
Chapter 3
The Church-Turing Thesis

Overview

2

• so far, we have presented several models of computing
devices

• finite automata for devices with a small amount of
memory

• pushdown automata for devices with unlimited memory
usable in a LIFO stack

• other simple tasks are beyond the capabilities of these
models

• too restricted to serve as models of general-purpose
computers

Turing Machines

3

• we now turn to more powerful model

• Turing machine

• proposed by Alan Turing in 1936

• Turing machine

• similar to FA

• but with unlimited and unrestricted memory

• more accurate model of a general-purpose computer

• can do everything a real computer can do

• still certain problems that it cannot solve

• these problems may be beyond the theoretical
limits of computation

Turing Machines

4

• Turing machine

• infinite tape as unlimited memory

• tape head can read and write symbols and move around
on the tape

• initially, tape contains input string

• blank everywhere else

• to store information, machine can write on tape

• to read information, tape head can move back over it

• machine continues computing until it produces an output

• accept and reject by entering accept or reject states

• otherwise, it will go on forever, never halting

Turing Machines

5

• differences between FA and Turing machines

• Turing machines can both write and read on the tape

• the read-write head can both move left and right

• the tape is infinite

• states for rejecting and accepting take effect
immediately

Turing Machines

6

• example: Turing machine M1 for testing membership in
language B = {w#w | w ∈ {0,1}*}

• accept if input in B; reject otherwise

• as before, put yourself in place of the Turing machine

• imagine standing on input with millions of characters

• goal is to determine if input is in B

• i.e., two identical strings separated by #

• string too long to remember, but you can move back
and forth on input and mark on it

• strategy: zig-zag on corresponding places of two
sides of # and determine if they match

• mark tape to keep track of correspondences

Turing Machines

7

• example: Turing machine M1 for testing membership in
language B = {w#w | w ∈ {0,1}*} (cont.)

• will work this way

• M1 makes multiple passes over input

• on each pass, matches characters on each side of #

• crosses off each symbol as it is examined

• if all symbols crossed off → match

• goes into accept state

• mismatch

• goes into reject state

Turing Machines

8

• example: Turing machine M1 for testing membership in
language B = {w#w | w ∈ {0,1}*} (cont.)

• algorithm

• zig-zag across tape to corresponding positions on either
side of #

• check whether these positions contain the same symbol

• if they do not, or no # is found → reject

• cross off symbols as they are checked to keep track of
which symbols correspond

• when all symbols to the left of the # have been crossed
off, check for remaining symbols on the right

• if any symbols remain → reject

• otherwise → accept

Turing Machines

9

• example: Turing machine M1 for testing membership in
language B = {w#w | w ∈ {0,1}*} (cont.)

• nonconsecutive snapshots of tape with input
011000#011000

Turing Machines

10

• previous example leaves out some details

• formal definition is a 7-tuple

• transition function δ tells us how machine gets from
one step to the next

• Q x Γ → Q x Γ x {L,R}

• when machine is in a certain state q and the head is
over a tape square containing symbol a

• if δ(q,a) = (r,b,L), writes symbol b replacing a, goes to
state r, move Left

Turing Machines

11

Turing Machines

12

• a Turing machine M = (Q, Σ, Γ, δ, q0, qaccept, qreject)
computes as follows

• input w = w1w2…wn ∈ Σ* on leftmost n squares of tape

• the rest of the tape is all blank symbols

• head starts at leftmost square

• Σ does not contain blank, so first blank appearing on
tape marks the end of the input

• M goes from state to state according to the rules of δ

• if M tries to move its head left off left-hand end of
tape, the head stays in the same place for that move

• computation continues until either accept or reject
state is entered

• if neither occurs, M goes on forever

Turing Machines

13

• as a Turing machine computes, changes occur in the

• current state

• current tape contents

• current head location

• a setting of these three items is called a configuration
of the Turing machine

• for state q and two strings u and v over the tape
alphabet Γ

• u q v is the configuration where the current state is
q, tape contents is uv, and head location is at first
symbol of v

