Chapter 2 Context-Free Languages

Overview

- so far, we have looked at FA's and regular expressions
 different, though equivalent
 - some simple languages, such as Oⁿ1ⁿ cannot be described in these ways

1

2

Overview

 $\boldsymbol{\cdot}$ we now turn to context-free grammars (CFGs)

- $\boldsymbol{\cdot}$ more powerful way to describe languages
 - can describe recursive structures of languages
- first used to study human languages
 - relationships between parts of language (noun, verb, etc.) lead to recursion
 - e.g., noun phrases may appear inside verb phrases and vice versa
 - context-free grammars help organize and understand such relationships

3

Overview

- another important application is in the specification of programming languages
 - \cdot a grammar for a programming language can help people learn about the language syntax
 - compiler and interpreter designers often start with the grammar for a programming language
 - parser: extracts meaning from code before execution
 - some tools can automatically generate a parser from the grammar

4

Overview

- the collection of languages associated with context-free grammars are context-free languages
- include all regular languages
- plus other languages
- we will study
 - context-free grammars
 - · formal definition of context-free grammars
 - properties of context-free languages
 - pushdown automata: machines recognizing context-free languages
 - help us realize the power of context-free grammars

- example: CFG G_1
- $A \rightarrow 0A1$
- $\begin{array}{l} A \rightarrow B \\ B \rightarrow \# \end{array}$
- a grammar consists of
 - substitution rules, or productions
 - $\boldsymbol{\cdot}$ each rule appears as a line in the grammar
 - lhs: variable or nonterminal
 - derivation symbol
 - rhs: variables or terminals
 - common notation
 - nonterminals: capital letters
 - terminals: lowercase letters, numbers, symbols

• example: CFG G₁

- $A \rightarrow 0A1$
- $A \rightarrow B$ $B \rightarrow #$
- $D \rightarrow 1$
- start variable: Ihs of first production
- G_1 has
 - two variables: A, B
 - start variable: A
 - terminals: 0, 1, #
- 7

ontext-Free Grammars
example: CFG G_1 $A \rightarrow 0A1$ $A \rightarrow B$ $B \rightarrow #$
ve can generate string 000#111 with the following derivation (or sequence of substitutions)
$A \rightarrow 0A1$
\rightarrow 00A11
\rightarrow 000A111
\rightarrow 000B111
→ 000 # 111

9

Context-Free Grammars

- all strings generated from derivations constitute the language of the grammar, $\mathsf{L}(G)$
 - $L(G_1) = \{0^n \# 1^n \mid n \ge 0\}$
 - any language that can be generated by a CFG is called a context-free language (CFL)

```
• for convenience, we can replace
```

 $\begin{array}{l} A \rightarrow 0A1 \\ A \rightarrow B \end{array}$

with

```
A \rightarrow OA1 \mid B
```

Context-Free Grammars

- $\boldsymbol{\cdot}$ process for generating strings in the language using the grammar
- write down the start variable
 Ihs of top rule, unless otherwise stated
- find a variable that is written down and a rule that starts with that variable
 - replace the variable with rhs of that rule
- repeat replacements until no variable remains

8

13

Context-Free Grammars

- formal definition of CFG notes
 - for u, v, w (strings of variables and terminals)
 - A \rightarrow w is a rule
 - uAv yields uwv, or uAv \Rightarrow uwv
 - u derives v, or u \Rightarrow^* v if u = v or if u₁, u₂, ..., u_k exists for k ≥ 0 and u \Rightarrow u₁ \Rightarrow u₂ \Rightarrow ... \Rightarrow u_k \Rightarrow v
 - the language of the grammar is $\{w \in \Sigma^* \mid S \Rightarrow^* w\}$

15

Context-Free Grammars

- example: grammar G₃
- G3 = ({S}, {a, b}, R, S)
 - rules:
 - $S \rightarrow \alpha Sb ~|~ SS ~|~ \epsilon$
- note ε
- $\boldsymbol{\cdot}$ example strings generated:
 - abab, aaabbb, aababb, ε
 - can think of a and b as '(' and ')', respectively
 strings generated are properly nested parentheses

Context-Free Grammars

A context-free grammar is a 4-tuple (V, Σ, R, S) , where 1. V is a finite set called the variables,

string of variables and terminals, and 4. $S \in V$ is the start variable.

