Chapter 4 Decidability

Overview

- previously, we introduced Turing machines as a model of general-purpose computing
- we also defined an algorithm in terms of Turing machines through the Church-Turing thesis
- now, we will show that certain problems can be solved algorithmically and others cannot
- why study unsolvability?
 - useful to know that a problem is unsolvable so that it must be simplified or altered before it can be solved with an algorithm
 - · will help gain perspective on computation

- we now turn to examples of languages that are decidable by algorithms
 - focus on languages concerning automata and grammars
 - often related to applications
 - example: string membership in a language related to compiling programs
 - some problems concerning automata and grammars are not decidable by algorithms

- decidable problems concerning regular languages
 - computational problems concerning finite automata
 - represent computational problems through languages
 - already have a framework and terminology
 - e.g., acceptance problem for DFAs of testing whether a DFA accepts a given string
 - $A_{DFA} = \{ \langle B, w \rangle \mid B \text{ is a DFA that accepts } w \}$
 - the problem of testing whether DFA B accepts input string w is the same as testing whether $\langle B, w \rangle$ is a member of the language A_{DFA}
 - can express other computational problems similarly
 - showing a language is decidable is the same as showing the computational problem is decidable

- Theorem: A_{DFA} is a decidable language
 - proof idea
 - show a TM M that decides A_{DFA}
 - M = "On input < B, w>, where B is a DFA and w is a string:
 - 1. Simulate B on input w
 - 2. If the simulation ends in an accept state, accept. If it ends in a nonaccepting state, reject."

- Theorem: A_{DFA} is a decidable language
 - proof
 - imagine writing a program to carry out the simulation
 - first, examine input <B,w>
 - we could represent DFA B by its five components: $Q, \Sigma, \delta, q_0, F$
 - when M receives input, checks whether it properly represents DFA B and string w
 - if not, M rejects
 - M carries out simulation directly
 - keeps track of B's current state and position in w by writing it on its tape
 - starts at q_0 and beginning of w
 - \bullet state and position updated through transition function δ
 - · when M finishes processing last symbol of w
 - accepts if B is in accepting state
 - otherwise rejects

- · similarly, we can prove for NFAs, too
 - $A_{NFA} = \{ \langle B, w \rangle \mid B \text{ is a NFA that accepts } w \}$
 - the problem of testing whether NFA B accepts input string w is the same as testing whether $\langle B, w \rangle$ is a member of the language A_{NFA}

- Theorem: A_{NFA} is a decidable language
 - proof
 - show a TM N that decides A_{NFA}
 - · could design N like M for DFAs, but for NFAs
 - instead, we'll convert N to a DFA first, then use M as a subroutine
 - N = "On input < B, w>, where B is a NFA and w is a string:
 - 1. Convert NFA B to an equivalent DFA C
 - 2. Run TM M on input <C,w>
 - 3. If M accepts, accept; otherwise, reject."

- similarly, we can determine whether a regular expression generates a given string
 - $A_{REX} = \{\langle R, w \rangle \mid R \text{ is a RE that generates } w\}$

- Theorem: A_{REX} is a decidable language
 - proof
 - TM P decides A_{REX}
 - P = "On input <R,w>, where R is a RE and w is a string:
 - 1. Convert regular expression R to an equivalent NFA A
 - 2. Run TM N on input < A, w>
 - 3. If Naccepts, accept; otherwise, reject."

- for decidability purposes, it is equivalent to present the Turing machine with a DFA, NFA, or a regular expression because the machines can convert from one form of encoding to another
- next, we discuss emptiness testing for the language of a finite automaton
 - previously, we had to determine if a FA accepts a particular string
 - for emptiness testing, we have to determine if a FA accepts any strings at all
 - $E_{DFA} = \{ \langle A \rangle \mid A \text{ is a DFA and } L(A) = \emptyset \}$

- Theorem: E_{DFA} is a decidable language
 - proof
 - a DFA accepts a string iff reaching an accept state from the start state along the edges
 - design a TM T that uses a marking system similar to the connected graph TM
 - T = "On input < A>, where A is a DFA:
 - 1. Mark the start state of A.
 - 2. Repeat until no new states get marked:
 - 3. Mark any state that has a transition coming into it from any state that is already marked.
 - 4. If no accept state is marked, accept; otherwise, reject."

