
Chapter 3
The Church-Turing Thesis
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• so far, we have presented several models of computing 
devices

• finite automata for devices with a small amount of 
memory

• pushdown automata for devices with unlimited memory 
usable in a LIFO stack

• other simple tasks are beyond the capabilities of these 
models

• too restricted to serve as models of general-purpose 
computers
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• we now turn to more powerful model

• Turing machine

• proposed by Alan Turing in 1936

• Turing machine

• similar to FA

• but with unlimited and unrestricted memory

• more accurate model of a general-purpose computer

• can do everything a real computer can do

• still certain problems that it cannot solve

• these problems may be beyond the theoretical 
limits of computation
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• Turing machine

• infinite tape as unlimited memory

• tape head can read and write symbols and move around 
on the tape

• initially, tape contains input string 

• blank everywhere else

• to store information, machine can write on tape

• to read information, tape head can move back over it

• machine continues computing until it produces an output

• accept and reject by entering accept or reject states

• otherwise, it will go on forever, never halting
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• differences between FA and Turing machines

• Turing machines can both write and read on the tape

• the read-write head can both move left and right

• the tape is infinite

• states for rejecting and accepting take effect 
immediately
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• example: Turing machine M1 for testing membership in 
language B = {w#w | w ∈ {0,1}*}

• accept if input in B; reject otherwise

• as before, put yourself in place of the Turing machine

• imagine standing on input with millions of characters

• goal is to determine if input is in B

• i.e., two identical strings separated by #

• string too long to remember, but you can move back 
and forth on input and mark on it

• strategy: zig-zag on corresponding places of two 
sides of # and determine if they match

• mark tape to keep track of correspondences
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• example: Turing machine M1 for testing membership in 
language B = {w#w | w ∈ {0,1}*}  (cont.)

• will work this way

• M1 makes multiple passes over input

• on each pass, matches characters on each side of #

• crosses off each symbol as it is examined

• if all symbols crossed off → match

• goes into accept state

• mismatch

• goes into reject state
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• example: Turing machine M1 for testing membership in 
language B = {w#w | w ∈ {0,1}*}  (cont.)

• algorithm

• zig-zag across tape to corresponding positions on either 
side of #

• check whether these positions contain the same symbol

• if they do not, or no # is found → reject

• cross off symbols as they are checked to keep track of 
which symbols correspond

• when all symbols to the left of the # have been crossed 
off, check for remaining symbols on the right

• if any symbols remain → reject

• otherwise → accept
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• example: Turing machine M1 for testing membership in 
language B = {w#w | w ∈ {0,1}*}  (cont.)

• nonconsecutive snapshots of tape with input 
011000#011000
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• previous example leaves out some details

• formal definition is a 7-tuple

• transition function δ tells us how machine gets from 
one step to the next

• Q x Γ → Q x Γ x {L,R}

• when machine is in a certain state q and the head is 
over a tape square containing symbol a

• if δ(q,a) = (r,b,L), writes symbol b replacing a, goes to 
state r, move Left
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• a Turing machine M = (Q, Σ, Γ, δ, q0, qaccept, qreject) 
computes as follows

• input w = w1w2…wn ∈ Σ* on leftmost n squares of tape

• the rest of the tape is all blank symbols

• head starts at leftmost square

• Σ does not contain blank, so first blank appearing on 
tape marks the end of the input

• M goes from state to state according to the rules of δ

• if M tries to move its head left off left-hand end of 
tape, the head stays in the same place for that move

• computation continues until either accept or reject 
state is entered

• if neither occurs, M goes on forever
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• as a Turing machine computes, changes occur in the

• current state

• current tape contents

• current head location

• a setting of these three items is called a configuration 
of the Turing machine

• for state q and two strings u and v over the tape 
alphabet Γ

• u q v is the configuration where the current state is 
q, tape contents is uv, and head location is at first 
symbol of v

• only blanks after last symbol of v
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• example: 1011q701111

• tape is 101101111

• current state is q7

• head is currently on second 0
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• configuration C1 yields C2 if the TM can go from C1 to C2 
in a single step

• formal description

• suppose we have a,b,c ∈ Γ, u,v ∈ Γ*, and states qi and qj

• ua qi bv  and  u qj acv  are two configurations (moving L)

• therefore, ua qi bv  yields u qj acv  if δ(qi,b) = (qj,c,L)

• ua qi bv  and  uac qj v  are two configurations (moving R)

