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Chapter 2
Context-Free Languages

Overview
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• so far, we have looked at FA’s and regular expressions

• different, though equivalent

• some simple languages, such as 0n1n cannot be 
described in these ways

Overview

3

• we now turn to context-free grammars (CFGs)

• more powerful way to describe languages

• can describe recursive structures of languages

• first used to study human languages

• relationships between parts of language (noun, verb, 
etc.) lead to recursion

• e.g., noun phrases may appear inside verb phrases 
and vice versa

• context-free grammars help organize and 
understand such relationships

Overview
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• another important application is in the specification of 
programming languages

• a grammar for a programming language can help people 
learn about the language syntax

• compiler and interpreter designers often start with 
the grammar for a programming language

• parser: extracts meaning from code before 
execution

• some tools can automatically generate a parser from 
the grammar

Overview

5

• the collection of languages associated with context-free 
grammars are context-free languages

• include all regular languages

• plus other languages

• we will study 

• context-free grammars

• formal definition of context-free grammars

• properties of context-free languages

• pushdown automata: machines recognizing context-free 
languages

• help us realize the power of context-free grammars

Context-Free Grammars

6

• example: CFG G1

A → 0A1
A → B
B → #

• a grammar consists of 
• substitution rules, or productions

• each rule appears as a line in the grammar
• lhs: variable or nonterminal
• derivation symbol
• rhs: variables or terminals

• common notation
• nonterminals: capital letters
• terminals: lowercase letters, numbers, symbols
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Context-Free Grammars
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• example: CFG G1

A → 0A1

A → B

B → #

• start variable: lhs of first production

• G1 has

• two variables: A, B

• start variable: A

• terminals: 0, 1, #

Context-Free Grammars

8

• process for generating strings in the language using the 
grammar

• write down the start variable

• lhs of top rule, unless otherwise stated

• find a variable that is written down and a rule that 
starts with that variable

• replace the variable with rhs of that rule

• repeat replacements until no variable remains

Context-Free Grammars
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• example: CFG G1

A → 0A1

A → B

B → #

• we can generate string 000#111 with the following 
derivation (or sequence of substitutions)

A → 0A1

 → 00A11

 → 000A111

 → 000B111

 → 000#111

Context-Free Grammars
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• example: CFG G1

A → 0A1

A → B

B → #

• derivation can also be shown with a parse tree

Context-Free Grammars

11

• all strings generated from derivations constitute the 
language of the grammar, L(G) 

• L(G1) = {0n#1n | n ≥ 0}

• any language that can be generated by a CFG is called a 
context-free language (CFL)

• for convenience, we can replace 

   A → 0A1

   A → B

with

   A → 0A1 | B

Context-Free Grammars

12

• example: CFG G2 describes part of the English language

• 10 variables (nonterminals)

• 27 terminals (26 alphabet letters plus space)

• 18 rules
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Context-Free Grammars

13

• strings in L(G2)

a boy sees

the boy sees a flower

a girl with a flower likes the boy

• example derivation of 'a boy sees'

Context-Free Grammars

14

• formal definition of CFG

 

• in grammar G1

• V = {A, B}

• Σ = {0, 1, #}

• S = A

• R is the collection of rules in the grammar

Context-Free Grammars

15

• formal definition of CFG notes

• for u, v, w (strings of variables and terminals)

• A → w is a rule

• uAv yields uwv, or uAv ⇒ uwv

• u derives v, or u ⇒* v if u = v or if u1, u2, … , uk exists 
for k ≥ 0 and u ⇒ u1 ⇒ u2 ⇒ … ⇒ uk ⇒ v

• the language of the grammar is {w ∈ Σ* | S ⇒* w}

Context-Free Grammars

16

• example: grammar G2

• Σ = {a, b, c, … ,z, " "}

• " " represents blank space

• can specify grammar by just writing rules

• identify variables as appearing on lhs

• all other symbols are terminals

• start variable is lhs of first rule

Context-Free Grammars

17

• example: grammar G3

•  G3 = ({S}, {a, b}, R, S)

• rules:

S → aSb | SS | ε

• note ε

• example strings generated:

 abab, aaabbb, aababb, ε

• can think of a and b as '(' and ')', respectively

• strings generated are properly nested parentheses

Context-Free Grammars

18

• example: grammar G4 = (V, Σ, R, <EXPR>)