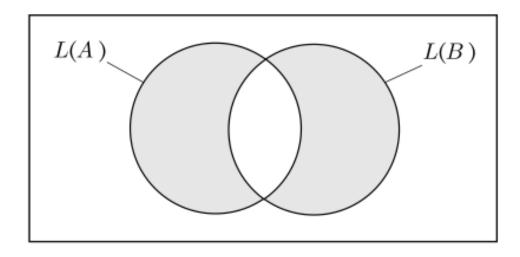
- next, determine whether determining if two DFAs recognize the same language is decidable
 - $EQ_{DFA} = \{\langle A,B\rangle \mid A \text{ and } B \text{ are } DFAs \text{ and } L(A) = L(B)\}$

- Theorem: EQDFA is a decidable language
 - proof
 - construct a new DFA C that accepts only those strings that are accepted by either A or B, but not both
 - if A and B recognize the same language, C will accept nothing

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right).$$

- this is the symmetric difference of L(A) and L(B)
 - $L(C) = \emptyset$ if L(A) = L(B)
- construct C from A and B with the constructions for proving the class of regular languages closed under complementation, union, and intersection
 - these construction algorithms can be performed with Turing machines
- use previous theorem to test whether L(C) is empty
- if so, L(A) and L(B) must be equal

- Theorem: EQ_{DFA} is a decidable language
 - proof (cont.)
 - $F = "On input \langle A,B \rangle$, where A and B are DFAs:
 - 1. Construct DFA C as described.
 - 2. Run TM T from previous theorem on input <C>.
 - 3. If Taccepts, accept; otherwise, reject."



- decidable problems concerning context-free languages
 - describe algorithms to determine whether a CFG generates a particular string and to determine whether the language of a CFG is empty
 - $A_{CFG} = {\langle G, w \rangle \mid G \text{ is a CFG that generates string } w}$

- Theorem: A_{CFG} is a decidable language
 - proof idea
 - we want to determine if G generates w
 - use G to go through all derivations to find w
 - doesn't work infinite number of derivations
 - if G does not generate w, algorithm would compute forever
 - this is a recognizer, not a decider
 - for a decider, ensure that the algorithm tries only a finite number of derivations
 - previously, we showed if G were in Chomsky normal form, any derivation of w has 2n 1 steps, where n = |w|
 - so, we can just check derivations with 2n 1 steps
 - · only a finite number of such derivations
 - can convert G to Chomsky normal form

- Theorem: A_{CFG} is a decidable language
 - proof (cont.)
 - S = "On input < G, w>, where G is a CFG and w is a string:
 - 1. Convert G to an equivalent grammar in Chomsky normal form.
 - 2. List all derivations with 2n 1 steps, where n = |w|; except if n= 0, then instead list all derivations with one step.
 - 3. If any of these derivations generates w, accept; otherwise, reject."

- determining whether a CFG generates a particular string is related to compiling programming languages
 - algorithm for TM S is very inefficient and would never be used in practice
 - but is easy to describe and we don't care about efficiency
- recall that we have procedures for converting back and forth between CFGs and PDAs
 - so, everything about CFG decidability is true for PDAs
- for emptiness testing for CFGs, we can show the problem is decidable
 - $E_{CFG} = {\langle G \rangle \mid G \text{ is a CFG and } L(G) = \emptyset}$

- Theorem: E_{CFG} is a decidable language
 - proof idea
 - could use TM S that states whether a CFG generates a particular w
 - to determine if $L(G) = \emptyset$, we could try generating all possible w's, one by one, but infinite number of w's
 - instead, test whether start variable can generate a string of terminals
 - in general, determines for each variable whether it is capable of generating a string of terminals
 - if so, algorithm places a mark on that variable
 - first, mark all of the terminal symbols in the grammar
 - scan the rules of the grammar
 - if a rule is found that permits a variable to be replaced by some string of symbols, all of which are already marked, mark this variable, too
 - continue until no more variables can be marked