• only blanks after last symbol of v

Turing Machines

14

• example: 1011q701111

• tape is 101101111

• current state is q7

• head is currently on second 0

Turing Machines

15

• configuration C1 yields C2 if the TM can go from C1 to C2
in a single step

• formal description

• suppose we have a,b,c ∈ Γ, u,v ∈ Γ*, and states qi and qj

• ua qi bv and u qj acv are two configurations (moving L)

• therefore, ua qi bv yields u qj acv if δ(qi,b) = (qj,c,L)

• ua qi bv and uac qj v are two configurations (moving R)

• therefore, ua qi bv yields uac qj v if δ(qi,b) = (qj,c,R)

Turing Machines

16

• special cases occur when the head is at one of the ends
of the configuration

• for left-hand end, the configuration qi bv yields qj cv
if moving to left

• we’re preventing the machine from going off left-
hand end of tape

• for right-hand end, the configuration ua qi is
equivalent to ua qi _ since blanks follow the right-most
character

Turing Machines

17

• start configuration is q0w

• machine is in start state q0

• head at leftmost position on the tape

• accepting configuration is qaccept

• rejecting configuration is qreject

• accepting and rejecting configurations are halting
configurations

• do not yield further configurations

Turing Machines

18

• a Turing machine accepts input w if a sequence of
configurations C1, C2,…,Ck exists where

• C1 is the start configuration M on input w

• each Ci yields Ci+1

• Ck is the accepting configuration

• the collection of strings M accepts is the language of M

• or the language recognized by M, or L(M)

• a language is Turing-recognizable if some Turing machine
recognizes it

Turing Machines

19

• when we start a Turing machine on an input, three
outcomes are possible
• accept
• reject
• loop (does not halt)

• a TM can fail to accept an input by entering the qreject
state and rejecting, or by looping
• sometimes difficult to distinguish machine looping vs.

just taking a long time

• prefer TMs that halt on all inputs (never loop)
• such machines are called deciders
• always make a decision to accept or reject

Turing Machines

20

• a decider that recognizes some language is also said to
decide that language

• call a language Turing-decidable, or simply decidable, if
some Turing machine decides it

Examples of Turing Machines

21

• we could formally describe a TM with its 7-tuple

• however, lots of information

• alternatively, we will only give higher level descriptions

• really just shorthand for formal counterpart

Examples of Turing Machines

22

• example: describe a TM M2 that describes A = {02n
 | n ≥ 0}

(or the language consisting of all strings of 0s whose
length is a power of 2)

M2 = "on input string w:

1. sweep left to right across the tape, crossing off
every other 0

2. if in stage 1, the tape contained a single 0 → accept

3. if in stage 1, the tape contained more than a single 0
and the number of 0s was odd → reject

4. return the head to the left-hand end of the tape

5. go to stage 1."

Examples of Turing Machines

23

• example: describe a TM M2 that describes A = {02n
 | n ≥ 0}

(or the language consisting of all strings of 0s whose
length is a power of 2), cont.

• each iteration of stage 1 cuts the number of 0s in half

• machine keeps track of whether the number of 0s seen
is even or odd

• if odd and > 1, original number of 0s is not a power of 2

• input is rejected

• if number of 0s seen is 1, original number of 0s must
be a power of 2

• input is accepted

Examples of Turing Machines

24

• example: describe a TM M2 that describes A = {02n
 | n ≥ 0}

(or the language consisting of all strings of 0s whose
length is a power of 2), cont.

• formal description of M2 = (Q, Σ, Γ, δ, q1, qaccept, qreject)

• Q = {q1, q2, q3, q4, q5, qaccept, qreject)

• Σ = {0}

• Γ = {0,x,_}

• δ described with state diagram (next slide)

• start state = q1

• accept state = qaccept

• reject state = qreject

Examples of Turing Machines

25

• example: describe a TM M2 that describes A = {02n
 | n ≥ 0}

(or the language consisting of all strings of 0s whose
length is a power of 2), cont.