• therefore, ua qi bv  yields uac qj v  if δ(qi,b) = (qj,c,R)



Turing Machines

16

• special cases occur when the head is at one of the ends 
of the configuration

• for left-hand end, the configuration qi bv  yields  qj cv 
if moving to left

• we’re preventing the machine from going off left-
hand end of tape

• for right-hand end, the configuration ua qi  is 
equivalent to ua qi _  since blanks follow the right-most 
character
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• start configuration is q0w

• machine is in start state q0

• head at leftmost position on the tape

• accepting configuration is qaccept

• rejecting configuration is qreject 

• accepting and rejecting configurations are halting 
configurations

• do not yield further configurations



Turing Machines

18

• a Turing machine accepts input w if a sequence of 
configurations C1, C2,…,Ck exists where

• C1 is the start configuration M on input w

• each Ci yields Ci+1

• Ck is the accepting configuration

• the collection of strings M accepts is the language of M

• or the language recognized by M, or L(M)

• a language is Turing-recognizable if some Turing machine 
recognizes it
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• when we start a Turing machine on an input, three 
outcomes are possible 
• accept
• reject
• loop (does not halt)

• a TM can fail to accept an input by entering the qreject 
state and rejecting, or by looping
• sometimes difficult to distinguish machine looping vs. 

just taking a long time

• prefer TMs that halt on all inputs (never loop)
• such machines are called deciders
• always make a decision to accept or reject
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• a decider that recognizes some language is also said to 
decide that language

• call a language Turing-decidable, or simply decidable, if 
some Turing machine decides it
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• we could formally describe a TM with its 7-tuple

• however, lots of information

• alternatively, we will only give higher level descriptions

• really just shorthand for formal counterpart
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• example: describe a TM M2 that describes A = {02n
 | n ≥ 0} 

(or the language consisting of all strings of 0s whose 
length is a power of 2)

M2 = "on input string w:

1. sweep left to right across the tape, crossing off 
every other 0

2. if in stage 1, the tape contained a single 0 → accept

3. if in stage 1, the tape contained more than a single 0 
and the number of 0s was odd → reject

4. return the head to the left-hand end of the tape

5. go to stage 1."
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• example: describe a TM M2 that describes A = {02n
 | n ≥ 0} 

(or the language consisting of all strings of 0s whose 
length is a power of 2), cont.

• each iteration of stage 1 cuts the number of 0s in half 

• machine keeps track of whether the number of 0s seen 
is even or odd

• if odd and > 1, original number of 0s is not a power of 2

• input is rejected

• if number of 0s seen is 1, original number of 0s must 
be a power of 2

• input is accepted
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• example: describe a TM M2 that describes A = {02n
 | n ≥ 0} 

(or the language consisting of all strings of 0s whose 
length is a power of 2), cont.

• formal description of M2 = (Q, Σ, Γ, δ, q1, qaccept, qreject)

• Q = {q1, q2, q3, q4, q5, qaccept, qreject)

• Σ = {0}

• Γ = {0,x,_}

• δ described with state diagram (next slide)

• start state = q1

• accept state = qaccept

• reject state = qreject
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• example: describe a TM M2 that describes A = {02n
 | n ≥ 0} 

(or the language consisting of all strings of 0s whose 
length is a power of 2), cont.

• state diagram
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• example: describe a TM M2 that describes A = {02n
 | n ≥ 0} 

(or the language consisting of all strings of 0s whose 
length is a power of 2), cont.

• state diagram explanation

• 0 → _,R  appears on arc from q1 to q2

• when in state q1 with the head reading 0, go to q2, 
write _, and move the head right

•δ(q1, 0) = (q2, _, R)

• machine begins by writing a blank over leftmost 0 on 
tape so that it can find the left-hand end in stage 4

• could have used another symbol (like #), but we like 
to keep the tape alphabet small
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• example: describe a TM M2 that describes A = {02n
 | n ≥ 0} 

(or the language consisting of all strings of 0s whose 
length is a power of 2), cont.

• sample run on input 0000
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• example: describe a Turing machine M1 that describes 
B = {w#w | w ∈ {0,1}*} 

• M1 = (Q, Σ, Γ, δ, q1, qaccept, qreject) where

• Q = {q1, …, q8, qaccept, qreject)

• Σ = {0, 1, #}

• Γ = {0, 1, #, x, _}

• δ described with state diagram (next slide)

• start state = q1

• accept state = qaccept

• reject state = qreject
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• example: describe a Turing machine M1 that describes 
B = {w#w | w ∈ {0,1}*}, cont.