• V = {<EXPR>, <TERM>, <FACTOR>}

• Σ = {a, +, x, (, )}

• R (rules) are

<EXPR> → <EXPR> + <TERM> | <TERM>

<TERM> → <TERM> x <FACTOR> | <FACTOR>

<FACTOR> → <EXPR> | a

• describes part of a programming language for 
arithmetic expressions
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Context-Free Grammars

19

• example: grammar G4 = (V, Σ, R, <EXPR>)

• parse trees for strings a+axa and (a+a)xa

• note precedence imposed

Context-Free Grammars

20

• designing CFGs

• requires some creativity, as with FAs

• helpful techniques

• first, many CFLs are the union of simpler CFLs

• construct individual grammars for pieces

• solving several simpler problems easier than solving 
one complicated problem

• merge by combining rules and adding new rule 
where Si are the start variables for the simpler 
grammars

        S → S1 | S2 |…| Sk

Context-Free Grammars

21

• designing CFGs (cont.)

• many CFLs are the union of simpler CFLs 

example: create a grammar for the language

      {0n1n | n ≥ 0} ∪ {1n0n | n ≥ 0} 

1. construct grammar for {0n1n | n ≥ 0}
        S1 → 0S11 | ε

2. construct grammar for {1n0n | n ≥ 0}
        S2 → 1S20 | ε

3. add rule S → S1 | S2

        S → S1 | S2

             S1 → 0S11 | ε

             S2 → 1S20 | ε

Context-Free Grammars

22

• designing CFGs (cont.)

• helpful techniques

• second, constructing a CFG for a regular language is 
easy if you can construct a DFA first

• convert DFA into CFG

•make a variable R for each state qi of the DFA

•add rule Ri → aRj if δ(qi, a) = qj is transition in DFA

•add rule Ri → ε if qi is an accept state of the DFA

•R0 is the start variable where q0 is the start state

Context-Free Grammars

23

• designing CFGs (cont.)

• helpful techniques

• third, certain CFLs contain strings with two substrings 
that are linked in such a way that a FA would need to 
remember

• e.g., {0n1n | n ≥ 0} 

• construct a CFG to handle this situation by using a 
rule of the form R → uRv where the numbers of u’s 
and v’s are the same

Context-Free Grammars

24

• designing CFGs (cont.)

• helpful techniques

• finally, in more complex languages, the strings may 
contain certain structures that appear recursively as 
part of other (or the same) structures

• e.g., G4 that generates arithmetic expressions

•any time an a appears, an entire parenthesized 
expression might appear recursively instead

•place the variable symbol generating the structure 
in the location of the rules corresponding to where 
that structure may recursively appear
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Context-Free Grammars

25

• ambiguity

• sometimes a grammar can generate a string in several 
different ways

• must be different parse trees

• undesirable in certain applications, such as 
programming languages, since a program should have 
only one interpretation

• string is derived ambiguously

• if grammar generates strings ambiguously, grammar 
is ambiguous

Context-Free Grammars

26

• ambiguity (cont.)

• example: grammar G5 
  <EXPR> → <EXPR> + <EXPR> | <EXPR> x <EXPR> | (<EXPR>) | a

• generates string a+axa ambiguously

• note precedence

Context-Free Grammars

27

• ambiguity (cont.)

• G4 generates the same language as G5, but every string 
has a unique parse tree

• G4 is unambiguous whereas G5 is ambiguous

• G2 is ambiguous because the following sentence has two 
different derivations resulting in different parse trees

 the girl touches the boy with the flower

Context-Free Grammars

28

• ambiguity (cont.)

• formally, a grammar is ambiguous if there is more than 
one parse tree for deriving the same string

• not just more than one derivation

• derivations may differ only in order of replacements, 
not structure

• we can focus on structure by replacing variables in a 
fixed order

• leftmost derivation: replace the leftmost variable 
in each step of the derivation

 

Context-Free Grammars

29

• ambiguity (cont.)

• sometimes we can find an unambiguous grammar that 
generates the same language as an ambiguous one

• some CFLs can only be generated by ambiguous 
grammars

Context-Free Grammars

30

• Chomsky normal form

• convenient to have CFGs in simplified form
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Context-Free Grammars

31

• Chomsky normal form

• any context-free language is generated by a context-
free grammar in Chomsky normal form

• proof idea

• conversion has several stages where rules that 
violate the conditions are replaced with equivalent 
ones that fulfill the requirements

•add a new start variable

•eliminate all ε–rules of the form A → ε

•eliminate all unit rules A → B

•convert remaining rules into proper form

•verify that new grammar generates same language

Context-Free Grammars

32

• Chomsky normal form (cont.)

