Chapter 3 The Church-Turing Thesis

Overview

- so far, we have presented several models of computing devices
 - finite automata for devices with a small amount of memory
 - pushdown automata for devices with unlimited memory usable in a LIFO stack
 - other simple tasks are beyond the capabilities of these models
 - too restricted to serve as models of general-purpose computers

- we now turn to more powerful model
 - Turing machine
 - proposed by Alan Turing in 1936
- Turing machine
 - · similar to FA
 - but with unlimited and unrestricted memory
 - more accurate model of a general-purpose computer
 - · can do everything a real computer can do
 - still certain problems that it cannot solve
 - these problems may be beyond the theoretical limits of computation

- Turing machine
 - infinite tape as unlimited memory
 - tape head can read and write symbols and move around on the tape
 - initially, tape contains input string
 - blank everywhere else
 - · to store information, machine can write on tape
 - · to read information, tape head can move back over it
 - machine continues computing until it produces an output
 - accept and reject by entering accept or reject states
 - · otherwise, it will go on forever, never halting

- differences between FA and Turing machines
 - Turing machines can both write and read on the tape
 - the read-write head can both move left and right
 - the tape is infinite
 - states for rejecting and accepting take effect immediately

- example: Turing machine M_1 for testing membership in language $B = \{w\#w \mid w \in \{0,1\}^*\}$
 - accept if input in B; reject otherwise
 - · as before, put yourself in place of the Turing machine
 - imagine standing on input with millions of characters
 - goal is to determine if input is in B
 - i.e., two identical strings separated by #
 - string too long to remember, but you can move back and forth on input and mark on it
 - strategy: zig-zag on corresponding places of two sides of # and determine if they match
 - mark tape to keep track of correspondences

- example: Turing machine M_1 for testing membership in language $B = \{w\#w \mid w \in \{0,1\}^*\}$ (cont.)
 - will work this way
 - M₁ makes multiple passes over input
 - on each pass, matches characters on each side of #
 - · crosses off each symbol as it is examined
 - if all symbols crossed off → match
 - goes into accept state
 - mismatch
 - goes into reject state

- example: Turing machine M_1 for testing membership in language $B = \{w\#w \mid w \in \{0,1\}^*\}$ (cont.)
 - algorithm
 - zig-zag across tape to corresponding positions on either side of #
 - check whether these positions contain the same symbol
 - if they do not, or no # is found → reject
 - cross off symbols as they are checked to keep track of which symbols correspond
 - when all symbols to the left of the # have been crossed off, check for remaining symbols on the right
 - if any symbols remain → reject
 - otherwise → accept

- example: Turing machine M_1 for testing membership in language $B = \{w\#w \mid w \in \{0,1\}^*\}$ (cont.)
 - nonconsecutive snapshots of tape with input 011000#011000

- · previous example leaves out some details
- formal definition is a 7-tuple
 - transition function δ tells us how machine gets from one step to the next
 - $Q \times \Gamma \rightarrow Q \times \Gamma \times \{L,R\}$
 - when machine is in a certain state q and the head is over a tape square containing symbol a
 - if $\delta(q,a) = (r,b,L)$, writes symbol b replacing a, goes to state r, move Left

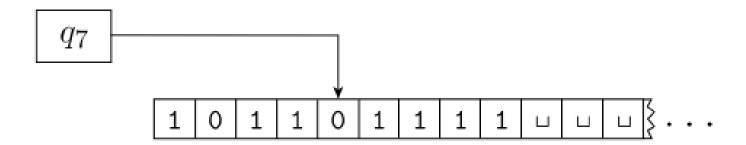
A **Turing machine** is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and

- 1. Q is the set of states,
- 2. Σ is the input alphabet not containing the **blank symbol** \sqcup ,
- **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
- **4.** $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
- 5. $q_0 \in Q$ is the start state,
- **6.** $q_{\text{accept}} \in Q$ is the accept state, and
- 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

- a Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ computes as follows
 - input $w = w_1 w_2 ... w_n \in \Sigma^*$ on leftmost n squares of tape
 - the rest of the tape is all blank symbols
 - head starts at leftmost square
 - \bullet Σ does not contain blank, so first blank appearing on tape marks the end of the input
 - M goes from state to state according to the rules of $\boldsymbol{\delta}$
 - if M tries to move its head left off left-hand end of tape, the head stays in the same place for that move
 - computation continues until either accept or reject state is entered
 - if neither occurs, M goes on forever

