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Chapter 4
Decidability

Overview
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• previously, we introduced Turing machines as a model of 
general-purpose computing

• we also defined an algorithm in terms of Turing machines 
through the Church-Turing thesis

• now, we will show that certain problems can be solved 
algorithmically and others cannot

• why study unsolvability?

• useful to know that a problem is unsolvable so that it 
must be simplified or altered before it can be solved 
with an algorithm

• will help gain perspective on computation

Decidable Languages

3

• we now turn to examples of languages that are decidable 
by algorithms

• focus on languages concerning automata and grammars

• often related to applications

• example: string membership in a language related to 
compiling programs

• some problems concerning automata and grammars 
are not decidable by algorithms

Decidable Languages
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• decidable problems concerning regular languages

• computational problems concerning finite automata

• represent computational problems through languages

• already have a framework and terminology

• e.g., acceptance problem for DFAs of testing 
whether a DFA accepts a given string

• ADFA = {<B,w> | B is a DFA that accepts w}

• the problem of testing whether DFA B accepts input 
string w is the same as testing whether <B,w> is a 
member of the language ADFA

• can express other computational problems similarly

• showing a language is decidable is the same as 
showing the computational problem is decidable

Decidable Languages
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• Theorem: ADFA is a decidable language

• proof idea

• show a TM M that decides ADFA

M = “On input <B,w>, where B is a DFA and w is a string:

1. Simulate B on input w

2. If the simulation ends in an accept state, accept.  
If it ends in a nonaccepting state, reject.”

Decidable Languages
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• Theorem: ADFA is a decidable language
• proof

• imagine writing a program to carry out the simulation
• first, examine input <B,w>

• we could represent DFA B by its five components:
Q, Σ, δ, q0, F

• when M receives input, checks whether it properly represents 
DFA B and string w
• if not, M rejects

• M carries out simulation directly
• keeps track of B’s current state and position in w by writing it 

on its tape
• starts at q0 and beginning of w
• state and position updated through transition function δ

• when M finishes processing last symbol of w
• accepts if B is in accepting state
• otherwise rejects
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Decidable Languages
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• similarly, we can prove for NFAs, too

• ANFA = {<B,w> | B is a NFA that accepts w}

• the problem of testing whether NFA B accepts input 
string w is the same as testing whether <B,w> is a 
member of the language ANFA

Decidable Languages
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• Theorem: ANFA is a decidable language

• proof

• show a TM N that decides ANFA

• could design N like M for DFAs, but for NFAs

• instead, we’ll convert N to a DFA first, then use M as 
a subroutine

N = “On input <B,w>, where B is a NFA and w is a string:

1. Convert NFA B to an equivalent DFA C

2. Run TM M on input <C,w>

3. If M accepts, accept; otherwise, reject.”

Decidable Languages
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• similarly, we can determine whether a regular expression 
generates a given string

• AREX = {<R,w> | R is a RE that generates w}

Decidable Languages
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• Theorem: AREX is a decidable language

• proof

• TM P decides AREX

P = “On input <R,w>, where R is a RE and w is a string:

1. Convert regular expression R to an equivalent 
NFA A

2. Run TM N on input <A,w>

3. If N accepts, accept; otherwise, reject.”

Decidable Languages
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• for decidability purposes, it is equivalent to present the 
Turing machine with a DFA, NFA, or a regular expression 
because the machines can convert from one form of 
encoding to another

• next, we discuss emptiness testing for the language of a 
finite automaton

• previously, we had to determine if a FA accepts a 
particular string

• for emptiness testing, we have to determine if a FA 
accepts any strings at all

• EDFA = {<A> | A is a DFA and L(A) = Ø}

Decidable Languages
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• Theorem: EDFA is a decidable language
• proof

• a DFA accepts a string iff reaching an accept state 
from the start state along the edges

• design a TM T that uses a marking system similar to 
the connected graph TM

T = “On input <A>, where A is a DFA:
1. Mark the start state of A.
2. Repeat until no new states get marked:
3.    Mark any state that has a transition coming into 

   it from any state that is already marked.
4. If no accept state is marked, accept; otherwise, 

reject.”
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Decidable Languages
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• next, determine whether determining if two DFAs 
recognize the same language is decidable

• EQDFA = {<A,B> | A and B are DFAs and L(A) = L(B)}

Decidable Languages

14

• Theorem: EQDFA is a decidable language
• proof

• construct a new DFA C that accepts only those strings 
that are accepted by either A or B, but not both
• if A and B recognize the same language, C will accept 

nothing

• this is the symmetric difference of L(A) and L(B)
• L(C) = Ø if L(A) = L(B)

• construct C from A and B with the constructions for 
proving the class of regular languages closed under 
complementation, union, and intersection
• these construction algorithms can be performed with 

Turing machines
• use previous theorem to test whether L(C) is empty
• if so, L(A) and L(B) must be equal

Decidable Languages
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• Theorem: EQDFA is a decidable language

• proof (cont.)