• any context-free language is generated by a context-
free grammar in Chomsky normal form

• proof

• add a new start variable, S0 and the rule S0 → S 
where S was the original start state

•guarantees that the start variable does not appear 
on the rhs of a rule

Context-Free Grammars

33

• Chomsky normal form (cont.)
• any context-free language is generated by a context-
free grammar in Chomsky normal form
• proof

• eliminate all ε–rules of the form A → ε (where A is 
not the start variable)
•wherever A appears on the rhs of a rule, add a new 
rule with that occurrence deleted

• if R → uAv is a rule, add rule R → uv
•add rule for each occurrence of A, so R → uAvAw 
results in adding R → uvAw, R → uAvw, and R → uvw 

• if we had R → A, add R → ε unless we already 
removed that rule

•repeat until all ε–rules removed not using start var

Context-Free Grammars

34

• Chomsky normal form (cont.)

• any context-free language is generated by a context-
free grammar in Chomsky normal form

• proof

• remove unit rules A → B 

•when a rule B → u appears, add rule A → u unless 
this unit rule was previously removed

•repeat until all unit rules removed

Context-Free Grammars

35

• Chomsky normal form (cont.)

• any context-free language is generated by a context-
free grammar in Chomsky normal form

• proof

• convert all remaining rules into proper form

•replace rule A → u1u2…uk where k ≥ 3 and each ui is a 
variable or terminal symbol with the rules
A → u1A1, A1 → u2A2, A2 → u3A3, … Ak-2 → uk-1uk

•Ai’s are new variables

•replace any terminal ui in the preceding rule(s) with 
new variable Ui and add rule Ui → ui

Context-Free Grammars

36

• example: convert the CFG G6 into Chomsky normal form

1. add new start state (old on left; new on right)

2. remove ε-rules: B → ε on left, A → ε on right

31 32
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Context-Free Grammars
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• example: convert the CFG G6 into Chomsky normal form

3a.  remove unit rules: S → S on left, and S0 → S on right

3b.  remove unit rules: A → B on left, and A → S on right

Context-Free Grammars

38

• example: convert the CFG G6 into Chomsky normal form

4.  convert remaining rules into proper form by adding
     variables and rules; final grammar is equivalent to G6; 
     final grammar simplified

Pushdown Automata

39

• pushdown automata (PDA)

• like NFA, but includes a stack

• provides additional memory

• therefore allows PDA to recognize some nonregular 
languages

• equivalent to CFGs

• now we have two options for proving a language is 
context-free by providing either

• CFG generating the language 

• PDA recognizing the language

• some languages are more easily described by 
generators, while others by recognizers

Pushdown Automata

40

• schematic of a finite automaton

• control represents states and transition function

• tape contains the input string

• arrow is the input head, which points at the next input 
symbol to be read

Pushdown Automata

41

• schematic of a PDA

• add a stack to preceding schematic

Pushdown Automata

42

• PDA can write symbols on the stack and read them back 
later

• writing a symbol pushes other symbols on the stack

• reading a symbol pops it from the stack

• all access to the stack takes place at the top (LIFO)

• analogy: cafeteria plate dispenser

37 38
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Pushdown Automata

43

• stacks are useful in PDAs

• hold an unlimited amount of information

• FAs typically have very little memory

• example: the language {0n1n | n ≥ 0} cannot be recognized 
by a FA, but can by a PDA

• PDA uses its stack to store the number of 0s it has 
seen (can store numbers of unlimited size)

• push 0s on the stack as they are read

• pop off a 0 for each 1 that is read

• if reading is finished exactly when the stack 
becomes empty, accept

• if empty while 1s remain, or if 1s are finished and 0s 
remain on stack, or 0s in input after the 1s, reject

Pushdown Automata

44

• nondeterministic PDAs

• not equivalent in power to deterministic PDAs

• recognize certain languages no deterministic PDA can

• DFAs and NFAs recognize the same class of languages

• so, PDAs are different

• our focus is on nondeterministic PDAs since they are 
equivalent in power to CFGs

Pushdown Automata

45

• PDA formal definition

• similar to FA, except for the stack

• stack: device containing symbols from an alphabet

• may be different from symbols in input

• input alphabet: Σ

• stack alphabet: Γ

Pushdown Automata

46

• PDA formal definition (cont.)