- · as a Turing machine computes, changes occur in the
 - current state
 - current tape contents
 - current head location
- a setting of these three items is called a configuration of the Turing machine
 - \cdot for state q and two strings u and v over the tape alphabet Γ
 - u q v is the configuration where the current state is q, tape contents is uv, and head location is at first symbol of v
 - only blanks after last symbol of v

- example: 1011q₇01111
 - tape is 101101111
 - current state is q₇
 - head is currently on second 0



- configuration C_1 yields C_2 if the TM can go from C_1 to C_2 in a single step
- formal description
 - suppose we have a,b,c $\in \Gamma$, u,v $\in \Gamma^*$, and states q_i and q_j
 - ua q_i by and u q_j acv are two configurations (moving L)
 - therefore, ua q_i by yields u q_j acv if $\delta(q_i,b) = (q_j,c,L)$
 - ua q_i by and uac q_i v are two configurations (moving R)
 - therefore, ua q_i by yields uac q_j v if $\delta(q_i,b) = (q_j,c,R)$

- special cases occur when the head is at one of the ends of the configuration
 - for left-hand end, the configuration q_i by yields q_j cv if moving to left
 - we're preventing the machine from going off lefthand end of tape
 - for right-hand end, the configuration ua q_i is equivalent to ua q_i _ since blanks follow the right-most character

- start configuration is q_0 w
 - machine is in start state q_0
 - head at leftmost position on the tape
- \bullet accepting configuration is q_{accept}
- \cdot rejecting configuration is q_{reject}
- accepting and rejecting configurations are halting configurations
 - do not yield further configurations

- a Turing machine accepts input w if a sequence of configurations C_1 , C_2 ,..., C_k exists where
 - C_1 is the start configuration M on input w
 - each C_i yields C_{i+1}
 - C_k is the accepting configuration
- the collection of strings M accepts is the language of M
 - or the language recognized by M, or L(M)
- a language is Turing-recognizable if some Turing machine recognizes it

- when we start a Turing machine on an input, three outcomes are possible
 - accept
 - reject
 - loop (does not halt)
- a TM can fail to accept an input by entering the q_{reject} state and rejecting, or by looping
 - sometimes difficult to distinguish machine looping vs. just taking a long time
- prefer TMs that halt on all inputs (never loop)
 - · such machines are called deciders
 - always make a decision to accept or reject

- a decider that recognizes some language is also said to decide that language
 - call a language Turing-decidable, or simply decidable, if some Turing machine decides it

- · we could formally describe a TM with its 7-tuple
 - however, lots of information
 - alternatively, we will only give higher level descriptions
 - really just shorthand for formal counterpart

• example: describe a TM M_2 that describes $A = \{0^{2^n} \mid n \ge 0\}$ (or the language consisting of all strings of 0s whose length is a power of 2)

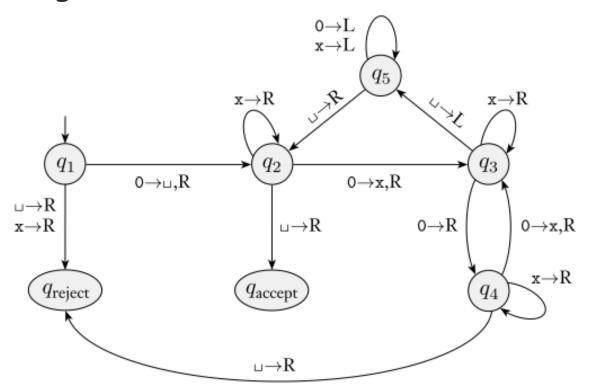
 M_2 = "on input string w:

- 1. sweep left to right across the tape, crossing off every other 0
- 2. if in stage 1, the tape contained a single $0 \rightarrow accept$
- 3. if in stage 1, the tape contained more than a single 0 and the number of 0s was odd \rightarrow reject
- 4. return the head to the left-hand end of the tape
- 5. go to stage 1."

