Chapter 3 The Church-Turing Thesis

Overview

- $\boldsymbol{\cdot}$ so far, we have presented several models of computing devices
 - finite automata for devices with a small amount of memory
 - pushdown automata for devices with unlimited memory usable in a LIFO stack
 - $\boldsymbol{\cdot}$ other simple tasks are beyond the capabilities of these models
 - too restricted to serve as models of general-purpose computers

1

Turing Machines

- we now turn to more powerful model
 - Turing machine
- proposed by Alan Turing in 1936
- Turing machine
 - similar to FA
 - but with unlimited and unrestricted memory
 - more accurate model of a general-purpose computer
 - can do everything a real computer can do
 - still certain problems that it cannot solve
 - these problems may be beyond the theoretical limits of computation

3

Turing Machines

- differences between FA and Turing machines
 - Turing machines can both write and read on the tape
- the read-write head can both move left and right
- \cdot the tape is infinite
- states for rejecting and accepting take effect immediately

Turing Machines

- Turing machine
 - infinite tape as unlimited memory
 - $\boldsymbol{\cdot}$ tape head can read and write symbols and move around on the tape
 - initially, tape contains input string
 blank everywhere else
 - to store information, machine can write on tape
 - to read information, tape head can move back over it
 - machine continues computing until it produces an output
 accept and reject by entering accept or reject states
 - otherwise, it will go on forever, never halting

4

2

Turing Machines

- example: Turing machine M_1 for testing membership in language B = {w#w | w \in \{0,1\}^*}
- accept if input in B; reject otherwise
- as before, put yourself in place of the Turing machine
 - imagine standing on input with millions of characters
 goal is to determine if input is in B
 i.e., two identical strings separated by #
 - string too long to remember, but you can move back and forth on input and mark on it
 - strategy: zig-zag on corresponding places of two sides of # and determine if they match
 mark tape to keep track of correspondences

Turing Machines

- example: Turing machine M_1 for testing membership in language B = {w#w | $w \in \{0,1\}^*\}$ (cont.)
- will work this way
 - M1 makes multiple passes over input
 - on each pass, matches characters on each side of #
 - · crosses off each symbol as it is examined
 - $\boldsymbol{\cdot}$ if all symbols crossed off \rightarrow match
 - goes into accept state
 - mismatch
 - goes into reject state

7

Turing Machines

 example: Turing machine M₁ for testing membership in language B = {w#w | w ∈ {0,1}*} (cont.)
 nonconsecutive snapshots of tape with input 011000#011000

9

Turing Machines

- A *Turing machine* is a 7-tuple, $(Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where Q, Σ, Γ are all finite sets and
 - 1. *Q* is the set of states.
 - 2. Σ is the input alphabet not containing the *blank symbol* \sqcup ,
 - **3.** Γ is the tape alphabet, where $\sqcup \in \Gamma$ and $\Sigma \subseteq \Gamma$,
 - 4. $\delta: Q \times \Gamma \longrightarrow Q \times \Gamma \times \{L, R\}$ is the transition function,
 - 5. $q_0 \in Q$ is the start state,
 - 6. $q_{\text{accept}} \in Q$ is the accept state, and
 - 7. $q_{\text{reject}} \in Q$ is the reject state, where $q_{\text{reject}} \neq q_{\text{accept}}$.

Turing Machines

Turing Machines

algorithm

side of #

- previous example leaves out some details
- formal definition is a 7-tuple
- transition function δ tells us how machine gets from one step to the next

• example: Turing machine M1 for testing membership in

• if they do not, or no # is found \rightarrow reject

• zig-zag across tape to corresponding positions on either

• check whether these positions contain the same symbol

• cross off symbols as they are checked to keep track of

• when all symbols to the left of the # have been crossed off, check for remaining symbols on the right

language B = { $w#w | w \in \{0,1\}^*$ } (cont.)

which symbols correspond

• if any symbols remain \rightarrow reject • otherwise \rightarrow accept

- $\bullet Q \times \Gamma \to Q \times \Gamma \times \{L,R\}$
- when machine is in a certain state q and the head is over a tape square containing symbol a
- $\boldsymbol{\cdot}$ if $\delta(q,a)$ = (r,b,L), writes symbol b replacing a, goes to state r, move Left