• transition function

• Σε = Σ ∪ {ε}

• Γε = Γ ∪ {ε}

• domain: Q x Σε x Γε

• current state, next input symbol read, and top symbol 
of the stack determine the next transition

• either symbol may be ε, causing the machine to move 
without reading a symbol from the input or from the 
stack

Pushdown Automata

47

• PDA formal definition (cont.)

• transition function

• what can the automaton do in transitions?

• enter a new state and write a symbol on the stack

• δ can return a member of Q and a member of Γε

• domain: Q x Σε x Γε

• due to nondeterminism, several legal next moves may 
be possible

• a set of members from Q x Γε may be returned

• i.e., a member of P(Q x Γε)

• therefore, δ: Q x Σε x Γε → P(Q x Γε)

Pushdown Automata

48

• PDA formal definition (cont.)

43 44
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Pushdown Automata
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• PDA formal definition (cont.)
• a PDA M = (Q, Σ, Γ, δ, q0, F) computes as follows

• accepts input w if it can be written as
  w = w1w2…wm      where each wi ∈ Σε 
and sequences of states
            r0,r1, … ,rm  ∈ Q 
and strings
            s0,s1, … ,sm  ∈ Γ     (sequence of stack contents)
exist that satisfy the following three conditions 
• r0 = q0 and s0 = ε

• i.e., M starts at the start state with an empty stack
• for i = 0,…,m-1, (ri+1, b) ∈ δ(ri, wi+1, a) where si = at and 

si+1 = bt for some a,b ∈ Γε and t ∈ Γ*
• i.e., M moves properly according to state, stack, and 
next input symbol

• rm  ∈ F
• i.e., an accept state occurs at the end of input

Pushdown Automata

50

• example: PDA that recognizes {0n1n | n ≥ 0}

• let M1 = (Q, Σ, Γ, δ, q1, F) where 

• Q = {q1, q2, q3, q4}

• Σ = {0, 1}

• Γ = {0, $}

• F = {q1, q4}

• δ is given by the table where blank entries are Ø

Pushdown Automata

51

• example: PDA that recognizes {0n1n | n ≥ 0}

• we can use a state diagram to describe the PDA

• similar to state diagrams for FA, but modified for 
stack updates

• a,b → c means when a is read from input, it may 
replace b on the top of the stack with c

• a,b, or c may be ε

• if a = ε, no symbol read from input

• if b = ε, no symbol popped from stack

• if c = ε, no symbol written on stack

Pushdown Automata

52

• example: PDA that recognizes {0n1n | n ≥ 0}  (cont.)

• state diagram

Pushdown Automata

53

• PDA formal definition contains no test for empty stack

• instead, initially place a $ on the stack

• if $ is seen again, the stack is empty

• PDAs cannot test explicitly for reaching end of input 
string

• accept state takes effect only when machine is at end 
of input

• thus, we assume that PDAs can check for end of input

Pushdown Automata

54

• example: PDA that recognizes 
  {aibjck| i,j,k ≥ 0 and i=j or i=k}

• first read and push a’s

• now it can match them with the b’s or c’s

• but don’t know which to match

• using nondeterminism, PDA can guess whether to 
match b’s or c’s

• use two branches: one for each possible guess

• if either matches, that branch accepts

49 50
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Pushdown Automata

55

• example: PDA that recognizes 
  {aibjck| i,j,k ≥ 0 and i=j or i=k}       (cont.)

• state diagram

Pushdown Automata

56

• example: PDA M3 recognizes 
  {wwR | w ∈ {0, 1}*}

• wR means w written backwards

• begin by pushing read symbols on stack

• at each point, nondeterministically guess that the middle 
of the string has been reached

• change into popping off the stack for each symbol

• check to see if popped symbol is the same as read 
symbol

• if all are the same, and stack empties when input is 
finished, accept

• otherwise, reject

Pushdown Automata

57

• example: PDA M3 recognizes 
  {wwR | w ∈ {0, 1}*}

• state diagram

Pushdown Automata

58

• context-free grammars and pushdown automata are 
equivalent in power

• both capable of describing class of context-free 
languages

• can convert any CFG into a PDA and vice versa

• recall that a CFL is any language that can be described 
with a CFG

Pushdown Automata

59

• theorem: a language is context-free if and only if some 
PDA recognizes it

• for if and only if, we have to prove in both directions

Pushdown Automata

60

• lemma: if a language is context-free, a PDA recognizes it

• proof idea

• let A be a CFL

• therefore, a CFG G generates it

• convert G into equivalent PDA P

• P will accept input w if G generates it by determining 
if there is a derivation for w