2. Σ is a finite set, disjoint from V, called the *terminals*,

• R is the collection of rules in the grammar

3. R is a finite set of *rules*, with each rule being a variable and a

formal definition of CFG

• in grammar G_1

• V = {A, B}

• S = A

14

• Σ = {0, 1, #}

• example: grammar G₂

```
\begin{split} V &= \big\{ \langle \texttt{sentence} \rangle, \langle \texttt{noun-phrase} \rangle, \langle \texttt{verb-phrase} \rangle, \\ \langle \texttt{prep-phrase} \rangle, \langle \texttt{cmplx-noun} \rangle, \langle \texttt{cmplx-verb} \rangle, \\ \langle \texttt{article} \rangle, \langle \texttt{noun} \rangle, \langle \texttt{verb} \rangle, \langle \texttt{prep} \rangle \big\}, \end{split}
```

- Σ = {a, b, c, ... ,z, " "} • " " represents blank space
- can specify grammar by just writing rules
- identify variables as appearing on lhs
- all other symbols are terminals
- start variable is lhs of first rule

16

- example: grammar $G_4 = (V, \Sigma, R, \langle EXPR \rangle)$
 - V = {<EXPR>, <TERM>, <FACTOR>}
 - $\boldsymbol{\cdot} \boldsymbol{\Sigma} = \{ \boldsymbol{\alpha}, +, \times, (,) \}$
 - R (rules) are
 - $\mathsf{EXPR} \to \mathsf{EXPR} + \mathsf{TERM} > | \mathsf{TERM} >$

 - describes part of a programming language for arithmetic expressions

- example: grammar $G_4 = (V, \Sigma, R, \langle EXPR \rangle)$
 - parse trees for strings a+axa and (a+a)xa
 note precedence imposed

Context-Free Grammars

 $\begin{array}{l} \bullet \mbox{ designing CFGs (cont.)}\\ \bullet \mbox{ many CFLs are the union of simpler CFLs}\\ example: create a grammar for the language\\ \{0^n1^n\mid n\geq 0\}\cup\{1^n0^n\mid n\geq 0\}\\ 1.\ \mbox{ construct grammar for }\{0^n1^n\mid n\geq 0\}\\ S_1\to 0S_11\mid \epsilon\end{array}$

- 2. construct grammar for $\{1^n O^n \mid n \geq 0\}$
- $S_2 \rightarrow IS_20 \mid \epsilon$ 3. add rule $S \rightarrow S_1 \mid S_2$ $S \rightarrow S_1 \mid S_2$

$$S_1 \rightarrow 0S_11 \mid \varepsilon$$
$$S_2 \rightarrow 1S_20 \mid \varepsilon$$

21

Context-Free Grammars

- designing CFGs (cont.)
- helpful techniques
 - third, certain CFLs contain strings with two substrings that are linked in such a way that a FA would need to remember
 - e.g., $\{0^n 1^n \mid n \ge 0\}$
 - construct a CFG to handle this situation by using a rule of the form $R\to uRv$ where the numbers of u's and v's are the same

Context-Free Grammars

- designing CFGs
 - requires some creativity, as with FAs
 - helpful techniques
 - $\boldsymbol{\cdot}$ first, many CFLs are the union of simpler CFLs
 - construct individual grammars for pieces
 - solving several simpler problems easier than solving one complicated problem
 - \bullet merge by combining rules and adding new rule where S_i are the start variables for the simpler grammars

$$\mathsf{S} \to \mathsf{S}_1 \mid \mathsf{S}_2 \mid ... \mid \mathsf{S}_k$$

20

Context-Free Grammars

- designing CFGs (cont.)
- helpful techniques
 - \bullet second, constructing a CFG for a regular language is easy if you can construct a DFA first
 - convert DFA into CFG
 - make a variable R for each state q_i of the DFA
 - -add rule $\mathsf{R}_i \to a\mathsf{R}_j$ if $\delta(q_i,\,a)$ = q_j is transition in DFA
 - •add rule $\mathsf{R}_i \to \epsilon$ if q_i is an accept state of the DFA
 - $\boldsymbol{\cdot} R_0$ is the start variable where \boldsymbol{q}_0 is the start state

22

- designing CFGs (cont.)
 - $\boldsymbol{\cdot} \text{ helpful techniques}$
 - finally, in more complex languages, the strings may contain certain structures that appear recursively as part of other (or the same) structures
 - e.g., G₄ that generates arithmetic expressions
 any time an a appears, an entire parenthesized expression might appear recursively instead
 - place the variable symbol generating the structure in the location of the rules corresponding to where that structure may recursively appear

- ambiguity
 - sometimes a grammar can generate a string in several different ways
 - must be different parse trees
 - undesirable in certain applications, such as programming languages, since a program should have only one interpretation
 - string is derived ambiguously
 - if grammar generates strings ambiguously, grammar is ambiguous

Context-Free Grammars

- ambiguity (cont.)