10

8

Turing Machines

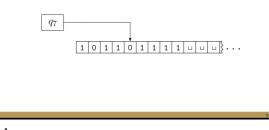
- a Turing machine M = (Q, $\Sigma,\,\Gamma,\,\delta,\,q_0,\,q_{accept},\,q_{reject})$ computes as follows
 - input w = $w_1w_2...w_n \in \Sigma^{\star}$ on leftmost n squares of tape
 - the rest of the tape is all blank symbols
 - head starts at leftmost square
 - Σ does not contain blank, so first blank appearing on tape marks the end of the input
 - M goes from state to state according to the rules of δ
 if M tries to move its head left off left-hand end of tape, the head stays in the same place for that move
 - computation continues until either accept or reject state is entered
 - if neither occurs, M goes on forever

Turing Machines

- $\boldsymbol{\cdot}$ as a Turing machine computes, changes occur in the
- $\boldsymbol{\cdot}$ current state
- current tape contents
- current head location
- a setting of these three items is called a configuration of the Turing machine
 - \bullet for state q and two strings u and v over the tape alphabet Γ
 - \cdot u q v is the configuration where the current state is q, tape contents is uv, and head location is at first symbol of v
 - only blanks after last symbol of v

Turing Machines

- example: 1011q₇01111
- tape is 101101111
- $\boldsymbol{\cdot}$ current state is \boldsymbol{q}_7
- head is currently on second 0



14

Turing Machines

- configuration C_1 yields C_2 if the TM can go from C_1 to C_2 in a single step
- formal description
 - suppose we have a,b,c $\in \Gamma$, u,v $\in \Gamma^{*}$, and states q_{i} and q_{j}
 - $\label{eq:constraint} \begin{array}{l} \bullet \mbox{ ua } q_i \mbox{ bv and } \mbox{ u } q_j \mbox{ acv are two configurations (moving L)} \\ \bullet \mbox{ therefore, ua } q_i \mbox{ bv yields u } q_j \mbox{ acv if } \delta(q_i,b) = (q_j,c,L) \end{array}$
 - ua q_i bv and uac q_j v are two configurations (moving R)
 therefore, ua q_i bv yields uac q_i v if δ(q_i,b) = (q_i,c,R)

15

13

Turing Machines

- \cdot start configuration is q₀w
 - $\boldsymbol{\cdot}$ machine is in start state q_0
 - $\boldsymbol{\cdot}$ head at leftmost position on the tape
- \cdot accepting configuration is q_{accept}
- rejecting configuration is q_{reject}
- $\boldsymbol{\cdot}$ accepting and rejecting configurations are halting configurations
 - do not yield further configurations

Turing Machines

- \cdot special cases occur when the head is at one of the ends of the configuration
- \cdot for left-hand end, the configuration q_i bv yields q_j cv if moving to left
 - we're preventing the machine from going off lefthand end of tape
- \bullet for right-hand end, the configuration ua q_i is equivalent to ua q_i _ since blanks follow the right-most character

16

Turing Machines

- a Turing machine accepts input w if a sequence of configurations C_1, C_2, \ldots, C_k exists where
 - $\boldsymbol{\cdot} \ \boldsymbol{\mathcal{C}}_1$ is the start configuration M on input w
 - each C_i yields C_{i+1}
 - $\cdot C_k$ is the accepting configuration
- the collection of strings M accepts is the language of M
 or the language recognized by M, or L(M)
- a language is Turing-recognizable if some Turing machine recognizes it

Turing Machines

- $\boldsymbol{\cdot}$ when we start a Turing machine on an input, three outcomes are possible
 - accept
 - reject
 - loop (does not halt)
- a TM can fail to accept an input by entering the $\mathbf{q}_{\text{reject}}$ state and rejecting, or by looping
- sometimes difficult to distinguish machine looping vs. just taking a long time
- prefer TMs that halt on all inputs (never loop)
 - such machines are called deciders
 - always make a decision to accept or reject

19

Examples of Turing Machines

- we could formally describe a TM with its 7-tuple
 however, lots of information
 - alternatively, we will only give higher level descriptions
 really just shorthand for formal counterpart