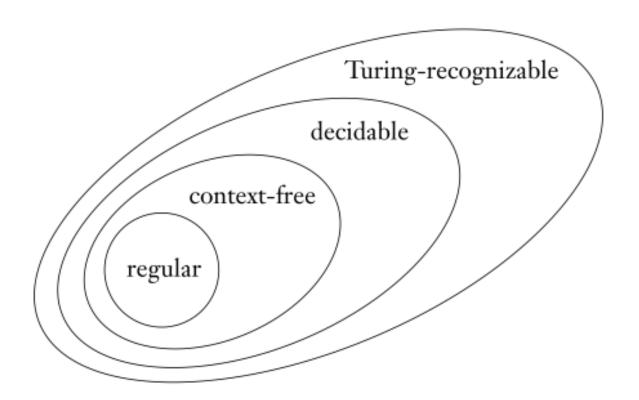
- Theorem: E_{CFG} is a decidable language
 - proof
 - R = "On input < G>, where G is a CFG:
 - 1. Mark all terminal symbols in G.
 - 2. Repeat until no new variables get marked:
 - 3. Mark any variable A where G has a rule $A \rightarrow U_1U_2...U_k$ and each symbol $U_1...U_k$ has already been marked.
 - 4. If the start variable is not marked, accept; otherwise, reject."

- next, determine whether determining if two CFGs generate the same language
 - $EQ_{CFG} = {\langle G,H \rangle \mid G \text{ and } H \text{ are } CFGs \text{ and } L(G) = L(H)}$
- for EQ_{DFA} , we use E_{DFA}
 - but, we cannot use E_{CFG} to prove EQ_{CFG} is decidable since the CFLs are not closed under complementation or intersection
 - actually, EQ_{CFG} is not decidable

- Theorem: every CFL is decidable
 - proof idea
 - goal: show CFL A is decidable
 - could convert a PDA for A directly into a TM
 - relatively easy
 - PDA may be non-deterministic, but can be converted into NTM, which can then be converted into a DTM
 - but, some branches of the PDA may go on forever
 - this would also be reflected in the equivalent TM
 - instead, use TM S that decided A_{CFG}

- · Theorem: every CFL is decidable
 - proof
 - let G be a CFG for A and design TM M_G that decides A; build a copy of G into M_G
 - M_G = "On input w:
 - 1. Run TM S on input <G,w>.
 - 2. If this machine accepts, accept; otherwise, reject."

 we have now linked the relationships across the four main classes of languages: regular, context-free, decidable, and Turing-recognizable



- in this section, we will prove that a specific problem is unsolvable
 - philosophically important
- computers are extremely powerful, but some problems test their limits
 - often very ordinary problems
 - · e.g., verifying that a sorting program is correct

- both A_{DFA} and A_{CFG} were decidable
- A_{TM} is undecidable
 - $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and M accepts } w \}$
 - A_{TM} is Turing-recognizable
 - recognizers are more powerful than deciders
 - requiring a TM to halt on all inputs restricts the kinds of languages it can recognize

- ullet the following Turing machine recognizes A_{TM}
 - U = "On input < M, w> where M is a TM and w is a string:
 - 1. Simulate M on input w.
 - 2. If M ever enters its accept state, accept; if M ever enters its reject state, reject."
 - this machine loops on <M,w> if M loops on w
 - therefore, this machine does not decide A_{TM}
 - if the algorithm had a way to determine that M was not halting on w, it could reject
 - · however, an algorithm has no way to determine this
 - Turing machine U is called the Universal Turing Machine
 - capable of simulating every other Turing machine