- example: describe a TM M_2 that describes $A = \{0^{2^n} \mid n \ge 0\}$ (or the language consisting of all strings of 0s whose length is a power of 2), cont.
 - each iteration of stage 1 cuts the number of 0s in half
 - machine keeps track of whether the number of 0s seen is even or odd
 - if odd and > 1, original number of Os is not a power of 2
 - input is rejected
 - if number of 0s seen is 1, original number of 0s must be a power of 2
 - input is accepted

- example: describe a TM M_2 that describes $A = \{0^{2^n} \mid n \ge 0\}$ (or the language consisting of all strings of 0s whose length is a power of 2), cont.
 - formal description of $M_2 = (Q, \Sigma, \Gamma, \delta, q_1, q_{accept}, q_{reject})$
 - Q = $\{q_1, q_2, q_3, q_4, q_5, q_{accept}, q_{reject}\}$
 - $\Sigma = \{0\}$
 - $\Gamma = \{0, \times, _\}$
 - δ described with state diagram (next slide)
 - start state = q_1
 - accept state = q_{accept}
 - reject state = q_{reject}

- example: describe a TM M_2 that describes $A = \{0^{2^n} \mid n \ge 0\}$ (or the language consisting of all strings of 0s whose length is a power of 2), cont.
 - state diagram



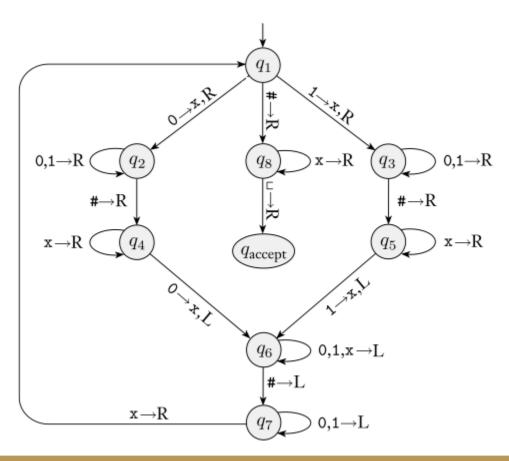
- example: describe a TM M_2 that describes $A = \{0^{2^n} \mid n \ge 0\}$ (or the language consisting of all strings of 0s whose length is a power of 2), cont.
 - state diagram explanation
 - 0 \rightarrow _,R appears on arc from q_1 to q_2
 - when in state q_1 with the head reading 0, go to q_2 , write _, and move the head right
 - $\bullet \delta(q_1, 0) = (q_2, _, R)$
 - machine begins by writing a blank over leftmost 0 on tape so that it can find the left-hand end in stage 4
 - could have used another symbol (like #), but we like to keep the tape alphabet small

- example: describe a TM M_2 that describes $A = \{0^{2^n} \mid n \ge 0\}$ (or the language consisting of all strings of 0s whose length is a power of 2), cont.
 - sample run on input 0000

q_1 0000	$\sqcup q_5$ x0x \sqcup	$\sqcup \mathbf{x}q_{5}\mathbf{x}\mathbf{x}\sqcup$
$\sqcup q_2$ 000	q_5 u \mathbf{x} 0 \mathbf{x} u	$\sqcup q_5$ XXX \sqcup
$\sqcup \mathbf{x} q_3$ 00	$\sqcup q_2$ x0x \sqcup	q_5 uxxxu
$\sqcup x0q_40$	$\sqcup xq_2$ 0 x \sqcup	$\sqcup q_2$ XXX \sqcup
$\sqcup x0xq_3 \sqcup$	$\sqcup xxq_3x\sqcup$	$\sqcup \mathbf{x} q_2 \mathbf{x} \mathbf{x} \sqcup$
$ux0q_5xu$	\sqcup ххх q_3 \sqcup	\sqcup хх q_2 х \sqcup
பх q_5 0хப	$\sqcup \mathbf{x} \mathbf{x} q_5 \mathbf{x} \sqcup$	$\sqcup \mathtt{XXX}q_2 \sqcup$
		\sqcup XXX $\sqcup q_{ m accept}$

- example: describe a Turing machine M_1 that describes $B = \{w\#w \mid w \in \{0,1\}^*\}$
 - $M_1 = (Q, \Sigma, \Gamma, \delta, q_1, q_{accept}, q_{reject})$ where
 - Q = $\{q_1, ..., q_8, q_{accept}, q_{reject}\}$
 - $\Sigma = \{0, 1, \#\}$
 - $\cdot \Gamma = \{0, 1, \#, \times, _\}$
 - δ described with state diagram (next slide)
 - start state = q_1
 - accept state = q_{accept}
 - reject state = q_{reject}