21

Examples of Turing Machines

- example: describe a TM M_2 that describes $A = \{0^{2^n} \mid n \ge 0\}$ (or the language consisting of all strings of 0s whose length is a power of 2), cont.
- $\boldsymbol{\cdot}$ each iteration of stage 1 cuts the number of Os in half
- $\boldsymbol{\cdot}$ machine keeps track of whether the number of 0s seen is even or odd
 - if odd and > 1, original number of Os is not a power of 2
 input is rejected
 - \bullet if number of 0s seen is 1, original number of 0s must be a power of 2
 - input is accepted

Turing Machines

- a decider that recognizes some language is also said to decide that language
 - call a language Turing-decidable, or simply decidable, if some Turing machine decides it

20

Examples of Turing Machines

- example: describe a TM M_2 that describes A = { $0^{2^n} | n \ge 0$ } (or the language consisting of all strings of 0s whose length is a power of 2)
 - M_2 = "on input string w:
 - 1. sweep left to right across the tape, crossing off every other 0
 - 2. if in stage 1, the tape contained a single $0 \rightarrow accept$
 - 3. if in stage 1, the tape contained more than a single 0 and the number of 0s was odd \rightarrow reject
 - 4. return the head to the left-hand end of the tape
 - 5. go to stage 1."

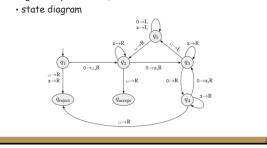
22

Examples of Turing Machines

- example: describe a TM M_2 that describes $A = \{0^{2^n} | n \ge 0\}$ (or the language consisting of all strings of 0s whose length is a power of 2), cont.
 - formal description of $M_2 = (Q, \Sigma, \Gamma, \delta, q_1, q_{accept}, q_{reject})$
 - Q = {q₁, q₂, q₃, q₄, q₅, q_{accept}, q_{reject})
 - Σ = {0}
 - F = {0,x,_}
 - $\cdot \delta$ described with state diagram (next slide)
 - start state = q₁
 - accept state = q_{accept}
 - reject state = q_{reject}

Examples of Turing Machines

• example: describe a TM M_2 that describes A = { $0^{2^n} | n \ge 0$ } (or the language consisting of all strings of 0s whose length is a power of 2), cont.



25

• •••••••••••••••••••••••••••••••••••			The second second		lachines	
-yamn	05	OT.	Illring	•	lachines	
	00	U 1	i ui iiig		lacinico	

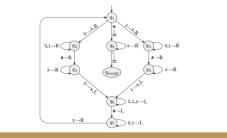
 example: describe a TM M₂ that describes A = {02ⁿ | n ≥ 0} (or the language consisting of all strings of 0s whose length is a power of 2), cont.
 sample run on input 0000

q_1 0000	${\scriptstyle {\sqcup}q_{5}}$ х0х ${\scriptstyle {\sqcup}}$	$\sqcup \mathbf{x}q_5\mathbf{x}\mathbf{x}\sqcup$
$\Box q_2$ 000	$q_5 \sqcup x 0 x \sqcup$	$\sqcup q_5 \mathbf{X} \mathbf{X} \mathbf{X} \sqcup$
$\sqcup \mathbf{x}q_3$ 00	$\sqcup q_2 \mathbf{x} 0 \mathbf{x} \sqcup$	$q_5 \sqcup x x x \sqcup$
$\sqcup x0q_40$	$\sqcup xq_20x \sqcup$	$\sqcup q_2 \mathbf{X} \mathbf{X} \mathbf{X} \sqcup$
$\sqcup x0xq_3 \sqcup$	$\sqcup \mathbf{x} \mathbf{x} q_3 \mathbf{x} \sqcup$	$\sqcup \mathbf{x}q_2\mathbf{x}\mathbf{x}\sqcup$
$_{ m L}$ х0 q_5 х $_{ m L}$	$\sqcup x x x q_3 \sqcup$	$\sqcup \mathbf{x} \mathbf{x} q_2 \mathbf{x} \sqcup$
$_{\sqcup} \mathbf{x} q_5 0 \mathbf{x} \sqcup$	$\sqcup x x q_5 x \sqcup$	$\sqcup x x x q_2 \sqcup$
		$\sqcup XXX \sqcup q_{accept}$

27

Examples of Turing Machines

- example: describe a Turing machine M_1 that describes B = {w#w | $w \in \{0,1\}^*\},$ cont.