- \cdot the proof of the undecidability of A_{TM} uses diagonalization
 - originally designed by Georg Cantor in 1873 to measure infinite sets
 - if we have two infinite sets, which one is larger?
 - e.g., even integers vs. all strings over (0,1)
 - can determine relative sizes by pairing elements (no counting involved)

can use mapping function

DEFINITION 4.12

Assume that we have sets A and B and a function f from A to B. Say that f is **one-to-one** if it never maps two different elements to the same place—that is, if $f(a) \neq f(b)$ whenever $a \neq b$. Say that f is **onto** if it hits every element of B—that is, if for every $b \in B$ there is an $a \in A$ such that f(a) = b. Say that A and B are the **same size** if there is a one-to-one, onto function $f: A \longrightarrow B$. A function that is both one-to-one and onto is called a **correspondence**. In a correspondence, every element of A maps to a unique element of B and each element of B has a unique element of A mapping to it. A correspondence is simply a way of pairing the elements of A with the elements of B.

- · also called
 - injective one-to-one
 - surjective onto
 - bijective one-to-one and onto

- example: Let $N = \{1, 2, 3, ...\}$ (natural numbers) and $E = \{2, 4, 6, ...\}$ (even numbers)
 - · by Cantor's definition, they are the same size
 - for mapping N to E, use f(n) = 2n

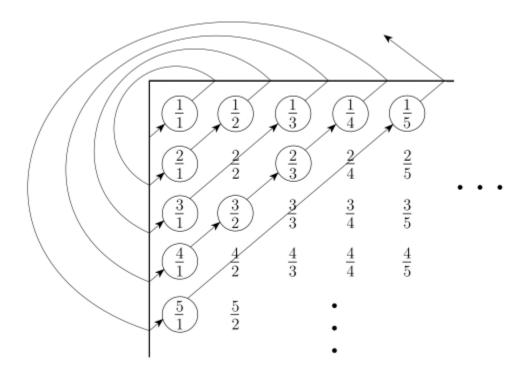
n	f(n)
1	2
2	4
3	6
÷	÷

- intuitively, E seems smaller since E is a proper subset of N
- · since the mapping is possible, they are the same size

- a set A is countable if it is finite or has the same size as N
 - from the previous example, E is countable

- example: Let $Q = \{m/n \mid m,n \in N\}$ (rational numbers)
 - Q seems to be much larger than N
 - · by Cantor's definition, they are the same size
 - · for mapping N to Q, list all elements of Q
 - pair first element with 1, second element with 2, etc.
 - each element of Q can only appear once
 - create matrix where ith row contains all numbers with numerator i
 - jth column has all denominators with j
 - i/j is listed in the ith row, jth column
 - for mapping, don't go row by row (why not?)

- example: Let $Q = \{m/n \mid m,n \in N\}$ (rational numbers)
 - instead, go by diagonals
 - · don't include any value that's already been listed



since we have the mapping, Q is countable

- after seeing these mappings, it may seem all infinite sets are the same size
 - just have to show the correspondence to N
 - but for some infinite sets, no correspondence to N exists
 - uncountable
 - the real numbers, R, are uncountable
 - R: any number that has a decimal representation
 - •e.g., pi, sqrt(2)

- R is uncountable
 - proof: show no correspondence exists between R and N
 - use proof by contradiction
 - suppose R is countable
 - then a correspondence exists between R and N
 - use construction to help
 - choose each digit of x to make x different from one of the real numbers paired with an element from N
 - e.g., f(1) = 3.14159... f(2) = 55.55555... f(3) = ...

- R is uncountable (cont.)
 - suppose R is countable
 - table showing one-to-one correspondence

n	f(n)				
1	3.14159				
2	55.55555				
3	0.12345				
4	0.50000				
:	÷				

- now, construct x between 0 and 1 and ensure $x \neq f(n)$ for any n
- let first digit of x be different from first digit of f(1)
- let second digit of x be different from f(2), etc.
- continue through diagonal of table

- R is uncountable (cont.)
 - suppose R is countable
 - now, x cannot be in the table since it differs by at least one digit with every element in the table

```
 n
 f(n)

 1
 3.\underline{1}4159...

 2
 55.5\underline{5}555...

 3
 0.12\underline{3}45...

 4
 0.500\underline{0}0...

 \vdots
 \vdots
```