 - generates string a+axa ambiguously

note precedence

26

25

27

Context-Free Grammars

• ambiguity (cont.)

- ${\cal G}_4$ generates the same language as ${\cal G}_5,$ but every string has a unique parse tree
- $\cdot G_4$ is unambiguous whereas G_5 is ambiguous
- G_2 is ambiguous because the following sentence has two different derivations resulting in different parse trees the girl touches the boy with the flower

Context-Free Grammars

• ambiguity (cont.)

- formally, a grammar is ambiguous if there is more than one parse tree for deriving the same string
- not just more than one derivation
 - derivations may differ only in order of replacements, not structure
 - we can focus on structure by replacing variables in a fixed order
 - •leftmost derivation: replace the leftmost variable in each step of the derivation

A string w is derived **ambiguously** in context-free grammar G if it has two or more different leftmost derivations. Grammar G is **ambiguous** if it generates some string ambiguously.

28

Context-Free Grammars

- ambiguity (cont.)
 - sometimes we can find an unambiguous grammar that generates the same language as an ambiguous one
 - some CFLs can only be generated by ambiguous grammars

Chomsky normal form

$\boldsymbol{\cdot}$ convenient to have CFGs in simplified form

A context-free grammar is in **Chomsky normal form** if every rule is of the form $\begin{array}{c} A \rightarrow BC\\ A \rightarrow a \end{array}$ where a is any terminal and A, B, and C are any variables—except that B and C may not be the start variable. In addition, we permit the rule S + a, where S is the start variable.

- Chomsky normal form
 - \cdot any context-free language is generated by a context-free grammar in Chomsky normal form
 - proof idea
 - conversion has several stages where rules that violate the conditions are replaced with equivalent ones that fulfill the requirements
 - add a new start variable
 - -eliminate all $\epsilon\text{-rules}$ of the form $A\to\epsilon$
 - $\bullet eliminate \ all \ unit \ rules \ A \to B$
 - convert remaining rules into proper form
 - •verify that new grammar generates same language

31

Context-Free Grammars

- · Chomsky normal form (cont.)
 - any context-free language is generated by a context-free grammar in Chomsky normal form
 - proof
 - eliminate all $\epsilon\text{-rules}$ of the form A $\rightarrow\epsilon$ (where A is not the start variable)
 - •wherever A appears on the rhs of a rule, add a new rule with that occurrence deleted
 - $\bullet \text{if } \mathsf{R} \to \mathsf{u}\mathsf{A}\mathsf{v} \text{ is a rule, add rule } \mathsf{R} \to \mathsf{u}\mathsf{v}$
 - •add rule for each occurrence of A, so R \to uAvAw results in adding R \to uvAw, R \to uAvw, and R \to uvw
 - \bullet if we had R \to A, add R \to ϵ unless we already removed that rule
 - •repeat until all ε-rules removed not using start var

33

Context-Free Grammars

- · Chomsky normal form (cont.)
 - any context-free language is generated by a contextfree grammar in Chomsky normal form
 - proof
 - convert all remaining rules into proper form
 - •replace rule $A \rightarrow u_1 u_2 \dots u_k$ where $k \ge 3$ and each u_i is a variable or terminal symbol with the rules $A \rightarrow u_1 A_1, A_1 \rightarrow u_2 A_2, A_2 \rightarrow u_3 A_3, \dots A_{k-2} \rightarrow u_{k-1} u_k$
 - Ai's are new variables
 - •replace any terminal u, in the preceding rule(s) with new variable U, and add rule $U_i \rightarrow u_i$

Context-Free Grammars

- Chomsky normal form (cont.)
 - any context-free language is generated by a contextfree grammar in Chomsky normal form
 - proof
 - add a new start variable, S_0 and the rule $S_0 \to S$ where S was the original start state
 - guarantees that the start variable does not appear on the rhs of a rule

32

Context-Free Grammars

- · Chomsky normal form (cont.)
 - any context-free language is generated by a context-free grammar in Chomsky normal form
 - proof
 - \bullet remove unit rules $A \to B$
 - •when a rule $B \rightarrow u$ appears, add rule $A \rightarrow u$ unless this unit rule was previously removed
 - repeat until all unit rules removed