•derivation: a sequence of substitutions made as a 
grammar generates a string

•each step yields an intermediate string of variables 
and terminals

•P determines whether some series of substitutions 
from G can lead from the start variable to w

55 56

57 58

59 60



10/15/2024

11

Pushdown Automata

61

• lemma: if a language is context-free, a PDA recognizes it

• proof idea (cont.)

• a difficulty in testing if a derivation for w exists is 
figuring out which substitutions to make

• PDA’s nondeterminism allows it to guess the sequence 
of correct substitutions

• for each step, one of the rules for a particular 
variable is selected nondeterministically for the 
substitution

Pushdown Automata

62

• lemma: if a language is context-free, a PDA recognizes it

• proof idea (cont.)

• P begins by writing the start variable on its stack

• P then goes through intermediate strings, making 
substitutions

• if it arrives at a string with only terminal symbols, it 
has derived a string in the language

• P accepts this string if it is identical to the one it 
received as input

Pushdown Automata

63

• lemma: if a language is context-free, a PDA recognizes it
• proof idea (cont.)

• how does the PDA store the intermediate strings as it 
goes from one state to another?
• could just store it on the stack
• won’t work because P needs to find variables to 

replace and make substitutions
• PDA can only access the top symbol on the stack, 

which may just be a terminal
• instead, keep only part of the string on the stack

• the symbols starting with the first variable in the 
intermediate string

• any terminals before the first variable are matched 
immediately with symbols in the input string

Pushdown Automata

64

• lemma: if a language is context-free, a PDA recognizes it

• proof idea (cont.)

• P representing the intermediate string 01A1A0

Pushdown Automata

65

• lemma: if a language is context-free, a PDA recognizes it

• proof idea (cont.)

• informal description of processing in P

• push marker symbol $ and start variable on stack

• repeat the following forever

• if the top of the stack is a variable symbol A, 
nondeterministically select one of the rules for A 
and substitute with the rhs of the rule

• if the top of the stack is a terminal a, read the 
next symbol from the input and compare it to a; if 
they match, repeat; otherwise, reject on this 
branch of nondeterminism

• if the top of the stack is $, enter accept state

Pushdown Automata

66

• lemma: if a language is context-free, a PDA recognizes it

• proof

• let P = (Q, Σ, Γ, δ, qstart, F)

• for clarity, use shorthand notation for δ

• provides a way to write an entire string on the stack 
in one step

• simulate by adding states to write the string one 
symbol at a time

• let q and r be states of the PDA

• let a ∈ Σε and s ∈ Γε

•go from q to r when a is read and s is popped

•push string u = u1…ul on stack at the same time

61 62
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Pushdown Automata

67

• lemma: if a language is context-free, a PDA recognizes it

• proof (cont.)

• implement by adding new states q1,…ql-1 and setting 
the transition function as follows

•δ(q, a, s) to contain (q1, ul)

•δ(q1, ε, ε) = {(q2, ul-1)}

•δ(q2, ε, ε) = {(q3, ul-2)} …

•δ(ql-1, ε, ε) = {(r, u1)}

• (r, u) ∈ δ(q, a, s) means when q is the state of the 
automaton, a is the next input symbol and s is the 
symbol on top of the stack

• PDA may read a and pop s, then push u on the stack 
and go to state r

Pushdown Automata

68

• lemma: if a language is context-free, a PDA recognizes it

• proof (cont.)

• implementing shorthand (r, xyz) ∈ δ(q, a, s)

Pushdown Automata

69

• lemma: if a language is context-free, a PDA recognizes it

• proof  (cont.)

• P = (Q, Σ, Γ, δ, qstart, F) where

• Q = {qstart, qloop, qaccept} ∪ E

•E is the states needed for implementing shorthand

• qstart is the start state

• F = {qaccept}

Pushdown Automata

70

• lemma: if a language is context-free, a PDA recognizes it
• proof  (cont.)