- avoid 0 or 9 since 0.199... = 0.200...
- · contradiction: every real number is not in the table
 - therefore, R is uncountable

- since R is uncountable
 - some languages are not decidable or even Turingrecognizable
 - because there are uncountably many languages, but only countably many Turing machines
 - therefore, some languages are not recognized by any Turing machine

- some languages are not Turing-recognizable
 - · first, show the set of all Turing machines is countable
 - \cdot set of all strings Σ^* is countable for any alphabet Σ
 - with only finitely many strings of each length, write down strings of length 0, 1, 2, etc.
 - set of all Turing machines is countable because each Turing machine M has an encoding into a string <M>
 - if we omit those strings that are not legal encodings, we can make a list of Turing machines

- some languages are not Turing-recognizable (cont.)
 - second, show the set of all languages is uncountable
 - show set of all infinite binary sequences B is uncountable
 - infinite binary sequence: unending sequence of 0s and 1s
 - show B is uncountable using diagonalization as before for R

- some languages are not Turing-recognizable (cont.)
 - · second, show the set of all languages is uncountable
 - \cdot let L be all languages over alphabet Σ
 - show L is uncountable using correspondence with B
 - let $\Sigma^* = \{s_1, s_2, s_3, ...\}$
 - · each language A has a unique sequence in B
 - ith bit is 1 if $s_i \in A$ and 0 otherwise
 - termed characteristic sequence of A

- some languages are not Turing-recognizable (cont.)
 - · second, show the set of all languages is uncountable
 - •e.g., if A were language of all strings beginning with 0 over alphabet {0,1}, its characteristic sequence would be

- the function f where f(A) = characteristic sequence of A is one-to-one and onto, and hence a correspondence
- therefore, as B is uncountable, L is uncountable
- set of all L cannot correspond to all TM
 - therefore, some languages are not recognized by any Turing machine

- now, we are ready to prove that A_{TM} is undecidable where $A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and M accepts w}\}$
 - proof
 - assume A_{TM} is decidable and obtain a contradiction
 - suppose H is a decider for A_{TM}
 - on input <M,w>, H halts and accepts if M accepts w
 - H halts and rejects if M fails to accept w
 - therefore, H is a TM where

$$H\big(\langle M,w\rangle\big) = \begin{cases} accept & \text{if } M \text{ accepts } w \\ reject & \text{if } M \text{ does not accept } w. \end{cases}$$

- now, we are ready to prove that A_{TM} is undecidable where $A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and M accepts w}\}$
 - proof (cont.)
 - construct new TM D with H as a subroutine
 - call H to determine what M does when the input to M is its own description
 - once D has determined this information, it does the opposite
 - rejects if M accepts
 - accepts if M does not accept
 - similar to running a program on with itself as input
 - e.g., an interpreter written in Python may be used on the interpreter

- now, we are ready to prove that A_{TM} is undecidable where $A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and M accepts w}\}$
 - proof (cont.)
 - Turing machine D
 - D = "On input <M>, where M is a TM:
 - 1. Run H on input <M, <M>>>.
 - 2. Output the opposite of what H outputs. That is, if H accepts, reject; and if H rejects, accept."

- now, we are ready to prove that A_{TM} is undecidable where $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and M accepts w} \}$
 - proof (cont.)
 - in summary

$$D(\langle M \rangle) = \begin{cases} accept & \text{if } M \text{ does not accept } \langle M \rangle \\ reject & \text{if } M \text{ accepts } \langle M \rangle. \end{cases}$$

what happens when we run D on <D>?

$$D\big(\langle D\rangle\big) = \begin{cases} accept & \text{if } D \text{ does not accept } \langle D\rangle \\ reject & \text{if } D \text{ accepts } \langle D\rangle. \end{cases}$$

- whatever D does, it is forced to do the opposite, which is a contradiction
- · therefore, neither TM D nor TM H can exist