- example: describe a Turing machine M_1 that describes $B = \{w\#w \mid w \in \{0,1\}^*\}$, cont.
 - state diagram



- example: describe a Turing machine M_1 that describes $B = \{w\#w \mid w \in \{0,1\}^*\}$, cont.
 - state diagram explanation
 - label $0,1 \rightarrow R$ on arc from q_3 to itself
 - stay in q_3 and move to right when reading a 0 or 1 in state q_3
 - · do not change symbol on tape
 - stage 1 implemented by q_1 through q_7
 - stage 2 by the remaining states
 - · for clarity, reject state not shown
 - implicit rejection when no arc leaves state on symbol
 - •e.g., no arc for # from q_5
 - \bullet in all such cases, head moves right on arc to q_{reject}

- example: design a Turing machine M_3 that performs elementary arithmetic: $C = \{a^ib^jc^k \mid i \times j = k \text{ and } i,j,k \ge 1\}$ $M_3 = \text{"on input string w:}$
 - 1. scan input from left to right to determine if it is a member of a+b+c+ and reject if it isn't
 - 2. return head to left-hand end of tape
 - 3. cross off an a and scan right until b occurs
 - shuttle between b's and c's, crossing off one of each until all b's are gone
 - if all c's crossed off, but some b's remain → reject
 - 4. restore crossed off b's
 - •repeat stage 3 if another a to cross off
 - if all a's crossed off and all c's crossed off → accept
 - otherwise → reject."

- example: design a Turing machine M_3 that performs elementary arithmetic: $C = \{a^ib^jc^k \mid i \times j = k \text{ and } i,j,k \ge 1\}$, cont.
 - closer look at stages of M₃
 - in stage 1, machine operates like a FA
 - · no writing necessary as head moves left to right
 - keeps track by using states to determine if input in proper form
 - in stage 2, how does machine find left side of input?
 - finding right end is easy since it is terminated with blank
 - no terminating symbol on left end
 - · can mark the left end with a blank when machine starts
 - alternatively, recall that if the machine tries to move left beyond the left end of the tape, it stays in the same place
 - to make a left end detector, we can write a special symbol at the current position while recording the symbol it replaced
 - it can then try to move left
 - if it is still over the special symbol, it must be on the left end
 - otherwise, there are other symbols, and the original symbol is restored
 - stages 3 and 4 are straightforward

• example: describe a Turing machine M_4 that solves the element distinctive problem: given a list of strings over $\{0,1\}$ separated by #s, accept if all strings are different

```
E = \{\#x_1\#x_2\#...\#x_1 \mid \text{ each } x_i \in \{0,1\}^* \text{ and } x_i \neq x_j \text{ for each } i \neq j\}
```

- works by comparing x_1 with x_2 through x_1
- then comparing x_2 with x_3 through x_1
- etc.

• example: describe a Turing machine M_4 that solves the element distinctive problem: given a list of strings over $\{0,1\}$ separated by #s, accept if all strings are different, cont.

```
E = \{\#x_1 \#x_2 \#... \#x_i \mid \text{ each } x_i \in \{0,1\}^* \text{ and } x_i \neq x_j \text{ for each } i \neq j\}
```

 M_4 = "on input w:

- 1. place mark on top of leftmost symbol
 - if symbol was a blank → accept
 - if symbol was #, continue to next stage
 - otherwise → reject
- 2. scan right to next # and place second mark on it
 - if no # encountered before blank, only x_1 was present \rightarrow accept
- 3. zig-zag and compare two strings to right of marked #s
 - if they are equal → reject
- 4. move rightmost of two marks to next # symbol to the right
 - if no # encountered before blank, move leftmost mark to next # to its right and rightmost mark to the # after that (reset first string)
 - if no # is available for rightmost mark, all strings have been compared \to accept
- 5. go to stage 3."