34

Context-Free Grammars

example: convert the CFG G₆ into Chomsky normal form
 add new start state (old on left; new on right)
 S → ASA| aB
 S → ASA| aB

 $A \rightarrow B \mid S$

 $B \rightarrow b | \varepsilon$

- $A \rightarrow B \mid S$ $B \rightarrow b \mid \epsilon$
- 2. remove $\epsilon\text{-rules} \colon B \to \epsilon \text{ on left, } A \to \epsilon \text{ on right}$
 - $\begin{array}{l} S_0 \rightarrow S \\ S \rightarrow ASA \mid \mathbf{a}B \mid \mathbf{a} \\ A \rightarrow B \mid S \mid \mathbf{c} \\ B \rightarrow \mathbf{b} \mid \varepsilon \end{array}$
- $\begin{array}{l} S_0 \rightarrow S \\ S \rightarrow ASA \mid \mathbf{a}B \mid \mathbf{a} \mid \mathbf{S}A \mid \mathbf{A}S \mid \mathbf{S} \\ A \rightarrow B \mid S \mid \varepsilon \\ B \rightarrow \mathbf{b} \end{array}$

- example: convert the CFG G_6 into Chomsky normal form 3a. remove unit rules: $S \rightarrow S$ on left, and $S_0 \rightarrow S$ on right
 - $S_0 \rightarrow S$ $S \rightarrow ASA \mid \mathbf{a}B \mid \mathbf{a} \mid SA \mid AS \mid S$ $A \rightarrow B \mid S$ $B \rightarrow b$

 $B \rightarrow b$

3b. remove unit rules: $A \rightarrow B$ on left, and $A \rightarrow S$ on right

 $A \rightarrow B \mid S \mid \mathbf{b}$ $B \rightarrow \mathbf{b}$

 $\begin{array}{l} A \rightarrow S \mid \mathbf{b} \mid \boldsymbol{ASA} \mid \mathbf{aB} \mid \mathbf{a} \mid \boldsymbol{SA} \mid \boldsymbol{AS} \\ B \rightarrow \mathbf{b} \end{array}$

 $\begin{array}{l} S_0 \rightarrow S \mid \boldsymbol{ASA} \mid \mathbf{aB} \mid \mathbf{a} \mid \boldsymbol{SA} \mid \boldsymbol{AS} \\ S \rightarrow ASA \mid \mathbf{aB} \mid \mathbf{a} \mid SA \mid AS \\ A \rightarrow B \mid S \\ B \rightarrow S \end{array}$

37

Pushdown Automata

- pushdown automata (PDA)
 - like NFA, but includes a stack
 - provides additional memory
 - therefore allows PDA to recognize some nonregular languages
 - equivalent to CFGs
 - now we have two options for proving a language is context-free by providing either
 - CFG generating the language
 - PDA recognizing the language
 - some languages are more easily described by
 - generators, while others by recognizers

39

Pushdown Automata

- schematic of a PDA
 - add a stack to preceding schematic

• example: convert the CFG G₆ into Chomsky normal form 4. convert remaining rules into proper form by adding variables and rules; final grammar is equivalent to G_6 ; final grammar simplified

38

Pushdown Automata

- schematic of a finite automaton
 - control represents states and transition function tape contains the input string

 - arrow is the input head, which points at the next input symbol to be read

40

- PDA can write symbols on the stack and read them back later
 - writing a symbol pushes other symbols on the stack
- reading a symbol pops it from the stack
- all access to the stack takes place at the top (LIFO) • analogy: cafeteria plate dispenser

- stacks are useful in PDAs
 - hold an unlimited amount of information
 - FAs typically have very little memory
 - example: the language $\{ O^n I^n \mid n \ge 0 \}$ cannot be recognized by a FA, but can by a PDA
 - PDA uses its stack to store the number of 0s it has seen (can store numbers of unlimited size)
 - push 0s on the stack as they are read
 - pop off a 0 for each 1 that is read
 - if reading is finished exactly when the stack becomes empty, accept
 - if empty while 1s remain, or if 1s are finished and 0s remain on stack, or 0s in input after the 1s, reject

43

45

Pushdown Automata

PDA formal definition

- similar to FA, except for the stack
- stack: device containing symbols from an alphabet
 may be different from symbols in input
 - may be different from symbol
 - \bullet input alphabet: Σ
 - stack alphabet: Г

Pushdown Automata

- nondeterministic PDAs
- not equivalent in power to deterministic PDAs
- recognize certain languages no deterministic PDA can
- DFAs and NFAs recognize the same class of languages • so, PDAs are different
- \cdot our focus is on nondeterministic PDAs since they are equivalent in power to CFGs