- example: describe a TM M_2 that describes A = { $0^{2^n} | n \ge 0$ } (or the language consisting of all strings of 0s whose length is a power of 2), cont.
 - state diagram explanation
 - 0 \rightarrow _,R appears on arc from q_1 to q_2
 - when in state q_1 with the head reading 0, go to q_2 , write _, and move the head right

• $\delta(q_1, 0) = (q_2, _, R)$

- machine begins by writing a blank over leftmost 0 on tape so that it can find the left-hand end in stage 4
- could have used another symbol (like #), but we like to keep the tape alphabet small

26

Examples of Turing Machines

- example: describe a Turing machine M_1 that describes B = {w#w | $w \in \{0,1\}^*\}$
 - $M_1 = (Q, \Sigma, \Gamma, \delta, q_1, q_{accept}, q_{reject})$ where
 - Q = { $q_1, ..., q_8, q_{accept}, q_{reject}$ }
 - Σ = {0, 1, #}
 - F = {0, 1, #, ×, _}
 - •δ described with state diagram (next slide)
 - start state = q₁
 - accept state = q_{accept}
 - reject state = q_{reject}

28

Examples of Turing Machines example: describe a Turing machine M₁ that describes B = {w#w | w ∈ {0,1}*}, cont. state diagram explanation label 0,1 → R on arc from q₃ to itself

- stay in q₃ and move to right when reading a 0 or 1 in state q₃
- do not change symbol on tape
- $\boldsymbol{\cdot}$ stage 1 implemented by \boldsymbol{q}_1 through \boldsymbol{q}_7
- stage 2 by the remaining states
- for clarity, reject state not shown
 - implicit rejection when no arc leaves state on symbol *e.g., no arc for # from q_5
 - in all such cases, head moves right on arc to q_{reject}

Examples of Turing Machines

- $\boldsymbol{\cdot}$ example: design a Turing machine M_3 that performs elementary arithmetic: $C = \{a^i b^j c^k \mid i \times j = k \text{ and } i, j, k \ge 1\}$ M₃ = "on input string w:
 - - 1. scan input from left to right to determine if it is a member of a*b*c* and reject if it isn't
 - 2. return head to left-hand end of tape
 - 3. cross off an a and scan right until b occurs • shuttle between b's and c's, crossing off one of each until all b's are gone
 - if all c's crossed off, but some b's remain \rightarrow reject 4. restore crossed off b's
 - •repeat stage 3 if another a to cross off
 - \bullet if all a's crossed off and all c's crossed off \rightarrow accept
 - otherwise → reject."

31

Examples of Turing Machines

- example: describe a Turing machine M4 that solves the element distinctive problem: given a list of strings over {0,1} separated by #s, accept if all strings are different
 - $E = \{\#x_1 \# x_2 \# ... \# x_i \mid each x_i \in \{0,1\}^* \text{ and } x_i \neq x_i \text{ for each } i \neq j\}$
 - works by comparing x_1 with x_2 through x_1
 - then comparing x_2 with x_3 through x_1

• etc.

33

Examples of Turing Machines

- example: describe a Turing machine M_4 that solves the element distinctive problem: given a list of strings over {0,1} separated by #s, accept if all strings are different, cont.
- $E = \{\#x_1 \# x_2 \# ... \# x_i \mid each x_i \in \{0,1\}^* \text{ and } x_i \neq x_j \text{ for each } i \neq j\}$
- this machine illustrates the technique of marking tape symbols
- in stage 2, the machine places a mark above the symbol # • in the implementation, there are two different symbols: # and #
- whenever the machine makes a mark above a symbol, it means the second one
- removing the mark means the machine writes the first one · used in a variety of situations - just include both in the alphabet

Examples of Turing Machines

Examples of Turing Machines

• in stage 1, machine operates like a FA

• it can then try to move left

stages 3 and 4 are straightforward

- closer look at stages of $\ensuremath{\tilde{M}_3}$

restored

example: design a Turing machine M_3 that performs elementary arithmetic: $C = \{a^i b^j c^k \mid i \times j = k \text{ and } i, j, k \ge 1\}$, cont.

• no writing necessary as head moves left to right

in stage 2, how does machine find left side of input?