• example: describe a Turing machine M_4 that solves the element distinctive problem: given a list of strings over $\{0,1\}$ separated by #s, accept if all strings are different, cont.

$$E = \{\#x_1\#x_2\#...\#x_l \mid \text{ each } x_i \in \{0,1\}^* \text{ and } x_i \neq x_j \text{ for each } i \neq j\}$$

- this machine illustrates the technique of marking tape symbols
 - in stage 2, the machine places a mark above the symbol #
 - in the implementation, there are two different symbols: # and $\mbox{\#}$
- whenever the machine makes a mark above a symbol, it means the second one
- removing the mark means the machine writes the first one
- used in a variety of situations just include both in the alphabet

- from the previous examples, the languages A, B, C, and E are decidable
- all decidable languages are Turing-recognizable, so these languages are also Turing-recognizable

- different versions of Turing machines abound
 - multitape Turing machines
 - nondeterministic Turing machines
 - enumerators
- all variants have same power as original
 - recognize the same class of languages
 - equivalent to original
 - robustness

- to show robustness, vary transition function
 - instead of moving L or R, the head may stay put (S)
 - new transition function
 - δ : Q $\times \Gamma \rightarrow Q \times \Gamma \times \{L,R,S\}$
 - would this change allow additional languages to be recognized, thus increasing the power of Turing machines?
 - · no, since we could convert S to two transitions
 - one that moves R
 - another that moves back L
- in general, to show variants are equivalent, we show how one can simulate another

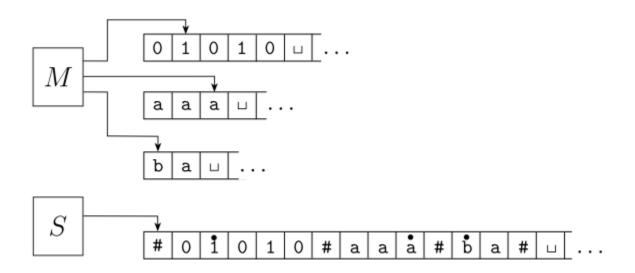
- multitape Turing machines
 - · like regular Turing machine, but with several tapes
 - · each tape has its own head for reading and writing
 - input appears on tape 1
 - other tapes start out blank
 - transition function changed to reading/writing/moving heads on multiple tapes simultaneously
 - $\delta: Q \times \Gamma^k \to Q \times \Gamma^k \times \{L,R,S\}^k$
 - the expression

$$\delta(q_i, a_1, ... a_k) = (q_j, b_1, ... b_k, L, R, ... L)$$
 means

- machine moves from q_i to q_i
- heads 1 through k are, respectively,
 - \bullet reading symbols a_1 through a_k
 - writing symbols b₁ through b_k
 - · moving L, R, or S

- multitape Turing machines may seem more powerful, but we can prove they are equivalent to single-tape Turing machines by showing they recognize the same language
- proof: Show how to convert a multitape TM M to an equivalent single-tape TM S
 - simulate M with S
 - assume M has k tapes
 - · S will simulate M by storing all information on one tape
 - uses # as a delimiter to separate contents of different tapes
 - keeps track of locations of different heads by placing a dot over the symbol where the head is currently located
 - \cdot # and dotted symbols are added to the tape alphabet Γ

- proof: Show how to convert a multitape TM M to an equivalent single-tape TM S (cont.)
 - simulating M with S



 proof: Show how to convert a multitape TM M to an equivalent single-tape TM S (cont.)

$$S = "on input w = w_1...w_n$$

1. S puts its tape into the format to represent k tapes

$$\#w_1w_2 \cdots w_n \# \sqcup \# \sqcup \# \cdots \#.$$

- 2. to simulate a single move, S scans from first # to last # to determine symbols under virtual heads
 - S makes a second pass to update tapes according to M's transition function
- 3. if S moves a virtual head R and hits #
 - S writes a blank on this cell
 - shifts tape contents one unit right
 - continues with simulation."

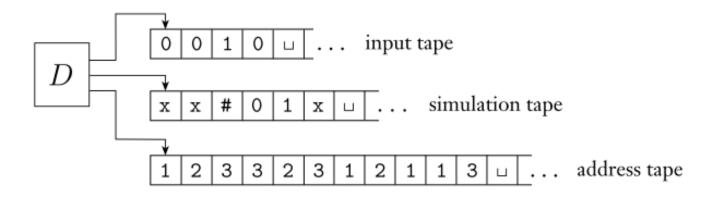
- a language is Turing-recognizable if and only if some multitape Turing machine recognizes it
 - proof:
 - a TRL must be recognized by an ordinary (singletape) TM, which is a special case of a multitape TM
 - this proves one direction
 - other direction proven by previous proof