44

Pushdown Automata

- PDA formal definition (cont.)
 - transition function
 - $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$
 - $\boldsymbol{\cdot} \, \boldsymbol{\Gamma}_{\boldsymbol{\varepsilon}} = \boldsymbol{\Gamma} \cup \{\boldsymbol{\varepsilon}\}$
 - domain: $Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon}$
 - current state, next input symbol read, and top symbol of the stack determine the next transition
 - \bullet either symbol may be $\epsilon,$ causing the machine to move without reading a symbol from the input or from the stack

46

Pushdown Automata

- PDA formal definition (cont.)
 - transition function
 - what can the automaton do in transitions?
 - $\boldsymbol{\cdot}$ enter a new state and write a symbol on the stack
 - $\boldsymbol{\cdot}\,\delta$ can return a member of Q and a member of $\Gamma_{\!\epsilon}$
 - domain: $Q \times \Sigma_{\epsilon} \times \Gamma_{\epsilon}$
 - due to nondeterminism, several legal next moves may be possible
 - a set of members from $Q \times \Gamma_{\varepsilon}$ may be returned
 - i.e., a member of $P(Q \times \Gamma_{\varepsilon})$
 - therefore, δ : Q x Σ_{ϵ} x $\Gamma_{\epsilon} \rightarrow P(Q \times \Gamma_{\epsilon})$

Pushdown Automata

• PDA formal definition (cont.)

```
A pushdown automaton is a 6-tuple (Q, \Sigma, \Gamma, \delta, q_0, F), where Q, \Sigma, \Gamma, and F are all finite sets, and
```

- 1 O is the set of state
- Q is the set of states,
 Σ is the input alphabet,
- Σ is the input alphabet,
 Γ is the stack alphabet,
- 4. $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
- **5.** $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

49

Pushdown Automata

- example: PDA that recognizes $\{0^{n}1^{n} \mid n \ge 0\}$
- we can use a state diagram to describe the PDA
 - similar to state diagrams for FA, but modified for stack updates
 - a,b \rightarrow c means when a is read from input, it may replace b on the top of the stack with c
 - a,b, or c may be ε
 - if a = ε , no symbol read from input
 - if $b = \varepsilon$, no symbol popped from stack
 - if $c = \varepsilon$, no symbol written on stack

51

Pushdown Automata

- PDA formal definition contains no test for empty stack
 instead, initially place a \$ on the stack
 - Instead, initially place a \$ on the stac
 - if \$ is seen again, the stack is empty
- \bullet PDAs cannot test explicitly for reaching end of input string
 - $\boldsymbol{\cdot}$ accept state takes effect only when machine is at end of input
 - thus, we assume that PDAs can check for end of input

Pushdown Automata

50

Pushdown Automata

example: PDA that recognizes {0ⁿ1ⁿ | n ≥ 0} (cont.)
 state diagram

52

- example: PDA that recognizes
 - {aibjck| i,j,k≥0 and i=j or i=k}
 - first read and push a's
 - now it can match them with the b's or c's
 - but don't know which to match
 - \bullet using nondeterminism, PDA can guess whether to match b's or c's
 - use two branches: one for each possible guess
 - if either matches, that branch accepts

55

Pushdown Automata

- \bullet theorem: a language is context-free if and only if some PDA recognizes it
 - · for if and only if, we have to prove in both directions

Pushdown Automata

- example: PDA M_3 recognizes { $ww^R | w \in \{0, 1\}^*$ }
 - w^R means w written backwards
 - begin by pushing read symbols on stack
 - at each point, nondeterministically guess that the middle of the string has been reached
 - change into popping off the stack for each symbol
 - $\boldsymbol{\cdot}$ check to see if popped symbol is the same as read symbol
 - if all are the same, and stack empties when input is finished, accept
 - otherwise, reject

56

Pushdown Automata

- $\boldsymbol{\cdot}$ context-free grammars and pushdown automata are equivalent in power
 - both capable of describing class of context-free languages
 - $\boldsymbol{\cdot}$ can convert any CFG into a PDA and vice versa
 - \cdot recall that a CFL is any language that can be described with a CFG

58

- lemma: if a language is context-free, a PDA recognizes it
 - proof idea
 - let A be a CFL
 - $\boldsymbol{\cdot}$ therefore, a CFG G generates it
 - convert G into equivalent PDA P
 - \bullet P will accept input w if G generates it by determining if there is a derivation for w
 - •derivation: a sequence of substitutions made as a grammar generates a string
 - $\boldsymbol{\cdot}$ each step yields an intermediate string of variables and terminals
 - $\bullet P$ determines whether some series of substitutions from G can lead from the start variable to w