· keeps track by using states to determine if input in proper form

to make a left end detector, we can write a special symbol at the current position while recording the symbol it replaced

• if it is still over the special symbol, it must be on the left end

 $\boldsymbol{\cdot}$ otherwise, there are other symbols, and the original symbol is

finding right end is easy since it is terminated with blank
no terminating symbol on left end

· can mark the left end with a blank when machine starts

alternatively, recall that if the machine tries to move left beyond the left end of the tape, it stays in the same place

- example: describe a Turing machine M_4 that solves the element distinctive problem: given a list of strings over $\{0,1\}$ separated by #s, accept if all strings are different, cont.
- $E = \{\#x_1 \# x_2 \# ... \# x_i \mid each \ x_i \in \{0,1\}^* \ and \ x_i \neq x_j \ for \ each \ i \neq j\}$

M₄ = "on input w:

1

- place mark on top of leftmost symbol if symbol was a blank → accept
- if symbol was #, continue to next stage
- otherwise → reject
- scan right to next # and place second mark on it
 if no # encountered before blank, only x1 was present
- → accept 3. zig-zag and compare two strings to right of marked #s • if they are equal \rightarrow reject 4. move rightmost of two marks to next # symbol to the right
- if no # encountered before blank, move leftmost mark to next # to its right and rightmost mark to the # after that (reset first string)
 - if no # is available for rightmost mark, all strings have been compared → accept
- 5. go to stage 3."

34

32

Examples of Turing Machines

- from the previous examples, the languages A, B, C, and E are decidable
- all decidable languages are Turing-recognizable, so these languages are also Turing-recognizable

- different versions of Turing machines abound
- multitape Turing machines
- nondeterministic Turing machines
- enumerators
- all variants have same power as original
 - recognize the same class of languages
 - equivalent to original
 - robustness

37

Variants of Turing Machines

- multitape Turing machines
 - · like regular Turing machine, but with several tapes · each tape has its own head for reading and writing
 - input appears on tape 1
 - other tapes start out blank
 - transition function changed to reading/writing/moving heads on multiple tapes simultaneously
 - $\delta: \mathbb{Q} \times \Gamma^k \to \mathbb{Q} \times \Gamma^k \times \{L, R, S\}^k$

the expression

- $\delta(q_i, a_1, \dots, a_k) = (q_j, b_1, \dots, b_k, L, R, \dots, L)$ means machine moves from q_i to q_j
- · heads 1 through k are, respectively,
- reading symbols a1 through ak
- writing symbols b1 through bk
- moving L, R, or S

39

Variants of Turing Machines

 proof: Show how to convert a multitape TM M to an equivalent single-tape TM S (cont.) simulating M with S

Variants of Turing Machines

- · to show robustness, vary transition function
- instead of moving L or R, the head may stay put (S) new transition function
 - δ : Q x $\Gamma \rightarrow$ Q x Γ x {L,R,S}
- would this change allow additional languages to be recognized, thus increasing the power of Turing machines?
- no, since we could convert S to two transitions • one that moves R
- another that moves back L
- in general, to show variants are equivalent, we show how one can simulate another

38

Variants of Turing Machines

- multitape Turing machines may seem more powerful, but we can prove they are equivalent to single-tape Turing machines by showing they recognize the same language
- proof: Show how to convert a multitape TM M to an equivalent single-tape TM S
 - simulate M with S
 - assume M has k tapes
 - S will simulate M by storing all information on one tape • uses # as a delimiter to separate contents of different tapes
 - keeps track of locations of different heads by placing a dot over the symbol where the head is currently located
 - # and dotted symbols are added to the tape alphabet Γ

40

Variants of Turing Machines

• proof: Show how to convert a multitape TM M to an equivalent single-tape TM S (cont.)

S = "on input w = w1...wn

1. S puts its tape into the format to represent k tapes

$$\#w_1w_2\cdots w_n \# \# \# \# \# \dots \#.$$

- 2. to simulate a single move, S scans from first # to last # to determine symbols under virtual heads
 - S makes a second pass to update tapes according to M's transition function
- 3. if S moves a virtual head R and hits #
 - S writes a blank on this cell
 - •shifts tape contents one unit right
 - continues with simulation."