- nondeterministic Turing machines
 - at any point in the computation, the machine may proceed
 - transition function has the form
 - δ : Q $\times \Gamma \rightarrow P(Q \times \Gamma \times \{L,R\})$
 - the computation of a nondeterministic Turing machine is a tree whose branches correspond to different possibilities for the machine
 - if some branch leads to the accept state → accept

- every nondeterministic Turing machine has an equivalent deterministic Turing machine
 - proof idea:
 - simulate nondeterministic TM N with deterministic TM D
 - · D will try all possible branches of N's computation
 - if D finds the accept state on a branch → accept
 - otherwise, D will not terminate

- every nondeterministic Turing machine has an equivalent deterministic Turing machine (cont.)
 - proof idea:
 - view N's computation on w as a tree
 - each branch represents one of the branches of nondeterminism
 - each node is a configuration of N
 - root is the start configuration
 - D searches this tree for accepting configuration
 - depth-first search not good since a branch may be infinite (accept may be on another branch)
 - ·use breadth-first search instead

- every nondeterministic Turing machine has an equivalent deterministic Turing machine (cont.)
 - proof:
 - D has three tapes (equivalent to having a single tape)
 - tape 1 has the input string and is never changed
 - tape 2 maintains a copy of N's tape on some branch of its nondeterministic computation
 - tape 3 keeps track of D's location in N



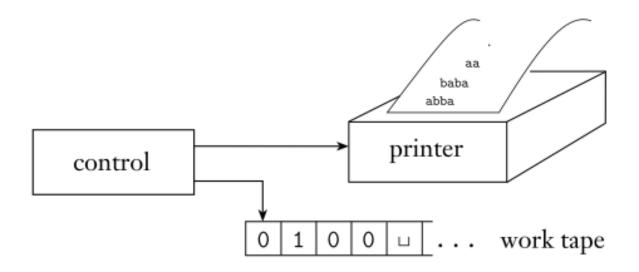
- every nondeterministic Turing machine has an equivalent deterministic Turing machine (cont.)
 - proof:
 - more on tape 3
 - every node in the tree can have up to b children
 - · b is largest set of choices in N's transition function
 - •so $\Gamma_b = \{1, 2, ..., b\}$
 - •e.g., address 231 means 2nd child of root, followed by 3rd child of next node, and 1st child of that node
 - empty string is address of the root

- every nondeterministic Turing machine has an equivalent deterministic Turing machine (cont.)
 - proof:
 - D's computation
 - 1. initially, tape 1 contains input w; tapes 2 and 3 are empty
 - 2. copy tape 1 to tape 2 and initialize string on 3 to ϵ
 - 3. use tape 2 to simulate N
 - consult next symbol on tape 3 to determine choice from N's transition function
 - if no more symbols remain, or invalid choice, goto 4
 - also goto 4 if rejecting configuration encountered
 - if accepting configuration encountered → accept
 - 4. replace string on tape 3 with next string; goto 2

- a language is Turing-recognizable if and only if some nondeterministic Turing machine recognizes it
 - proof:
 - any deterministic TM is automatically a nondeterministic TM, which accounts for one direction of the proof
 - the other direction was proven previously

- we can alter the previous proof so that if N always halts on all branches of computation, D will halt
- an NTM is called a decider if all branches halt on all inputs
- a language is decidable if and only if some NTM decides
 it

- enumerators
 - Turing machine with attached printer
 - used as an output device to print strings



- enumerators
 - enumerator E starts with blank input on work tape
 - if enumerator doesn't halt, list of strings may be infinite
 - language enumerated by E is all strings printed out
 - E may generate strings in any order, possibly with repetitions

- a language is Turing-recognizable if and only if some enumerator enumerates it
 - proof
 - first show E enumerates language A, recognized by TM M
 - M = "on input w:
 - 1. run E. every time E outputs a string, compare it with w
 - 2. if we ver appears in the output of $E \rightarrow$ accept."
 - M accepts strings that appear on E's list

- a language is Turing-recognizable if and only if some enumerator enumerates it (cont.)
 - proof
 - other direction: if TM M recognizes language A, we can construct an enumerator
 - say that s_1 , s_2 , s_3 , ..., s_i is a list of all possible strings in Σ^*
 - E = "ignore the input
 - repeat the following for i = 1, 2, 3, ...
 - •run M for i steps on each input s_1 , s_2 , s_3 , ..., s_i
 - •if any computations accept, print out corresponding s_i ."