- lemma: if a language is context-free, a PDA recognizes it
 proof idea (cont.)
 - a difficulty in testing if a derivation for w exists is figuring out which substitutions to make
 - PDA's nondeterminism allows it to guess the sequence of correct substitutions
 - for each step, one of the rules for a particular variable is selected nondeterministically for the substitution

Pushdown Automata

- lemma: if a language is context-free, a PDA recognizes it
 proof idea (cont.)
 - P begins by writing the start variable on its stack
 - P then goes through intermediate strings, making substitutions
 - if it arrives at a string with only terminal symbols, it has derived a string in the language
 - P accepts this string if it is identical to the one it received as input

62

Pushdown Automata

- lemma: if a language is context-free, a PDA recognizes it
 proof idea (cont.)
 - how does the PDA store the intermediate strings as it goes from one state to another?
 - could just store it on the stack
 - won't work because P needs to find variables to replace and make substitutions
 - PDA can only access the top symbol on the stack, which may just be a terminal
 - instead, keep only part of the string on the stack
 - the symbols starting with the first variable in the intermediate string
 - any terminals before the first variable are matched immediately with symbols in the input string

63

61

Pushdown Automata

- lemma: if a language is context-free, a PDA recognizes it
 proof idea (cont.)
 - informal description of processing in P
 - push marker symbol \$ and start variable on stack
 - repeat the following forever
 - if the top of the stack is a variable symbol A, nondeterministically select one of the rules for A and substitute with the rhs of the rule
 - if the top of the stack is a terminal a, read the next symbol from the input and compare it to a; if they match, repeat; otherwise, reject on this branch of nondeterminism
 - if the top of the stack is \$, enter accept state

Pushdown Automata

- lemma: if a language is context-free, a PDA recognizes it
 proof idea (cont.)
 - P representing the intermediate string 01A1A0

64

- lemma: if a language is context-free, a PDA recognizes it
 proof
 - let P = (Q, Σ , Γ , δ , q_{start} , F)
 - $\boldsymbol{\cdot}$ for clarity, use shorthand notation for $\boldsymbol{\delta}$
 - $\mbox{ \bullet}$ provides a way to write an entire string on the stack in one step
 - simulate by adding states to write the string one symbol at a time
 - let q and r be states of the PDA
 - let $a \in \Sigma_{\epsilon}$ and $s \in \Gamma_{\epsilon}$
 - •go from q to r when a is read and s is popped
 - -push string u = $u_1 ... u_l$ on stack at the same time

- lemma: if a language is context-free, a PDA recognizes it
 proof (cont.)
 - \bullet implement by adding new states $q_{1,\dots}q_{l-1}$ and setting the transition function as follows
 - • $\delta(q, a, s)$ to contain (q_1, u_1)
 - $\boldsymbol{\cdot} \delta(\boldsymbol{q}_1,\,\boldsymbol{\epsilon},\,\boldsymbol{\epsilon}) = \{(\boldsymbol{q}_2,\,\boldsymbol{u}_{l-1})\}$
 - •δ(q₂, ε, ε) = {(q₃, u₁₋₂)} ...
 - •δ(q_{I-1}, ε, ε) = {(r, u₁)}
 - (r, u) $\in \delta(q, a, s)$ means when q is the state of the automaton, a is the next input symbol and s is the symbol on top of the stack
 - PDA may read a and pop s, then push u on the stack and go to state r

67

Pushdown Automata

69

Pushdown Automata

- lemma: if a language is context-free, a PDA recognizes it
 proof (cont.)
 - implementing shorthand (r, xyz) $\in \delta(q, a, s)$