• P = (Q, Σ, Γ, δ, qstart, F) where
• δ is defined as follows

•δ(qstart, ε, ε) = {(qloop, S$)}
• initialize stack to contain $ and S, implementing 
step 1 in the informal description

•δ(qloop, ε, A) = {(qloop, w) | where A → w is a rule in R}
• the top of the stack contains a variable

•δ(qloop, a, a) = {(qloop, ε)}
• the top of the stack contains a terminal

•δ(qloop, ε, $) = {(qaccept, ε)}
• empty stack marker $ is on the top of the stack

Pushdown Automata

71

• lemma: if a language is context-free, a PDA recognizes it

• proof  (cont.)

• state diagram of P

Pushdown Automata

72

• lemma: if a language is context-free, a PDA recognizes it

• example: use the procedure to construct a PDA P from 
the following CFG G 

  S → aTb | b

  T → Ta | ε

67 68

69 70
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Pushdown Automata

73

• lemma: if a PDA recognizes a language, it is context-free

• proof idea

• harder

• we have PDA P and want to make CFG G that generates 
all the strings P accepts

• or, G should generate a string if it causes the PDA to 
go from its start state to an accept state

Pushdown Automata

74

• we have shown that PDAs recognize the class of CFLs

• we can now establish a relationship between the regular 
languages and the CFLs

• since every regular language is recognized by a FA and 
every FA is automatically a PDA that ignores its stack, 
every regular language must also be a CFL

Non-Context-Free Languages

75

• we want to able to prove that some languages are non-
context-free

• use pumping lemma for CFLs

• every CFL has a pumping length such that all longer 
strings in the language can be pumped

• string divided into 5 parts

• 2nd and 4th parts may be repeated together any 
number of times with the resulting string in the 
language

• pumping lemma for CFLs

• if A is a context-free language, there is a number p 
(the pumping length) where if s is any string in A of 
length at least p, then s may be divided into five pieces, 
s = uvxyz, satisfying the following conditions

• for each i ≥ 0, uvixyiz ∈ A

• |vy| > 0

• |vxy| ≤ p

• condition 2: either v or y is not ε

• otherwise, theorem trivially true

• condition 3: max length useful in proving certain 
languages are not context-free

Non-Context-Free Languages

76

• pumping lemma for CFLs

• proof idea

• let A be a CFL and G be a CFG that generates it

• show that any sufficiently long string s in A can be 
pumped and remain in A

• let s be a very long string in A

• s is derivable from G and therefore has a parse tree

• parse tree is very tall because s is very long

• parse tree contains some long path from the start 
variable at the root of the tree to one of the 
terminal symbols at a leaf

• on this path, some R must repeat due to the 
pigeonhole principle 

Non-Context-Free Languages

77

• pumping lemma for CFLs

• proof idea

• this repetition allows us to replace the subtree under 
the second R with the subtree under the first R

• therefore, we can cut s into 5 pieces uvxyz and repeat 
the 2nd and 4th pieces to obtain a string in the language
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• pumping lemma for CFLs
• example: use the pumping lemma to show B = {anbncn | n ≥ 0} is not 

context-free
• assume B is context-free with pumping length p
• select string apbpcp

• s is a member of B and of length at least p
• show that no matter how we divide s into uvxyz, one of the 

three conditions of the lemma is violated
• condition 2 ensures that either v or y is not ε – consider 2 

cases
• when both v and y contain only one type of symbol, v does 
not contain both a’s and b’s or b’s and c’s, and same for y
• the string uv2xy2z cannot contain an equal number of a’s, 

b’s, and c’s
• when either v or y contain more than one type of symbol
• the string uv2xy2z can contain an equal number of a’s, b’s, 

and c’s, but in the wrong order
• one of these cases must occur, but both result in a 

contradiction
• therefore, B is not a CFL
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• pumping lemma for CFLs

• example: use the pumping lemma to show B = {anbncn | n ≥ 0} is not context-free

• example strings to help explain proof

• select string apbpcp               if p = 3, string is aaabbbccc

• since vxy must be <= 3, v and y are 

• both contain one type of symbol: both a’s, both b’s, or both c’s 

• both contain one type of symbol: v is a’s and y is b’s, or v is b’s and y is c’s

• v or y contain more than one type of symbol: v or y straddles a boundary so v 
is a’s and y is b’s and c’s, v is a’s and b’s and y is b’s, v is b’s and y is b’s and c’s, 
or v is b’s and c’s and y is c’s

• either v or y is ε and the other is not (won’t work because all three need to 
increase in number, but this will allow only two, at most, to do so)