• state diagram
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• example: describe a Turing machine M1 that describes 
B = {w#w | w ∈ {0,1}*}, cont.

• state diagram explanation

• label 0,1 → R on arc from q3 to itself

• stay in q3 and move to right when reading a 0 or 1 in 
state q3

• do not change symbol on tape

• stage 1 implemented by q1 through q7

• stage 2 by the remaining states

• for clarity, reject state not shown

• implicit rejection when no arc leaves state on symbol

•e.g., no arc for # from q5

• in all such cases, head moves right on arc to qreject
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• example: design a Turing machine M3 that performs 
elementary arithmetic: C = {aibjck | i x j = k and i,j,k ≥ 1}

M3 = "on input string w:

1. scan input from left to right to determine if it is a 
member of a+b+c+ and reject if it isn’t

2. return head to left-hand end of tape

3. cross off an a and scan right until b occurs

•shuttle between b’s and c’s, crossing off one of each 
until all b’s are gone

• if all c’s crossed off, but some b’s remain → reject

4. restore crossed off b’s

•repeat stage 3 if another a to cross off

• if all a’s crossed off and all c’s crossed off → accept

•otherwise → reject."
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• example: design a Turing machine M3 that performs elementary 
arithmetic: C = {aibjck | i x j = k and i,j,k ≥ 1}, cont.
• closer look at stages of M3

• in stage 1, machine operates like a FA
• no writing necessary as head moves left to right
• keeps track by using states to determine if input in proper form

• in stage 2, how does machine find left side of input?
• finding right end is easy since it is terminated with blank
• no terminating symbol on left end
• can mark the left end with a blank when machine starts
• alternatively, recall that if the machine tries to move left 

beyond the left end of the tape, it stays in the same place
• to make a left end detector, we can write a special symbol at 
the current position while recording the symbol it replaced

• it can then try to move left
• if it is still over the special symbol, it must be on the left end
• otherwise, there are other symbols, and the original symbol is 
restored

• stages 3 and 4 are straightforward
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• example: describe a Turing machine M4 that solves the 
element distinctive problem: given a list of strings over 
{0,1} separated by #s, accept if all strings are different

 
   E = {#x1#x2 #...#xl | each xi ∈ {0,1}* and xi ≠ xj for each i ≠ j} 

• works by comparing x1 with x2 through xl

• then comparing x2 with x3 through xl

• etc.
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• example: describe a Turing machine M4 that solves the element distinctive 
problem: given a list of strings over {0,1} separated by #s, accept if all strings 
are different, cont.

 
   E = {#x1#x2 #...#xl | each xi ∈ {0,1}* and xi ≠ xj for each i ≠ j} 

M4 = "on input w:
1. place mark on top of leftmost symbol

• if symbol was a blank → accept
• if symbol was #, continue to next stage
• otherwise → reject

2. scan right to next # and place second mark on it
• if no # encountered before blank, only x1 was present → accept

3. zig-zag and compare two strings to right of marked #s
• if they are equal → reject

4. move rightmost of two marks to next # symbol to the right
• if no # encountered before blank, move leftmost mark to next # to 

its right and rightmost mark to the # after that (reset first string)
• if no # is available for rightmost mark, all strings have been compared 

→ accept
5. go to stage 3."
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• example: describe a Turing machine M4 that solves the 
element distinctive problem: given a list of strings over {0,1} 
separated by #s, accept if all strings are different, cont.

 
   E = {#x1#x2 #...#xl | each xi ∈ {0,1}* and xi ≠ xj for each i ≠ j} 

• this machine illustrates the technique of marking tape 
symbols
• in stage 2, the machine places a mark above the symbol #
• in the implementation, there are two different symbols: # 

and ሶ#
• whenever the machine makes a mark above a symbol, it 

means the second one
• removing the mark means the machine writes the first one
• used in a variety of situations – just include both in the 

alphabet
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• from the previous examples, the languages A, B, C, and E 
are decidable

• all decidable languages are Turing-recognizable, so these 
languages are also Turing-recognizable
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• different versions of Turing machines abound

• multitape Turing machines

• nondeterministic Turing machines

• enumerators

• all variants have same power as original

• recognize the same class of languages

• equivalent to original

• robustness
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• to show robustness, vary transition function

• instead of moving L or R, the head may stay put (S)

• new transition function 

• δ: Q x Γ → Q x Γ x {L,R,S}

• would this change allow additional languages to be 
recognized, thus increasing the power of Turing 
machines?