• state diagram

Examples of Turing Machines

26

• example: describe a TM M2 that describes A = {02n
 | n ≥ 0}

(or the language consisting of all strings of 0s whose
length is a power of 2), cont.

• state diagram explanation

• 0 → _,R appears on arc from q1 to q2

• when in state q1 with the head reading 0, go to q2,
write _, and move the head right

•δ(q1, 0) = (q2, _, R)

• machine begins by writing a blank over leftmost 0 on
tape so that it can find the left-hand end in stage 4

• could have used another symbol (like #), but we like
to keep the tape alphabet small

Examples of Turing Machines

27

• example: describe a TM M2 that describes A = {02n
 | n ≥ 0}

(or the language consisting of all strings of 0s whose
length is a power of 2), cont.

• sample run on input 0000

Examples of Turing Machines

28

• example: describe a Turing machine M1 that describes
B = {w#w | w ∈ {0,1}*}

• M1 = (Q, Σ, Γ, δ, q1, qaccept, qreject) where

• Q = {q1, …, q8, qaccept, qreject)

• Σ = {0, 1, #}

• Γ = {0, 1, #, x, _}

• δ described with state diagram (next slide)

• start state = q1

• accept state = qaccept

• reject state = qreject

Examples of Turing Machines

29

• example: describe a Turing machine M1 that describes
B = {w#w | w ∈ {0,1}*}, cont.

• state diagram

Examples of Turing Machines

30

• example: describe a Turing machine M1 that describes
B = {w#w | w ∈ {0,1}*}, cont.

• state diagram explanation

• label 0,1 → R on arc from q3 to itself

• stay in q3 and move to right when reading a 0 or 1 in
state q3

• do not change symbol on tape

• stage 1 implemented by q1 through q7

• stage 2 by the remaining states

• for clarity, reject state not shown

• implicit rejection when no arc leaves state on symbol

•e.g., no arc for # from q5

• in all such cases, head moves right on arc to qreject

Examples of Turing Machines

31

• example: design a Turing machine M3 that performs
elementary arithmetic: C = {aibjck | i x j = k and i,j,k ≥ 1}

M3 = "on input string w:

1. scan input from left to right to determine if it is a
member of a+b+c+ and reject if it isn’t

2. return head to left-hand end of tape

3. cross off an a and scan right until b occurs

•shuttle between b’s and c’s, crossing off one of each
until all b’s are gone

• if all c’s crossed off, but some b’s remain → reject

4. restore crossed off b’s

•repeat stage 3 if another a to cross off

• if all a’s crossed off and all c’s crossed off → accept

•otherwise → reject."

Examples of Turing Machines

32

• example: design a Turing machine M3 that performs elementary
arithmetic: C = {aibjck | i x j = k and i,j,k ≥ 1}, cont.
• closer look at stages of M3

• in stage 1, machine operates like a FA
• no writing necessary as head moves left to right
• keeps track by using states to determine if input in proper form

• in stage 2, how does machine find left side of input?
• finding right end is easy since it is terminated with blank
• no terminating symbol on left end
• can mark the left end with a blank when machine starts
• alternatively, recall that if the machine tries to move left

beyond the left end of the tape, it stays in the same place
• to make a left end detector, we can write a special symbol at
the current position while recording the symbol it replaced

• it can then try to move left
• if it is still over the special symbol, it must be on the left end
• otherwise, there are other symbols, and the original symbol is
restored

• stages 3 and 4 are straightforward

Examples of Turing Machines

33

• example: describe a Turing machine M4 that solves the
element distinctive problem: given a list of strings over
{0,1} separated by #s, accept if all strings are different

 E = {#x1#x2 #...#xl | each xi ∈ {0,1}* and xi ≠ xj for each i ≠ j}

• works by comparing x1 with x2 through xl

• then comparing x2 with x3 through xl

• etc.

Examples of Turing Machines

34

• example: describe a Turing machine M4 that solves the element distinctive
problem: given a list of strings over {0,1} separated by #s, accept if all strings
are different, cont.