- a language is Turing-recognizable if and only if some multitape Turing machine recognizes it
 - proof:
 - a TRL must be recognized by an ordinary (singletape) TM, which is a special case of a multitape TM
 - $\boldsymbol{\cdot}$ this proves one direction
 - other direction proven by previous proof

Variants of Turing Machines

- nondeterministic Turing machines
- $\boldsymbol{\cdot}$ at any point in the computation, the machine may proceed
- $\boldsymbol{\cdot}$ transition function has the form
 - δ : Q × Γ \rightarrow P(Q × Γ × {L,R})
- the computation of a nondeterministic Turing machine is a tree whose branches correspond to different possibilities for the machine
 - $\boldsymbol{\cdot}$ if some branch leads to the accept state \rightarrow accept

43

Variants of Turing Machines

- $\boldsymbol{\cdot}$ every nondeterministic Turing machine has an equivalent deterministic Turing machine
 - proof idea:
 - \bullet simulate nondeterministic TM N with deterministic TM D
 - D will try all possible branches of N's computation
 - \bullet if D finds the accept state on a branch \rightarrow accept
 - otherwise, D will not terminate

Variants of Turing Machines

- every nondeterministic Turing machine has an equivalent deterministic Turing machine (cont.)
 - proof idea:
 - view N's computation on w as a tree
 - $\boldsymbol{\cdot}$ each branch represents one of the branches of nondeterminism
 - each node is a configuration of N
 - root is the start configuration
 - D searches this tree for accepting configuration
 depth-first search not good since a branch may be infinite (accept may be on another branch)
 - use breadth-first search instead

46

44

Variants of Turing Machines

• every nondeterministic Turing machine has an equivalent deterministic Turing machine (cont.)

• proof:

45

- D has three tapes (equivalent to having a single tape)
- tape 1 has the input string and is never changed
 tape 2 maintains a copy of N's tape on some branch of its nondeterministic computation
- tape 3 keeps track of D's location in N

Variants of Turing Machines

- every nondeterministic Turing machine has an equivalent deterministic Turing machine (cont.)
- proof: more on tape 3
 - lore on Tape 3
 - $\boldsymbol{\cdot}$ every node in the tree can have up to b children
 - b is largest set of choices in N's transition function -so Γ_{b} = {1, 2, ..., b}
 - -e.g., address 231 means 2^{nd} child of root, followed by 3^{rd} child of next node, and 1^{st} child of that node
 - empty string is address of the root

- every nondeterministic Turing machine has an equivalent deterministic Turing machine (cont.)
 - proof:
 - D's computation
 - 1. initially, tape 1 contains input w; tapes 2 and 3 are empty
 - 2. copy tape 1 to tape 2 and initialize string on 3 to ϵ 3. use tape 2 to simulate N
 - consult next symbol on tape 3 to determine choice from N's transition function
 - if no more symbols remain, or invalid choice, goto 4
 - also goto 4 if rejecting configuration encountered
 - if accepting configuration encountered \rightarrow accept
 - 4. replace string on tape 3 with next string; goto 2

49

Variants of Turing Machines

- \cdot we can alter the previous proof so that if N always halts on all branches of computation, D will halt
- $\boldsymbol{\cdot}$ an NTM is called a decider if all branches halt on all inputs
- a language is decidable if and only if some NTM decides it

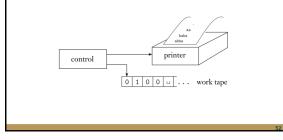
Variants of Turing Machines

- a language is Turing-recognizable if and only if some nondeterministic Turing machine recognizes it
 proof:
 - any deterministic TM is automatically a nondeterministic TM, which accounts for one direction of the proof
 - the other direction was proven previously

50

Variants of Turing Machines

- enumerators
 - Turing machine with attached printer
 - used as an output device to print strings



52

Variants of Turing Machines

enumerators

51

- $\boldsymbol{\cdot}$ enumerator E starts with blank input on work tape
- if enumerator doesn't halt, list of strings may be infinite
- language enumerated by E is all strings printed out
 E may generate strings in any order, possibly with repetitions

Variants of Turing Machines

- a language is Turing-recognizable if and only if some enumerator enumerates it
- proof
 - \bullet first show E enumerates language A, recognized by TM M
 - M = "on input w:
 - run E. every time E outputs a string, compare it with w
 - 2. if w ever appears in the output of E \rightarrow accept."
- M accepts strings that appear on E's list

- a language is Turing-recognizable if and only if some enumerator enumerates it (cont.)
 - proof
 - \bullet other direction: if TM M recognizes language A, we can construct an enumerator
 - say that $s_1, \, s_2, \, s_3, \, ..., \, s_i$ is a list of all possible strings in Σ^\star
 - E = "ignore the input
 - repeat the following for i = 1, 2, 3, ...
 - •run M for i steps on each input s₁, s₂, s₃, ..., s_i
 - if any computations accept, print out
 - corresponding s_j."