• no, since we could convert S to two transitions

• one that moves R

• another that moves back L

• in general, to show variants are equivalent, we show how 
one can simulate another
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• multitape Turing machines
• like regular Turing machine, but with several tapes

• each tape has its own head for reading and writing
• input appears on tape 1
• other tapes start out blank

• transition function changed to reading/writing/moving 
heads on multiple tapes simultaneously
• δ: Q x Γk → Q x Γk x {L,R,S}k

• the expression 
 δ(qi,a1,…ak) = (qj,b1,…bk,L,R,…L)    means
• machine moves from qi to qj

• heads 1 through k are, respectively,
• reading symbols a1 through ak

• writing symbols b1 through bk

• moving L, R, or S
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• multitape Turing machines may seem more powerful, but we 
can prove they are equivalent to single-tape Turing machines 
by showing they recognize the same language

• proof: Show how to convert a multitape TM M to an equivalent 
single-tape TM S
• simulate M with S

• assume M has k tapes
• S will simulate M by storing all information on one tape

• uses # as a delimiter to separate contents of different 
tapes

• keeps track of locations of different heads by placing a 
dot over the symbol where the head is currently 
located

• # and dotted symbols are added to the tape alphabet Γ



Variants of Turing Machines

41

• proof: Show how to convert a multitape TM M to an 
equivalent single-tape TM S (cont.)

• simulating M with S
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• proof: Show how to convert a multitape TM M to an equivalent 
single-tape TM S (cont.)

S = "on input w = w1…wn

1. S puts its tape into the format to represent k tapes

2. to simulate a single move, S scans from first # to last 
# to determine symbols under virtual heads

• S makes a second pass to update tapes according to 
M’s transition function

3. if S moves a virtual head R and hits #

• S writes a blank on this cell

•shifts tape contents one unit right

• continues with simulation."
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• a language is Turing-recognizable if and only if some 
multitape Turing machine recognizes it

• proof:

• a TRL must be recognized by an ordinary (single-
tape) TM, which is a special case of a multitape TM

• this proves one direction

• other direction proven by previous proof
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• nondeterministic Turing machines

• at any point in the computation, the machine may 
proceed 

• transition function has the form

• δ: Q x Γ → P(Q x Γ x {L,R})

• the computation of a nondeterministic Turing machine 
is a tree whose branches correspond to different 
possibilities for the machine

• if some branch leads to the accept state → accept
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• every nondeterministic Turing machine has an equivalent 
deterministic Turing machine

• proof idea:

• simulate nondeterministic TM N with deterministic 
TM D

• D will try all possible branches of N’s computation

• if D finds the accept state on a branch → accept

• otherwise, D will not terminate
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• every nondeterministic Turing machine has an equivalent 
deterministic Turing machine (cont.)

• proof idea:

• view N’s computation on w as a tree

• each branch represents one of the branches of 
nondeterminism

• each node is a configuration of N

• root is the start configuration

• D searches this tree for accepting configuration

•depth-first search not good since a branch may 
be infinite (accept may be on another branch)

•use breadth-first search instead
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• every nondeterministic Turing machine has an equivalent 
deterministic Turing machine (cont.)

• proof:

• D has three tapes (equivalent to having a single tape) 

• tape 1 has the input string and is never changed

• tape 2 maintains a copy of N’s tape on some branch 
of its nondeterministic computation

• tape 3 keeps track of D’s location in N
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• every nondeterministic Turing machine has an equivalent 
deterministic Turing machine (cont.)

• proof:

• more on tape 3

• every node in the tree can have up to b children

• b is largest set of choices in N’s transition function

•so Γb = {1, 2, …, b}

•e.g., address 231 means 2nd child of root, followed 
by 3rd child of next node, and 1st child of that node

• empty string is address of the root
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• every nondeterministic Turing machine has an equivalent 
deterministic Turing machine (cont.)
• proof:
• D’s computation

1. initially, tape 1 contains input w; tapes 2 and 3 are 
empty

2. copy tape 1 to tape 2 and initialize string on 3 to ε
3. use tape 2 to simulate N

• consult next symbol on tape 3 to determine choice 
from N’s transition function

• if no more symbols remain, or invalid choice, goto 4
• also goto 4 if rejecting configuration encountered
• if accepting configuration encountered → accept

4. replace string on tape 3 with next string; goto 2
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• a language is Turing-recognizable if and only if some 
nondeterministic Turing machine recognizes it