68

$\label{eq:product} \begin{array}{l} \textbf{Pushdown Automata} \\ \bullet \text{ lemma: if a language is context-free, a PDA recognizes it} \\ \bullet \text{ proof (cont.)} \\ \bullet \mathsf{P} = (\mathsf{Q}, \Sigma, \Gamma, \delta, q_{\text{start}}, \mathsf{F}) \text{ where} \\ \bullet \delta \text{ is defined as follows} \\ \bullet \delta(q_{\text{start}}, \varepsilon, \varepsilon) = \{(q_{\text{loop}}, S \$)\} \\ \bullet \text{ initialize stack to contain \$ and S, implementing step 1 in the informal description} \\ \bullet \delta(q_{\text{loop}}, \varepsilon, A) = \{(q_{\text{loop}}, w) \mid \text{where } A \to w \text{ is a rule in } \mathsf{R}\} \\ \bullet \text{ the top of the stack contains a variable} \\ \bullet \delta(q_{\text{loop}}, a, a) = \{(q_{\text{loop}}, \varepsilon)\} \\ \bullet \text{ the top of the stack contains a terminal} \\ \bullet \delta(q_{\text{loop}}, \varepsilon, \$) = \{(q_{\text{accept}}, \varepsilon)\} \\ \bullet \text{ empty stack marker \$ is on the top of the stack} \end{array}$

70

- lemma: if a PDA recognizes a language, it is context-free
 proof idea
 - harder
 - \bullet we have PDA P and want to make CFG G that generates all the strings P accepts
 - or, G should generate a string if it causes the PDA to go from its start state to an accept state

Pushdown Automata

- we have shown that PDAs recognize the class of CFLs
 we can now establish a relationship between the regular languages and the CFLs
- since every regular language is recognized by a FA and every FA is automatically a PDA that ignores its stack, every regular language must also be a CFL

74

73

Non-Context-Free Languages

- $\boldsymbol{\cdot}$ we want to able to prove that some languages are non-context-free
 - use pumping lemma for CFLs

 $\boldsymbol{\cdot}$ every CFL has a pumping length such that all longer strings in the language can be pumped

- string divided into 5 parts
- 2nd and 4th parts may be repeated together any number of times with the resulting string in the language

75

Non-Context-Free Languages

- $\boldsymbol{\cdot}$ pumping lemma for CFLs
 - proof idea
 - let A be a CFL and G be a CFG that generates it
 - show that any sufficiently long string s in A can be pumped and remain in A
 - let s be a very long string in A
 - s is derivable from G and therefore has a parse tree
 - parse tree is very tall because s is very long
 parse tree contains some long path from the start variable at the root of the tree to one of the terminal symbols at a leaf
 - on this path, some R must repeat due to the pigeonhole principle

Non-Context-Free Languages

• pumping lemma for CFLs

- condition 2: either v or y is not ε
 otherwise, theorem trivially true
- · otherwise, theorem trivially true
- condition 3: max length useful in proving certain languages are not context-free

76

Non-Context-Free Languages

- pumping lemma for CFLs
 - example: use the pumping lemma to show B = $\{a^nb^nc^n \mid n \ge 0\}$ is not context-free
 - assume B is context-free with pumping length p
 - select string a^pb^pc^p • s is a member of B and of length at least p

 - show that no matter how we divide s into uvxyz, one of the three conditions of the lemma is violated - condition 2 ensures that either v or y is not ϵ - consider 2
 - cases when both v and y contain only one type of symbol, v does not contain both a's and b's or b's and c's, and same for y
 - the string uv²xy²z cannot contain an equal number of a's, b's, and c's
 - when either v or y contain more than one type of symbol the string uv²xy²z can contain an equal number of a's, b's, and c's, but in the wrong order
 - one of these cases must occur, but both result in a contradiction
 - therefore, B is not a CFL

79

Non-Context-Free Languages

- pumping lemma for CFLs example: show C = {abick | 0 ≤ i ≤ j ≤ k} is not context-free assume C is context-free with pumping length p sleet string arbec, but must pump down as well as pump up sl is a member of C and of length at least p show that no matter how we divide s into uxyzy, one of the three conditions of the lemma is violated
 - terming is violated. condition 2 ensures that either v or y is not ε consider 2 cases when both v and y contain only one type of symbol, v does not contain both a's and b's or b's and c's, and same for y

 - one of the symbols does not appear in v or y three subcases a's do not appear: try pumping down to uv⁰xy⁰z = uxz
 contains same number of a's as s, but fewer b's or fewer c's
 - contains some number of a's as, but fewer b's on fewer c's
 b's do not appear: try pumping down to why?p'z a uxz
 either a's or c's must appear in v or y because both con't be e
 if c's appear, why?p'z has more a's than b's
 if c's appear, why?p'z has more b's than c's
 c's do not appear
 why?z contains more a's or more b's than c's
 when either v or y contain more than one type of symbol
 uw'sy?z' unit lon contain symbols in the correct order
 one of these cases must occur, but all result in a contradiction
 - therefore, C is not a CFL

81

Non-Context-Free Languages

- pumping lemma for CFLs
 - example: use the pumping lemma to show D = {ww| $w \in \{0,1\}^*$ } is not context-free
 - · assume D is context-free with pumping length p
 - select string OP1POP1P
 - s is a member of D and of length at least p • by condition 3, $|vxy| \le p$
 - show that no matter how we divide s into uvxyz, one of the three conditions of the lemma is violated
 - vxy must straddle the midpoint of s; otherwise, pumping s in the first half of the string up to uv²xy²z moves a 1 into the first position of the second half if vxy occurs in the second half of s, uv²xy²z moves a 0 into the last position of the first half, so no longer in form ww if vxy ctendenc the midpoint pumping down to un0007.