 E = {#x1#x2 #...#xl | each xi ∈ {0,1}* and xi ≠ xj for each i ≠ j}

M4 = "on input w:
1. place mark on top of leftmost symbol

• if symbol was a blank → accept
• if symbol was #, continue to next stage
• otherwise → reject

2. scan right to next # and place second mark on it
• if no # encountered before blank, only x1 was present → accept

3. zig-zag and compare two strings to right of marked #s
• if they are equal → reject

4. move rightmost of two marks to next # symbol to the right
• if no # encountered before blank, move leftmost mark to next # to

its right and rightmost mark to the # after that (reset first string)
• if no # is available for rightmost mark, all strings have been compared

→ accept
5. go to stage 3."

Examples of Turing Machines

35

• example: describe a Turing machine M4 that solves the
element distinctive problem: given a list of strings over {0,1}
separated by #s, accept if all strings are different, cont.

 E = {#x1#x2 #...#xl | each xi ∈ {0,1}* and xi ≠ xj for each i ≠ j}

• this machine illustrates the technique of marking tape
symbols
• in stage 2, the machine places a mark above the symbol #
• in the implementation, there are two different symbols: #

and ሶ#
• whenever the machine makes a mark above a symbol, it

means the second one
• removing the mark means the machine writes the first one
• used in a variety of situations – just include both in the

alphabet

Examples of Turing Machines

36

• from the previous examples, the languages A, B, C, and E
are decidable

• all decidable languages are Turing-recognizable, so these
languages are also Turing-recognizable

Variants of Turing Machines

37

• different versions of Turing machines abound

• multitape Turing machines

• nondeterministic Turing machines

• enumerators

• all variants have same power as original

• recognize the same class of languages

• equivalent to original

• robustness

Variants of Turing Machines

38

• to show robustness, vary transition function

• instead of moving L or R, the head may stay put (S)

• new transition function

• δ: Q x Γ → Q x Γ x {L,R,S}

• would this change allow additional languages to be
recognized, thus increasing the power of Turing
machines?

• no, since we could convert S to two transitions

• one that moves R

• another that moves back L

• in general, to show variants are equivalent, we show how
one can simulate another

Variants of Turing Machines

39

• multitape Turing machines
• like regular Turing machine, but with several tapes

• each tape has its own head for reading and writing
• input appears on tape 1
• other tapes start out blank

• transition function changed to reading/writing/moving
heads on multiple tapes simultaneously
• δ: Q x Γk → Q x Γk x {L,R,S}k

• the expression
 δ(qi,a1,…ak) = (qj,b1,…bk,L,R,…L) means
• machine moves from qi to qj

• heads 1 through k are, respectively,
• reading symbols a1 through ak

• writing symbols b1 through bk

• moving L, R, or S

Variants of Turing Machines

40

• multitape Turing machines may seem more powerful, but we
can prove they are equivalent to single-tape Turing machines
by showing they recognize the same language

• proof: Show how to convert a multitape TM M to an equivalent
single-tape TM S
• simulate M with S

• assume M has k tapes
• S will simulate M by storing all information on one tape

• uses # as a delimiter to separate contents of different
tapes

• keeps track of locations of different heads by placing a
dot over the symbol where the head is currently
located

• # and dotted symbols are added to the tape alphabet Γ

Variants of Turing Machines

41

• proof: Show how to convert a multitape TM M to an
equivalent single-tape TM S (cont.)

• simulating M with S

Variants of Turing Machines

42

• proof: Show how to convert a multitape TM M to an equivalent
single-tape TM S (cont.)

S = "on input w = w1…wn

1. S puts its tape into the format to represent k tapes

2. to simulate a single move, S scans from first # to last
to determine symbols under virtual heads

• S makes a second pass to update tapes according to
M’s transition function

3. if S moves a virtual head R and hits #

• S writes a blank on this cell

•shifts tape contents one unit right

• continues with simulation."

