s as s, but fewer b’s or fewer c’s

• b’s do not appear: try pumping down to uv0xy0z = uxz
• either a’s or c’s must appear in v or y because both can’t be ε
• if a’s appear, uv2xy2z has more a’s than b’s
• if c’s appear, uv0xy0z has more b’s than c’s

• c’s do not appear
• uv2xy2z contains more a’s or more b’s than c’s

• when either v or y contain more than one type of symbol
• uv2xy2z will not contain symbols in the correct order

• one of these cases must occur, but all result in a contradiction
• therefore, C is not a CFL

Non-Context-Free Languages

81

• pumping lemma for CFLs

• example: use the pumping lemma to show D = {ww| w ∈
{0,1}*} is not context-free

• assume D is context-free with pumping length p

• select string 0p10p1

• s is a member of D and of length at least p

• but this string can be pumped

Non-Context-Free Languages

82

• pumping lemma for CFLs
• example: use the pumping lemma to show D = {ww| w ∈ {0,1}*} is not

context-free
• assume D is context-free with pumping length p
• select string 0p1p0p1p

• s is a member of D and of length at least p
• by condition 3, |vxy| ≤ p
• show that no matter how we divide s into uvxyz, one of the

three conditions of the lemma is violated
• vxy must straddle the midpoint of s; otherwise, pumping s in
the first half of the string up to uv2xy2z moves a 1 into the
first position of the second half

• if vxy occurs in the second half of s, uv2xy2z moves a 0 into
the last position of the first half, so no longer in form ww

• if vxy straddles the midpoint, pumping down to uv0xy0z
results in 0p1i0j1p where i and j can’t both be p, hence not ww

• all cases result in contradiction
• therefore, D is not a CFL

Non-Context-Free Languages

83

Non-Context-Free Languages

84

• properties of CFLs

• the class of CFLs is closed under

• union

• if A and B are context-free, so is A ∪ B

• concatenation

• if A and B are context-free, so is AB

• star

• if A is context-free, so is A*

• reverse

• if A is context-free, so is AR

79 80

81 82

83 84

10/15/2024

15

Non-Context-Free Languages

85

• properties of CFLs

• the class of CFLs is not closed under

• intersection

• consider A = {anbncm} and B = {ambncn}

• complementation

• note that A ∩ B = A ∪ B

• difference

• note that A = Σ* - A

Non-Context-Free Languages

86

• properties of CFLs

• intersection with a regular language

• if A is context-free and B is regular, then A ∩ B is
context-free

• difference from a regular language

• if A is context-free and B is regular, then A – B is
context-free

• note that A – B = A ∩ B

Non-Context-Free Languages

87

• properties of CFLs

• use the previous properties to prove a language is
context-free

• use the previous properties to prove a language is non-
context-free if it does not pass the closure rules

• example: prove A is not a CFL where

 A = {w ∈ {a,b,c}* | w has an equal number of
 a’s, b’s, and c’s}

consider L = a*b*c* (regular)

if A is a CFL, A ∩ L = aibici should be a CFL, but it’s not

Deterministic Context-Free Languages

88

• recall that DFAs and NFAs are equivalent in power

• but nondeterministic PDAs are more powerful than
deterministic PDAs

• certain CFLs cannot be recognized by DPDAs

• languages that can be recognized by DPDAs are called
deterministic context-free languages (DCFLs)

• useful in parsers for programming languages

85 86

87 88

	Slide 1: Chapter 2 Context-Free Languages
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88