 - if vxy straddles the midpoint, pumping down to uv⁰xy⁰z results in Op10j1p where i and j can't both be p, hence not ww all cases result in contradiction
 - therefore, D is not a CFL

Non-Context-Free Languages

pumping lemma for CFLs

- example: use the pumping lemma to show $B = \{a^n b^n c^n \mid n \ge 0\}$ is not context-free example strings to help explain proof
 - select string approp if p = 3, string is aaabbbccc
 - since vxy must be <= 3, v and y are
 - · both contain one type of symbol: both a's, both b's, or both c's
 - both contain one type of symbol: v is a's and y is b's, or v is b's and y is c's
 v or y contain more than one type of symbol: v or y straddles a boundary so
 - is a's and y is b's and c's, v is a's and b's and y is b's, v is b's and y is b's and c's, or v is b's and c's and y is c's
 - \cdot either v or y is ϵ and the other is not (won't work because all three need to increase in number, but this will allow only two, at most, to do so)
 - condition 2 ensures that either v or y is not ϵ consider 2 cases
 - when both v and y contain only one type of symbol, v does not contain both a's and b's or b's and c's, and same for y -the string uv²xy²z cannot contain an equal number of a's, b's, and c's
 - e.g., v=a, y=b: aaaabbbbbccc
 - · when either v or y contain more than one type of symbol
 - the string uv^2xy^2z can contain an equal number of a's, b's, and c's, but in the wrong order (e.g., v=ab, y=b: aaababbbbccc)

80

Non-Context-Free Languages

- pumping lemma for CFLs
 - example: use the pumping lemma to show D = {ww| $w \in$ $\{0,1\}^*$ is not context-free
 - assume D is context-free with pumping length p
 - select string OP1OP1
 - s is a member of D and of length at least p • but this string can be pumped

$$\underbrace{\underbrace{000\cdots000}_{u} \underbrace{0}_{v} \underbrace{0}_{x} \underbrace{0}_{y} \underbrace{000\cdots0001}_{z}}_{u}$$

82

Non-Context-Free Languages

properties of CFLs

- the class of CFLs is closed under
- union
 - if A and B are context-free, so is $A \cup B$
- concatenation
- if A and B are context-free, so is AB
- star
- if A is context-free, so is A*
- reverse
 - if A is context-free, so is A^R

Non-Context-Free Languages

```
    properties of CFLs
```

- the class of CFLs is not closed under
 - intersection
 - consider A = {aⁿbⁿc^m} and B = {a^mbⁿcⁿ}
 - complementation
 - note that $A \cap B = \overline{\overline{A} \cup \overline{B}}$
 - difference
 - note that $\overline{A} = \Sigma^* A$

Non-Context-Free Languages

- properties of CFLs
 - intersection with a regular language
 - \bullet if A is context-free and B is regular, then A \cap B is context-free
- difference from a regular language
 - if A is context-free and B is regular, then A B is context-free
 - note that A B = A $\cap \overline{B}$

85

Non-Context-Free Languages

- properties of CFLs
- $\boldsymbol{\cdot}$ use the previous properties to prove a language is context-free
- use the previous properties to prove a language is noncontext-free if it does not pass the closure rules
 example: prove A is not a CFL where
 - A = {w ∈ {a,b,c}* | w has an equal number of a's, b's, and c's}
 - consider L = a*b*c* (regular)

if A is a CFL, $A \cap L$ = aibici should be a CFL, but it's not

87

Deterministic Context-Free Languages

- $\boldsymbol{\cdot}$ recall that DFAs and NFAs are equivalent in power
- but nondeterministic PDAs are more powerful than deterministic PDAs
 - $\boldsymbol{\cdot}$ certain CFLs cannot be recognized by DPDAs
 - languages that can be recognized by DPDAs are called deterministic context-free languages (DCFLs)
 useful in parsers for programming languages

88

86