Variants of Turing Machines

43

• a language is Turing-recognizable if and only if some
multitape Turing machine recognizes it

• proof:

• a TRL must be recognized by an ordinary (single-
tape) TM, which is a special case of a multitape TM

• this proves one direction

• other direction proven by previous proof

Variants of Turing Machines

44

• nondeterministic Turing machines

• at any point in the computation, the machine may
proceed

• transition function has the form

• δ: Q x Γ → P(Q x Γ x {L,R})

• the computation of a nondeterministic Turing machine
is a tree whose branches correspond to different
possibilities for the machine

• if some branch leads to the accept state → accept

Variants of Turing Machines

45

• every nondeterministic Turing machine has an equivalent
deterministic Turing machine

• proof idea:

• simulate nondeterministic TM N with deterministic
TM D

• D will try all possible branches of N’s computation

• if D finds the accept state on a branch → accept

• otherwise, D will not terminate

Variants of Turing Machines

46

• every nondeterministic Turing machine has an equivalent
deterministic Turing machine (cont.)

• proof idea:

• view N’s computation on w as a tree

• each branch represents one of the branches of
nondeterminism

• each node is a configuration of N

• root is the start configuration

• D searches this tree for accepting configuration

•depth-first search not good since a branch may
be infinite (accept may be on another branch)

•use breadth-first search instead

Variants of Turing Machines

47

• every nondeterministic Turing machine has an equivalent
deterministic Turing machine (cont.)

• proof:

• D has three tapes (equivalent to having a single tape)

• tape 1 has the input string and is never changed

• tape 2 maintains a copy of N’s tape on some branch
of its nondeterministic computation

• tape 3 keeps track of D’s location in N

Variants of Turing Machines

48

• every nondeterministic Turing machine has an equivalent
deterministic Turing machine (cont.)

• proof:

• more on tape 3

• every node in the tree can have up to b children

• b is largest set of choices in N’s transition function

•so Γb = {1, 2, …, b}

•e.g., address 231 means 2nd child of root, followed
by 3rd child of next node, and 1st child of that node

• empty string is address of the root

Variants of Turing Machines

49

• every nondeterministic Turing machine has an equivalent
deterministic Turing machine (cont.)
• proof:
• D’s computation

1. initially, tape 1 contains input w; tapes 2 and 3 are
empty

2. copy tape 1 to tape 2 and initialize string on 3 to ε
3. use tape 2 to simulate N

• consult next symbol on tape 3 to determine choice
from N’s transition function

• if no more symbols remain, or invalid choice, goto 4
• also goto 4 if rejecting configuration encountered
• if accepting configuration encountered → accept

4. replace string on tape 3 with next string; goto 2

Variants of Turing Machines

50

• a language is Turing-recognizable if and only if some
nondeterministic Turing machine recognizes it

• proof:

• any deterministic TM is automatically a
nondeterministic TM, which accounts for one
direction of the proof

• the other direction was proven previously

Variants of Turing Machines

51

• we can alter the previous proof so that if N always halts
on all branches of computation, D will halt

• an NTM is called a decider if all branches halt on all
inputs

• a language is decidable if and only if some NTM decides
it

Variants of Turing Machines

52

• enumerators

• Turing machine with attached printer

• used as an output device to print strings

Variants of Turing Machines

53

• enumerators

• enumerator E starts with blank input on work tape

• if enumerator doesn’t halt, list of strings may be
infinite

• language enumerated by E is all strings printed out

• E may generate strings in any order, possibly with
repetitions

Variants of Turing Machines

54

• a language is Turing-recognizable if and only if some
enumerator enumerates it

• proof

• first show E enumerates language A, recognized by
TM M

• M = "on input w:

1. run E. every time E outputs a string,
compare it with w

2. if w ever appears in the output of E →
accept."

• M accepts strings that appear on E’s list

Variants of Turing Machines

55

• a language is Turing-recognizable if and only if some
enumerator enumerates it (cont.)

• proof

• other direction: if TM M recognizes language A, we
can construct an enumerator

• say that s1, s2, s3, …, si is a list of all possible strings
in Σ*

• E = "ignore the input

• repeat the following for i = 1, 2, 3, …

•run M for i steps on each input s1, s2, s3, …, si

• if any computations accept, print out
corresponding sj."