- a language is Turing-recognizable if and only if some enumerator enumerates it (cont.)
 - if M accepts a particular s, it will eventually appear on the list generated by E
 - it will appear on the list infinitely many times because M runs from the beginning to the end for each first step
 - this procedure gives the effect of running M in parallel on all possible input strings

- equivalence with other models
 - we have seen several TM variants equivalent to the original TM
 - many other models of general-purpose computation exist
 - some are quite different
 - all share the essential feature of TMs
 - unrestricted access to unlimited memory
 - unlike FAs and PDAs
 - all models with this feature are equivalent, as long as they satisfy reasonable requirements
 - •e.g., perform only a finite amount of work in a single step

- equivalence with other models (cont.)
 - consider analogous situation with programming languages
 - languages look different (e.g., LISP and Pascal)
 - · same algorithms can be programmed in both
 - therefore, the two languages describe exactly the same class of of algorithms, as do all other reasonable programming languages
 - even though we can imagine many different computational models, the class of algorithms they describe is the same

- algorithm: collection of simple instructions for carrying out some task
 - procedures or recipes
 - play important role in mathematics
 - ancient descriptions of algorithms for finding prime numbers, greatest common divisors, etc.
 - many algorithms today
 - algorithm not defined precisely until 20th century
 - previously, intuitive notion
 - needed for specific problems

- · Hilbert's Problems
 - Int'l Congress of Mathematics, Paris, 1900
 - 23 mathematical problems as challenges for the century
 - 10th problem concerned algorithms

- · preliminary: review of polynomials
 - polynomial: sum of terms
 - each term is a product of variables and constant (or coefficient)
 - ex: $6 \cdot x \cdot x \cdot x \cdot y \cdot z \cdot z = 6x^3yz^2$
 - term with coefficient 6
 - ex: $6x^3yz^2 + 3xy^2 x^3 10$
 - polynomial with 4 terms
 - · we'll consider only coefficients that are integers
 - root of a polynomial: variable values when = 0
 - polynomial above has a root at x = 5, y = 3, z = 0
 - integral root because all integer values
 - •some polynomials do not have an integral root

- Hilbert's tenth problem
 - devise an algorithm that tests whether a polynomial has an integral root
 - in his words: a process in which it can be determined in a finite number of operations
 - assumed an algorithm existed
 - · we now know no such algorithm exists
 - i.e., it is unsolvable
 - proving an algorithm does not exist required a clear definition of algorithm

- Church-Turing thesis
 - 1936 paper by Church and Turing
 - \cdot Church: used notational system called λ -calculus to define algorithms
 - Turing: used Turing machines
 - two definitions were shown to be equivalent
 - connection between informal notation and precise definition is the Church-Turing thesis

Intuitive notion	equals	Turing machine
of algorithms		algorithms

- Hilbert's tenth problem
 - in 1970, Matijasevic showed no algorithm exists for testing whether a polynomial has integral roots
 - rephrase the problem:
 - D = {p | p is a polynomial with an integral root}
 - in other words, is D decidable?

- Hilbert's tenth problem
 - · first, consider a simpler problem
 - $D_1 = \{p \mid p \text{ is a polynomial over } x \text{ with an integral root} \}$
 - TM M_1 that recognizes D_1 :
 - M_1 = "on input : where p is a polynomial over x
 - 1. Evaluate p with x successively with values 0, 1, -1, 2, -2, 3, -3, ... If at any point, the polynomial evaluates to 0, accept."
 - if p has an integral root, M₁ will find it and accept
 - if p does not, it will run forever
 - for D, M goes through all possible settings of variables to integral values

- Hilbert's tenth problem
 - both M and M_1 are recognizers, but not deciders
 - we can convert M_1 to a decider for D_1 because we can restrict the roots to precalculated bounds
 - if a root is not found within these bounds, the machine rejects
 - Matijasevic's theorem shows that calculating such bounds is impossible

- terminology for describing Turing machines
 - a Turing machine serves as a precise model for the definition of algorithms
 - Turing machines can describe any algorithm