• proof:

• any deterministic TM is automatically a 
nondeterministic TM, which accounts for one 
direction of the proof

• the other direction was proven previously
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• we can alter the previous proof so that if N always halts 
on all branches of computation, D will halt

• an NTM is called a decider if all branches halt on all 
inputs

• a language is decidable if and only if some NTM decides 
it
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• enumerators

• Turing machine with attached printer

• used as an output device to print strings
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• enumerators

• enumerator E starts with blank input on work tape

• if enumerator doesn’t halt, list of strings may be 
infinite

• language enumerated by E is all strings printed out

• E may generate strings in any order, possibly with 
repetitions
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• a language is Turing-recognizable if and only if some 
enumerator enumerates it

• proof

• first show E enumerates language A, recognized by 
TM M

• M = "on input w:

1. run E. every time E outputs a string, 
compare it with w

2. if w ever appears in the output of E → 
accept."

• M accepts strings that appear on E’s list
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• a language is Turing-recognizable if and only if some 
enumerator enumerates it  (cont.)

• proof

• other direction: if TM M recognizes language A, we 
can construct an enumerator

• say that s1, s2, s3, …, si is a list of all possible strings 
in Σ*

• E = "ignore the input

• repeat the following for i = 1, 2, 3, …

•run M for i steps on each input s1, s2, s3, …, si 

• if any computations accept, print out 
corresponding sj."
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• a language is Turing-recognizable if and only if some 
enumerator enumerates it  (cont.) 

• if M accepts a particular s, it will eventually appear on 
the list generated by E

• it will appear on the list infinitely many times because 
M runs from the beginning to the end for each first 
step

• this procedure gives the effect of running M in parallel 
on all possible input strings
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• equivalence with other models

• we have seen several TM variants equivalent to the 
original TM

• many other models of general-purpose computation 
exist

• some are quite different

• all share the essential feature of TMs

• unrestricted access to unlimited memory

•unlike FAs and PDAs

• all models with this feature are equivalent, as long 
as they satisfy reasonable requirements

•e.g., perform only a finite amount of work in a 
single step
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• equivalence with other models (cont.)

• consider analogous situation with programming 
languages

• languages look different (e.g., LISP and Pascal)

• same algorithms can be programmed in both

• therefore, the two languages describe exactly the 
same class of of algorithms, as do all other 
reasonable programming languages

• even though we can imagine many different 
computational models, the class of algorithms they 
describe is the same
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• algorithm: collection of simple instructions for carrying 
out some task

• procedures or recipes

• play important role in mathematics

• ancient descriptions of algorithms for finding prime 
numbers, greatest common divisors, etc.

• many algorithms today

• algorithm not defined precisely until 20th century

• previously, intuitive notion

• needed for specific problems
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• Hilbert’s Problems 

• Int’l Congress of Mathematics, Paris, 1900

• 23 mathematical problems as challenges for the 
century

• 10th problem concerned algorithms
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• preliminary: review of polynomials
• polynomial: sum of terms

• each term is a product of variables and constant (or 
coefficient)

• ex: 6 · x · x · x · y · z · z = 6x3yz2

• term with coefficient 6
• ex: 6x3yz2 + 3xy2 - x3 – 10
• polynomial with 4 terms
• we’ll consider only coefficients that are integers

• root of a polynomial: variable values when = 0
• polynomial above has a root at x = 5, y =3, z = 0
• integral root because all integer values
•some polynomials do not have an integral root
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• Hilbert’s tenth problem

• devise an algorithm that tests whether a polynomial 
has an integral root

• in his words: a process in which it can be determined in 
a finite number of operations

• assumed an algorithm existed

• we now know no such algorithm exists 

• i.e., it is unsolvable

• proving an algorithm does not exist required a clear 
definition of algorithm
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• Church-Turing thesis

• 1936 paper by Church and Turing

• Church: used notational system called λ-calculus to 
define algorithms

• Turing: used Turing machines

• two definitions were shown to be equivalent

• connection between informal notation and precise 
definition is the Church-Turing thesis
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• Hilbert’s tenth problem

• in 1970, Matijasevic showed no algorithm exists for 
testing whether a polynomial has integral roots

• rephrase the problem:

• D = {p | p is a polynomial with an integral root}

• in other words, is D decidable?
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• Hilbert’s tenth problem
• first, consider a simpler problem

• D1 = {p | p is a polynomial over x with an integral root}

• TM M1 that recognizes D1:
M1 = "on input <p>: where p is a polynomial over x

1. Evaluate p with x successively with values 0, 1, -1, 
2, -2, 3, -3, …  If at any point, the polynomial 
evaluates to 0, accept."