55

Variants of Turing Machines

- equivalence with other models
 - \cdot we have seen several TM variants equivalent to the original TM
 - $\boldsymbol{\cdot}$ many other models of general-purpose computation exist
 - some are guite different
 - all share the essential feature of TMs
 - unrestricted access to unlimited memory •unlike FAs and PDAs
 - all models with this feature are equivalent, as long as they satisfy reasonable requirements
 - e.g., perform only a finite amount of work in a single step

57

The Definition of Algorithm

- \bullet algorithm: collection of simple instructions for carrying out some task
 - procedures or recipes
 - play important role in mathematics
 - ancient descriptions of algorithms for finding prime numbers, greatest common divisors, etc.
 - many algorithms today
 - algorithm not defined precisely until 20th century
 previously, intuitive notion
 - needed for specific problems

Variants of Turing Machines

- a language is Turing-recognizable if and only if some enumerator enumerates it (cont.)
- \cdot if M accepts a particular s, it will eventually appear on the list generated by E
- \cdot it will appear on the list infinitely many times because M runs from the beginning to the end for each first step
- this procedure gives the effect of running M in parallel on all possible input strings

56

Variants of Turing Machines

- equivalence with other models (cont.)
- $\boldsymbol{\cdot}$ consider analogous situation with programming languages
 - languages look different (e.g., LISP and Pascal)
 - same algorithms can be programmed in both
 - therefore, the two languages describe exactly the same class of of algorithms, as do all other reasonable programming languages
- even though we can imagine many different computational models, the class of algorithms they describe is the same

58

The Definition of Algorithm

Hilbert's Problems

- Int'l Congress of Mathematics, Paris, 1900
- 23 mathematical problems as challenges for the century
- 10th problem concerned algorithms

The Definition of Algorithm

- preliminary: review of polynomials
- polynomial: sum of terms
 - each term is a product of variables and constant (or coefficient)
 - ex: $6 \cdot x \cdot x \cdot x \cdot y \cdot z \cdot z = 6x^3yz^2$
 - term with coefficient 6
 ex: 6x³yz² + 3xy² x³ 10
 - polynomial with 4 terms
 - polynomial with 4 terms
 - we'll consider only coefficients that are integers
 - root of a polynomial: variable values when = 0
 - polynomial above has a root at x = 5, y = 3, z = 0
 integral root because all integer values
 - some polynomials do not have an integral root

61

The Definition of Algorithm

- Church-Turing thesis
 - 1936 paper by Church and Turing
 - \bullet Church: used notational system called A-calculus to define algorithms
 - Turing: used Turing machines

ntuitive notion of algorithms

- two definitions were shown to be equivalent
- $\boldsymbol{\cdot}$ connection between informal notation and precise definition is the Church-Turing thesis

equals

uring machin

. rithms

63

The Definition of Algorithm

Hilbert's tenth problem

- first, consider a simpler problem
 - $D_1 = \{p \mid p \text{ is a polynomial over } x \text{ with an integral root} \}$
- TM M₁ that recognizes D₁:
 - M_1 = "on input : where p is a polynomial over x
 - Evaluate p with x successively with values 0, 1, -1, 2, -2, 3, -3, ... If at any point, the polynomial evaluates to 0, accept."
 - if p has an integral root, M_1 will find it and accept • if p does not, it will run forever
- \bullet for D, M goes through all possible settings of variables to integral values

The Definition of Algorithm

- Hilbert's tenth problem
 - devise an algorithm that tests whether a polynomial has an integral root
 - $\boldsymbol{\cdot}$ in his words: a process in which it can be determined in a finite number of operations
 - assumed an algorithm existed
 - $\boldsymbol{\cdot}$ we now know no such algorithm exists
 - i.e., it is unsolvable
 - proving an algorithm does not exist required a clear definition of algorithm

62

The Definition of Algorithm

- Hilbert's tenth problem
 - \bullet in 1970, Matijasevic showed no algorithm exists for testing whether a polynomial has integral roots
 - rephrase the problem:
 - D = {p | p is a polynomial with an integral root}
 in other words, is D decidable?