- · standardize the way we describe Turing machine algorithms
 - · what is the right level of detail? three possibilities
 - formal description
 - · lists Turing machine's states, transition function, etc.
 - implementation description
 - use English prose to describe how the Turing machine moves the head and stores data on the tape
 - · no details of states or transition functions
 - high-level description
 - use English prose to describe an algorithm
 - ignore implementation details
 - no mention of tape or head

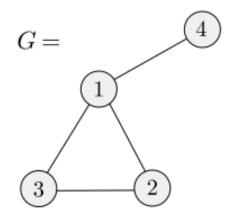
- so far, we have looked at formal and implementation-level descriptions
 - helps in understanding Turing machines
- · high-level descriptions are sufficient

- format and notation for Turing machines
 - input is always a string
 - can represent polynomials, graphs, grammars, automata, and combinations of these
 - Turing machine may decode these to be interpreted in any way desired
 - notation for encoding object O is <O>
 - for multiple objects $O_1, O_2, ..., O_k$, encoding is $\langle O_1, O_2, ..., O_k \rangle$

- format and notation for Turing machines (cont.)
 - describe Turing machine algorithms with an indented segment of text within quotes
 - break the algorithm into stages
 - involving many individual steps
 - indicate block structure of the algorithm with further indentation
 - first line describes the input to the machine
 - if w, just a string
 - if <A>, machine must test whether the input properly encodes an object of the desired form
 rejects if not

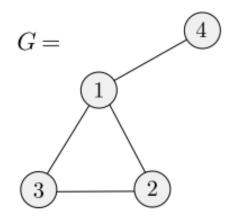
- example: let A be the language of all strings representing undirected graphs that are connected
 - a graph is connected if every node can be reached from every other node by traveling along the edges of the graph
 - A = {<G> | G is a connected undirected graph}
 - · high-level description of TM M that decides A
 - M = "On input < G>, the encoding of a graph G:
 - 1. Select the first node of G and mark it.
 - 2. Repeat the following stage until no new nodes are marked:
 - 3. For each node in G, mark it if it is attached by an edge to a node that has already been marked.
 - 4. Scan all the nodes of G to determine whether they all are marked. If they are, accept; otherwise, reject."

- example: let A be the language of all strings representing undirected graphs that are connected (cont.)
 - · implementation-level details
 - · usually, we don't give this level of detail
 - first, how does <G> encode the graph as a string?
 - · a list of nodes, followed by a list of edges
 - · each node is a decimal number
 - each edge is a pair of decimal numbers representing the endpoints of an edge



$$\langle G \rangle =$$
 (1,2,3,4)((1,2),(2,3),(3,1),(1,4))

- example: let A be the language of all strings representing undirected graphs that are connected (cont.)
 - when M receives <G>, it checks for proper encoding
 - M scans tape to be sure there are two lists in the proper form
 - first list: distinct decimal numbers
 - contains no repetitions
 - •use previous procedure for element distinctiveness
 - second list: pairs of decimal numbers
 - · every node should also appear in the node list



$$\langle G \rangle =$$
 (1,2,3,4)((1,2),(2,3),(3,1),(1,4))

- example: let A be the language of all strings representing undirected graphs that are connected (cont.)
 - after input check, M moves on to stage 1
 - · stage 1: M marks first node with a dot on leftmost digit
 - stage 2: repeat the following until no new nodes are marked
 - stage 3: M scans the list of nodes to find an undotted node n_1 and flags it by marking it differently (underlining)
 - M then scans the list again to find a dotted node n_2 and underlines it, too
 - M scans the list of edges
 - for each edge, M tests whether the two underlined nodes $n_{\rm 1}$ and $n_{\rm 2}$ are the ones appearing on the edge
 - \bullet if so, M dots n_1 , removes the underlines, and starts stage 2 again
 - if they aren't, M checks the next edge on the list
 - if there are no more edges, $\{n_1, n_2\}$ is not an edge of G
 - M moves the underline on n_2 to the next dotted node and calls it n_2
 - repeats check
 - if no more dotted nodes, n_1 is not attached to any dotted nodes
 - M sets the underline so that n_1 is the next undotted node and n_2 is the first dotted node and repeats
 - if there are no more dotted nodes, M has not been able to find any new nodes to dot, so it goes to stage 4
 - stage 4: scan the list of nodes to determine whether all are dotted
 - if so, enter accept state
 - otherwise, enter reject state