• condition 2 ensures that either v or y is not ε – consider 2 cases

• when both v and y contain only one type of symbol, v does not contain both a’s 
and b’s or b’s and c’s, and same for y

−the string uv2xy2z cannot contain an equal number of a’s, b’s, and c’s 

• e.g., v=a, y=b: aaaabbbbccc

• when either v or y contain more than one type of symbol

−the string uv2xy2z can contain an equal number of a’s, b’s, and c’s, but in the 
wrong order (e.g., v=ab, y=b: aaababbbbccc)
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• pumping lemma for CFLs
• example: show C = {aibjck | 0 ≤ i ≤ j ≤ k} is not context-free

• assume C is context-free with pumping length p
• select string apbpcp, but must pump down as well as pump up

• s is a member of C and of length at least p
• show that no matter how we divide s into uvxyz, one of the three conditions of the 

lemma is violated
• condition 2 ensures that either v or y is not ε – consider 2 cases

• when both v and y contain only one type of symbol, v does not contain both a’s 
and b’s or b’s and c’s, and same for y
• one of the symbols does not appear in v or y
• three subcases

• a’s do not appear: try pumping down to uv0xy0z = uxz
• contains same number of a’s as s, but fewer b’s or fewer c’s

• b’s do not appear: try pumping down to uv0xy0z = uxz
• either a’s or c’s must appear in v or y because both can’t be ε
• if a’s appear, uv2xy2z has more a’s than b’s
• if c’s appear, uv0xy0z has more b’s than c’s

• c’s do not appear
• uv2xy2z contains more a’s or more b’s than c’s

• when either v or y contain more than one type of symbol
• uv2xy2z will not contain symbols in the correct order

• one of these cases must occur, but all result in a contradiction
• therefore, C is not a CFL

Non-Context-Free Languages

81

• pumping lemma for CFLs

• example: use the pumping lemma to show D = {ww| w ∈ 
{0,1}*} is not context-free

• assume D is context-free with pumping length p

• select string 0p10p1

• s is a member of D and of length at least p

• but this string can be pumped
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• pumping lemma for CFLs
• example: use the pumping lemma to show D = {ww| w ∈ {0,1}*} is not 

context-free
• assume D is context-free with pumping length p
• select string 0p1p0p1p

• s is a member of D and of length at least p
• by condition 3, |vxy| ≤ p
• show that no matter how we divide s into uvxyz, one of the 

three conditions of the lemma is violated
• vxy must straddle the midpoint of s; otherwise, pumping s in 
the first half of the string up to uv2xy2z moves a 1 into the 
first position of the second half

• if vxy occurs in the second half of s, uv2xy2z moves a 0 into 
the last position of the first half, so no longer in form ww

• if vxy straddles the midpoint, pumping down to uv0xy0z 
results in 0p1i0j1p where i and j can’t both be p, hence not ww

• all cases result in contradiction
• therefore, D is not a CFL
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• properties of CFLs

• the class of CFLs is closed under 

• union

• if A and B are context-free, so is A ∪ B

• concatenation

• if A and B are context-free, so is AB

• star

• if A is context-free, so is A*

• reverse

• if A is context-free, so is AR
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• properties of CFLs

• the class of CFLs is not closed under 

• intersection

• consider A = {anbncm} and B = {ambncn} 

• complementation

• note that A ∩ B = A ∪ B

• difference

• note that A = Σ* - A
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• properties of CFLs

• intersection with a regular language

• if A is context-free and B is regular, then A ∩ B is 
context-free

• difference from a regular language

• if A is context-free and B is regular, then A – B is 
context-free

• note that A – B = A ∩ B

Non-Context-Free Languages

87

• properties of CFLs

• use the previous properties to prove a language is 
context-free

• use the previous properties to prove a language is non-
context-free if it does not pass the closure rules

• example: prove A is not a CFL where

  A = {w ∈ {a,b,c}* | w has an equal number of 
                               a’s, b’s, and c’s}

consider L = a*b*c*  (regular)

if A is a CFL, A ∩ L = aibici should be a CFL, but it’s not

Deterministic Context-Free Languages

88

• recall that DFAs and NFAs are equivalent in power

• but nondeterministic PDAs are more powerful than 
deterministic PDAs

• certain CFLs cannot be recognized by DPDAs

• languages that can be recognized by DPDAs are called 
deterministic context-free languages (DCFLs)

• useful in parsers for programming languages
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