• if p has an integral root, M1 will find it and accept
• if p does not, it will run forever

• for D, M goes through all possible settings of variables to 
integral values
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• Hilbert’s tenth problem

• both M and M1 are recognizers, but not deciders

• we can convert M1 to a decider for D1 because we can 
restrict the roots to precalculated bounds

• if a root is not found within these bounds, the 
machine rejects

• Matijasevic’s theorem shows that calculating such 
bounds is impossible
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• terminology for describing Turing machines

• a Turing machine serves as a precise model for the 
definition of algorithms

• Turing machines can describe any algorithm
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• standardize the way we describe Turing machine algorithms

• what is the right level of detail? three possibilities

• formal description

• lists Turing machine’s states, transition function, etc.

• implementation description

• use English prose to describe how the Turing machine 
moves the head and stores data on the tape

• no details of states or transition functions

• high-level description

• use English prose to describe an algorithm

• ignore implementation details

• no mention of tape or head
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• so far, we have looked at formal and implementation-level 
descriptions

• helps in understanding Turing machines

• high-level descriptions are sufficient
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• format and notation for Turing machines

• input is always a string

• can represent polynomials, graphs, grammars, 
automata, and combinations of these

• Turing machine may decode these to be interpreted 
in any way desired

• notation for encoding object O is <O>

• for multiple objects O1,O2,…,Ok, encoding is 
<O1,O2,…,Ok>
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• format and notation for Turing machines (cont.)

• describe Turing machine algorithms with an indented 
segment of text within quotes

• break the algorithm into stages

• involving many individual steps

• indicate block structure of the algorithm with 
further indentation

• first line describes the input to the machine

• if w, just a string

• if <A>, machine must test whether the input 
properly encodes an object of the desired form

•rejects if not
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• example: let A be the language of all strings representing 
undirected graphs that are connected
• a graph is connected if every node can be reached from 

every other node by traveling along the edges of the graph
• A = {<G> | G is a connected undirected graph}
• high-level description of TM M that decides A

M = "On input <G>, the encoding of a graph G:
1. Select the first node of G and mark it.
2. Repeat the following stage until no new nodes are 

marked:
3.     For each node in G, mark it if it is attached by an

    edge to a node that has already been marked.
4. Scan all the nodes of G to determine whether they all 

are marked.  If they are, accept; otherwise, reject."
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• example: let A be the language of all strings representing 
undirected graphs that are connected (cont.)
• implementation-level details

• usually, we don’t give this level of detail
• first, how does <G> encode the graph as a string?

• a list of nodes, followed by a list of edges
• each node is a decimal number
• each edge is a pair of decimal numbers representing the 

endpoints of an edge
•  
•  
•  
•  
•  
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• example: let A be the language of all strings representing 
undirected graphs that are connected (cont.)
• when M receives <G>, it checks for proper encoding

• M scans tape to be sure there are two lists in the proper 
form
• first list: distinct decimal numbers
•contains no repetitions
•use previous procedure for element distinctiveness

• second list: pairs of decimal numbers
•every node should also appear in the node list

•  
•  
•  
•  
•  
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• example: let A be the language of all strings representing undirected graphs that are 
connected (cont.)
• after input check, M moves on to stage 1
• stage 1: M marks first node with a dot on leftmost digit
• stage 2: repeat the following until no new nodes are marked

• stage 3: M scans the list of nodes to find an undotted node n1 and flags it by marking 
it differently (underlining)
• M then scans the list again to find a dotted node n2 and underlines it, too
• M scans the list of edges
• for each edge, M tests whether the two underlined nodes n1 and n2 are the ones 

appearing on the edge
• if so, M dots n1, removes the underlines, and starts stage 2 again
• if they aren’t, M checks the next edge on the list
• if there are no more edges, {n1, n2} is not an edge of G
• M moves the underline on n2 to the next dotted node and calls it n2

• repeats check
• if no more dotted nodes, n1 is not attached to any dotted nodes
• M sets the underline so that n1 is the next undotted node and n2 is the first 

dotted node and repeats
• if there are no more dotted nodes, M has not been able to find any new nodes to 

dot, so it goes to stage 4
• stage 4: scan the list of nodes to determine whether all are dotted

• if so, enter accept state
• otherwise, enter reject state
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