- now, we are ready to prove that A_{TM} is undecidable where $A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and M accepts w} \}$
 - proof (cont.)
 - steps of proof in summary
 - assume TM H decides
 - use H to build TM D that takes input <M>, where D accepts its input exactly when M does not accept its input <M>
 - run D on itself
 - machines take the following actions
 - · H accepts < M, w> exactly when M accepts w
 - D rejects <M> exactly when M accepts <M>
 - D rejects <D> exactly when D accepts <D>

- now, we are ready to prove that A_{TM} is undecidable where $A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and M accepts w}\}$
 - proof (cont.)
 - diagonalization comes into play in tables of behavior for TMs H and D
 - list all TMs down the rows, M_1 , M_2 , ...
 - descriptions across the columns $\langle M_1 \rangle$, $\langle M_2 \rangle$, ...
 - entries state whether machine in given row accepts input in given column
 - accept if accepts
 - blank if rejects or loops

- now, we are ready to prove that A_{TM} is undecidable where $A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and M accepts w}\}$
 - proof (cont.)
 - e.g., with sample entries

· results of running H on same inputs as above

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$	
M_1	accept	reject	accept	reject	
M_2	accept	accept	accept	accept	
M_3	reject	reject	reject	reject	
M_4	accept	accept	reject	reject	
:		:			

- now, we are ready to prove that A_{TM} is undecidable where $A_{TM} = \{\langle M, w \rangle \mid M \text{ is a TM and M accepts w}\}$
 - proof (cont.)
 - now add D to table
 - both H and D are TMs
 - D computes the opposite of the diagonal entries
 - ? shows where contradiction occurs

	$\langle M_1 \rangle$	$\langle M_2 \rangle$	$\langle M_3 \rangle$	$\langle M_4 \rangle$		$\langle D \rangle$	
M_1	accept	reject	accept	reject		accept	
M_2	accept	accept	accept	accept		accept	
M_3	reject	reject	reject	reject		reject	
M_4	accept	accept	\overline{reject}	reject		accept	
:		:			٠.		
D	reject	reject	accept	accept		?	
:		:					٠.,

- we just showed that A_{TM} is undecidable
- is there a language that is not even Turing-recognizable?
 - \cdot can't use A_{TM} because we showed A_{TM} is Turing-recognizable
- if both a language and its complement are Turingrecognizable, the language is decidable
 - so, if any language or its complement is not Turingrecognizable, it is undecidable
 - recall that the complement of a language is language consisting of al strings that are not in the language
 - a language is co-Turing-recognizable if it is the complement of a Turing-recognizable language

- theorem: a language is decidable iff it is Turingrecognizable and co-Turing-recognizable
 - thus, a language is decidable exactly when both it and its complement are Turing-recognizable
 - proof
 - prove two directions
 - first: if A is decidable, both A and its complement are Turing-recognizable
 - · any decidable language is Turing-recognizable
 - the complement of a decidable language is also decidable

- theorem: a language is decidable iff it is Turingrecognizable and co-Turing-recognizable
 - proof (cont.)
 - second: if both A and its complement are Turing-recognizable, let M_1 be the recognizer for A and M_2 be the recognizer for the complement of A
 - the following TM is a decider for A
 M = "On input w:
 - 1. Run both M_1 and M_2 on input w in parallel.
 - 2. If M_1 accepts, accept; if M_2 accepts, reject."
 - running the machines in parallel means M has two tapes: one for simulating M_1 and one for M_2
 - M takes turns simulating M_1 and M_2 until one accepts

- theorem: a language is decidable iff it is Turingrecognizable and co-Turing-recognizable
 - proof (cont.)
 - · every string w is either in A or its complement
 - therefore, either M_1 or M_2 must accept w
 - M halts when M₁ or M₂ accepts
 - therefore, it is a decider
 - M accepts all strings in A and rejects all string not in A
 - therefore M is a decider for A
 - thus, A is decidable

- corollary: the complement of A_{TM} is not Turing-recognizable
 - we know A_{TM} is Turing-recognizable
 - if the complement of A_{TM} were Turing-recognizable, A_{TM} would be decidable
 - since A_{TM} is not decidable, the complement of A_{TM} must not be Turing-recognizable