64

The Definition of Algorithm

Hilbert's tenth problem

- both M and M₁ are recognizers, but not deciders
 we can convert M₁ to a decider for D₁ because we can
 - restrict the roots to precalculated bounds
 - if a root is not found within these bounds, the machine rejects
 - Matijasevic's theorem shows that calculating such bounds is impossible

The Definition of Algorithm

- terminology for describing Turing machines
- a Turing machine serves as a precise model for the definition of algorithms
 - Turing machines can describe any algorithm

The Definition of Algorithm

- standardize the way we describe Turing machine algorithms
 what is the right level of detail? three possibilities
 - formal description
 - lists Turing machine's states, transition function, etc.
 implementation description
 - use English prose to describe how the Turing machine moves the head and stores data on the tape
 - $\boldsymbol{\cdot}$ no details of states or transition functions
 - high-level description
 - use English prose to describe an algorithm
 - ignore implementation details
 - no mention of tape or head

67

The Definition of Algorithm

- $\boldsymbol{\cdot}$ so far, we have looked at formal and implementation-level descriptions
- $\boldsymbol{\cdot}$ helps in understanding Turing machines
- high-level descriptions are sufficient

The Definition of Algorithm

- format and notation for Turing machines
 input is always a string
 - can represent polynomials, graphs, grammars, automata, and combinations of these
 - Turing machine may decode these to be interpreted in any way desired
 - notation for encoding object O is <O>
 - for multiple objects $O_1, O_2, ..., O_k$, encoding is $\langle O_1, O_2, ..., O_k \rangle$

70

68

The Definition of Algorithm

- · format and notation for Turing machines (cont.)
 - describe Turing machine algorithms with an indented segment of text within quotes
 - break the algorithm into stages
 - involving many individual steps
 - indicate block structure of the algorithm with further indentation
 - first line describes the input to the machine
 - if w, just a string
 - if <A>, machine must test whether the input properly encodes an object of the desired form
 rejects if not

The Definition of Algorithm

- example: let A be the language of all strings representing undirected graphs that are connected
- a graph is connected if every node can be reached from every other node by traveling along the edges of the graph
- A = {<G> | G is a connected undirected graph}
- high-level description of TM M that decides A

M = "On input <G>, the encoding of a graph G:

- 1. Select the first node of G and mark it.
- 2. Repeat the following stage until no new nodes are marked:
- 3. For each node in G, mark it if it is attached by an edge to a node that has already been marked.
- Scan all the nodes of G to determine whether they all are marked. If they are, accept; otherwise, reject."

69

The Definition of Algorithm

- example: let A be the language of all strings representing undirected graphs that are connected (cont.)
 - implementation-level details
 - usually, we don't give this level of detail
 - first, how does <G> encode the graph as a string? • a list of nodes, followed by a list of edges
 - each node is a decimal number
 - each edge is a pair of decimal numbers representing the endpoints of an edge

(4)G = $\langle G \rangle =$ 1 (1,2,3,4)((1,2),(2,3),(3,1),(1,4)) 3 2

73

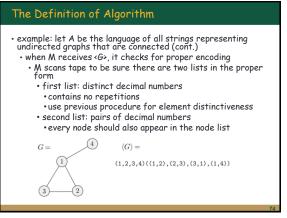
The	Definition	of	Algorithm

- example: let A be the language of all strings representing undirected graphs that are connected (cont.) $% \left(\left(x,y\right) \right) =\left(x,y\right) \right) =\left(x,y\right) \right) =\left(x,y\right) +\left(x,y\right) +\left(x,y\right) \right) =\left(x,y\right) +\left(x,y\right) +\left(x,y\right) +\left(x,y\right) \right) +\left(x,y\right) +$

- conducting (r, nt)
 and reliable to an import per semining inductive graphs that are a straight reliable to a straight r

 - if so, M dots n, removes the underlines, and starts stage 2 again
 if they aren't, M checks the next edge on the list
 if they aren't, M checks the next edge on the list
 if they aren't, M checks the next ofted node and calls it n₂
 repeats check
 if on more dotted nodes, n₁ is not attached to any dotted nodes
 M sets the underline so that n₁ is the next undotted node and n₂ is the first dotted node and regeats
 if there are no more dotted nodes, M has not been able to find any new nodes to dot, so it goes to stage 4
- stage 4: scan the list of nodes to determine whether all are dotted
 - if so, enter accept state otherwise, enter reject state

75



74