Variants of Turing Machines

56

• a language is Turing-recognizable if and only if some
enumerator enumerates it (cont.)

• if M accepts a particular s, it will eventually appear on
the list generated by E

• it will appear on the list infinitely many times because
M runs from the beginning to the end for each first
step

• this procedure gives the effect of running M in parallel
on all possible input strings

Variants of Turing Machines

57

• equivalence with other models

• we have seen several TM variants equivalent to the
original TM

• many other models of general-purpose computation
exist

• some are quite different

• all share the essential feature of TMs

• unrestricted access to unlimited memory

•unlike FAs and PDAs

• all models with this feature are equivalent, as long
as they satisfy reasonable requirements

•e.g., perform only a finite amount of work in a
single step

Variants of Turing Machines

58

• equivalence with other models (cont.)

• consider analogous situation with programming
languages

• languages look different (e.g., LISP and Pascal)

• same algorithms can be programmed in both

• therefore, the two languages describe exactly the
same class of of algorithms, as do all other
reasonable programming languages

• even though we can imagine many different
computational models, the class of algorithms they
describe is the same

The Definition of Algorithm

59

• algorithm: collection of simple instructions for carrying
out some task

• procedures or recipes

• play important role in mathematics

• ancient descriptions of algorithms for finding prime
numbers, greatest common divisors, etc.

• many algorithms today

• algorithm not defined precisely until 20th century

• previously, intuitive notion

• needed for specific problems

The Definition of Algorithm

60

• Hilbert’s Problems

• Int’l Congress of Mathematics, Paris, 1900

• 23 mathematical problems as challenges for the
century

• 10th problem concerned algorithms

The Definition of Algorithm

61

• preliminary: review of polynomials
• polynomial: sum of terms

• each term is a product of variables and constant (or
coefficient)

• ex: 6 · x · x · x · y · z · z = 6x3yz2

• term with coefficient 6
• ex: 6x3yz2 + 3xy2 - x3 – 10
• polynomial with 4 terms
• we’ll consider only coefficients that are integers

• root of a polynomial: variable values when = 0
• polynomial above has a root at x = 5, y =3, z = 0
• integral root because all integer values
•some polynomials do not have an integral root

The Definition of Algorithm

62

• Hilbert’s tenth problem

• devise an algorithm that tests whether a polynomial
has an integral root

• in his words: a process in which it can be determined in
a finite number of operations

• assumed an algorithm existed

• we now know no such algorithm exists

• i.e., it is unsolvable

• proving an algorithm does not exist required a clear
definition of algorithm

The Definition of Algorithm

63

• Church-Turing thesis

• 1936 paper by Church and Turing

• Church: used notational system called λ-calculus to
define algorithms

• Turing: used Turing machines

• two definitions were shown to be equivalent

• connection between informal notation and precise
definition is the Church-Turing thesis

The Definition of Algorithm

64

• Hilbert’s tenth problem

• in 1970, Matijasevic showed no algorithm exists for
testing whether a polynomial has integral roots

• rephrase the problem:

• D = {p | p is a polynomial with an integral root}

• in other words, is D decidable?

The Definition of Algorithm

65

• Hilbert’s tenth problem
• first, consider a simpler problem

• D1 = {p | p is a polynomial over x with an integral root}

• TM M1 that recognizes D1:
M1 = "on input <p>: where p is a polynomial over x

1. Evaluate p with x successively with values 0, 1, -1,
2, -2, 3, -3, … If at any point, the polynomial
evaluates to 0, accept."

• if p has an integral root, M1 will find it and accept
• if p does not, it will run forever

• for D, M goes through all possible settings of variables to
integral values

The Definition of Algorithm

66

• Hilbert’s tenth problem

• both M and M1 are recognizers, but not deciders

• we can convert M1 to a decider for D1 because we can
restrict the roots to precalculated bounds

• if a root is not found within these bounds, the
machine rejects

• Matijasevic’s theorem shows that calculating such
bounds is impossible

The Definition of Algorithm

67

• terminology for describing Turing machines

• a Turing machine serves as a precise model for the
definition of algorithms

• Turing machines can describe any algorithm

The Definition of Algorithm

68

• standardize the way we describe Turing machine algorithms

• what is the right level of detail? three possibilities

• formal description

• lists Turing machine’s states, transition function, etc.

• implementation description

• use English prose to describe how the Turing machine
moves the head and stores data on the tape

• no details of states or transition functions

• high-level description

• use English prose to describe an algorithm

• ignore implementation details

• no mention of tape or head

The Definition of Algorithm

69

• so far, we have looked at formal and implementation-level
descriptions

• helps in understanding Turing machines

• high-level descriptions are sufficient

The Definition of Algorithm

70

• format and notation for Turing machines

• input is always a string

• can represent polynomials, graphs, grammars,
automata, and combinations of these

• Turing machine may decode these to be interpreted
in any way desired

• notation for encoding object O is <O>

• for multiple objects O1,O2,…,Ok, encoding is
<O1,O2,…,Ok>

The Definition of Algorithm

71

• format and notation for Turing machines (cont.)

• describe Turing machine algorithms with an indented
segment of text within quotes

• break the algorithm into stages

• involving many individual steps

• indicate block structure of the algorithm with
further indentation

• first line describes the input to the machine

• if w, just a string

• if <A>, machine must test whether the input
properly encodes an object of the desired form

•rejects if not

The Definition of Algorithm

72

• example: let A be the language of all strings representing
undirected graphs that are connected
• a graph is connected if every node can be reached from

every other node by traveling along the edges of the graph
• A = {<G> | G is a connected undirected graph}
• high-level description of TM M that decides A

M = "On input <G>, the encoding of a graph G:
1. Select the first node of G and mark it.
2. Repeat the following stage until no new nodes are

marked:
3. For each node in G, mark it if it is attached by an

 edge to a node that has already been marked.
4. Scan all the nodes of G to determine whether they all

are marked. If they are, accept; otherwise, reject."

The Definition of Algorithm

73

• example: let A be the language of all strings representing
undirected graphs that are connected (cont.)
• implementation-level details

• usually, we don’t give this level of detail
• first, how does <G> encode the graph as a string?

• a list of nodes, followed by a list of edges
• each node is a decimal number
• each edge is a pair of decimal numbers representing the

endpoints of an edge
•
•
•
•
•

The Definition of Algorithm

74

• example: let A be the language of all strings representing
undirected graphs that are connected (cont.)
• when M receives <G>, it checks for proper encoding

• M scans tape to be sure there are two lists in the proper
form
• first list: distinct decimal numbers
•contains no repetitions
•use previous procedure for element distinctiveness

• second list: pairs of decimal numbers
•every node should also appear in the node list

•
•
•
•
•

The Definition of Algorithm

75

• example: let A be the language of all strings representing undirected graphs that are
connected (cont.)
• after input check, M moves on to stage 1
• stage 1: M marks first node with a dot on leftmost digit
• stage 2: repeat the following until no new nodes are marked

• stage 3: M scans the list of nodes to find an undotted node n1 and flags it by marking
it differently (underlining)
• M then scans the list again to find a dotted node n2 and underlines it, too
• M scans the list of edges
• for each edge, M tests whether the two underlined nodes n1 and n2 are the ones

appearing on the edge
• if so, M dots n1, removes the underlines, and starts stage 2 again
• if they aren’t, M checks the next edge on the list
• if there are no more edges, {n1, n2} is not an edge of G
• M moves the underline on n2 to the next dotted node and calls it n2

• repeats check
• if no more dotted nodes, n1 is not attached to any dotted nodes
• M sets the underline so that n1 is the next undotted node and n2 is the first

dotted node and repeats
• if there are no more dotted nodes, M has not been able to find any new nodes to

dot, so it goes to stage 4
• stage 4: scan the list of nodes to determine whether all are dotted

• if so, enter accept state
• otherwise, enter reject state

	Slide 1: Chapter 3 The Church-Turing Thesis
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