F = “On input <A,B>, where A and B are DFAs:

1. Construct DFA C as described.

2. Run TM T from previous theorem on input <C>.

3. If T accepts, accept; otherwise, reject.”

Decidable Languages
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• decidable problems concerning context-free languages

• describe algorithms to determine whether a CFG 
generates a particular string and to determine whether 
the language of a CFG is empty

• ACFG = {<G,w> | G is a CFG that generates string w}

Decidable Languages
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• Theorem: ACFG is a decidable language
• proof idea

• we want to determine if G generates w
• use G to go through all derivations to find w

• doesn’t work – infinite number of derivations
• if G does not generate w, algorithm would compute 
forever

• this is a recognizer, not a decider
• for a decider, ensure that the algorithm tries only a finite 

number of derivations
• previously, we showed if G were in Chomsky normal form, 

any derivation of w has 2n – 1 steps, where n = |w|
• so, we can just check derivations with 2n – 1 steps
• only a finite number of such derivations
• can convert G to Chomsky normal form

Decidable Languages

18

• Theorem: ACFG is a decidable language

• proof (cont.)

S = “On input <G,w>, where G is a CFG and w is a string:

1. Convert G to an equivalent grammar in Chomsky 
normal form.

2. List all derivations with 2n – 1 steps, where n = 
|w|; except if n= 0, then instead list all 
derivations with one step.

3. If any of these derivations generates w, accept; 
otherwise, reject.”
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Decidable Languages
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• determining whether a CFG generates a particular string 
is related to compiling programming languages

• algorithm for TM S is very inefficient and would never 
be used in practice

• but is easy to describe and we don’t care about 
efficiency

• recall that we have procedures for converting back and 
forth between CFGs and PDAs

• so, everything about CFG decidability is true for PDAs

• for emptiness testing for CFGs, we can show the problem 
is decidable

• ECFG = {<G> | G is a CFG and L(G) = Ø}

Decidable Languages

20

• Theorem: ECFG is a decidable language
• proof idea

• could use TM S that states whether a CFG generates a 
particular w

• to determine if L(G) = Ø, we could try generating all 
possible w’s, one by one, but infinite number of w’s

• instead, test whether start variable can generate a string 
of terminals
• in general, determines for each variable whether it is 

capable of generating a string of terminals
• if so, algorithm places a mark on that variable

• first, mark all of the terminal symbols in the grammar
• scan the rules of the grammar
• if a rule is found that permits a variable to be replaced 

by some string of symbols, all of which are already 
marked, mark this variable, too

• continue until no more variables can be marked

Decidable Languages

21

• Theorem: ECFG is a decidable language

• proof

R = “On input <G>, where G is a CFG:

1. Mark all terminal symbols in G.

2. Repeat until no new variables get marked:

3.    Mark any variable A where G has a rule 
   A → U1U2…Uk and each symbol U1…Uk has 
   already been marked.

4. If the start variable is not marked, accept; 
otherwise, reject.”

Decidable Languages

22

• next, determine whether determining if two CFGs 
generate the same language

• EQCFG = {<G,H> | G and H are CFGs and L(G) = L(H)}

• for EQDFA, we use EDFA

• but, we cannot use ECFG to prove EQCFG is decidable 
since the CFLs are not closed under complementation 
or intersection

• actually, EQCFG is not decidable

Decidable Languages

23

• Theorem: every CFL is decidable

• proof idea

• goal: show CFL A is decidable

• could convert a PDA for A directly into a TM

• relatively easy

• PDA may be non-deterministic, but can be 
converted into NTM, which can then be converted 
into a DTM

• but, some branches of the PDA may go on forever

•this would also be reflected in the equivalent TM

• instead, use TM S that decided ACFG

Decidable Languages

24

• Theorem: every CFL is decidable

• proof

• let G be a CFG for A and design TM MG that decides 
A; build a copy of G into MG

MG = “On input w:

1. Run TM S on input <G,w>.

2. If this machine accepts, accept; otherwise, 
reject.”
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Decidable Languages
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• we have now linked the relationships across the four main 
classes of languages: regular, context-free, decidable, 
and Turing-recognizable

Undecidability

26

• in this section, we will prove that a specific problem is 
unsolvable

• philosophically important

• computers are extremely powerful, but some problems 
test their limits

• often very ordinary problems

• e.g., verifying that a sorting program is correct

Undecidability

27

• both ADFA and ACFG were decidable

• ATM is undecidable

• ATM = {<M,w> | M is a TM and M accepts w}

• ATM is Turing-recognizable

• recognizers are more powerful than deciders

• requiring a TM to halt on all inputs restricts the 
kinds of languages it can recognize

Undecidability

28

• the following Turing machine recognizes ATM

 U = “On input <M,w> where M is a TM and w is a string:

1. Simulate M on input w.

2. If M ever enters its accept state, accept; if M ever 
enters its reject state, reject.”

• this machine loops on <M,w> if M loops on w

• therefore, this machine does not decide ATM

• if the algorithm had a way to determine that M was 
not halting on w, it could reject

• however, an algorithm has no way to determine this

• Turing machine U is called the Universal Turing Machine

• capable of simulating every other Turing machine

Undecidability

29

• the proof of the undecidability of ATM uses diagonalization

• originally designed by Georg Cantor in 1873 to measure 
infinite sets

• if we have two infinite sets, which one is larger? 

• e.g., even integers vs. all strings over (0,1)

• can determine relative sizes by pairing elements (no 
counting involved)

Undecidability

30

• can use mapping function

• also called
• injective – one-to-one
• surjective – onto
• bijective – one-to-one and onto
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Undecidability

31

• example: Let N = {1, 2, 3, …} (natural numbers) and 
                     E = {2, 4, 6, …} (even numbers)

• by Cantor’s definition, they are the same size 

• for mapping N to E, use f(n) = 2n

• intuitively, E seems smaller since E is a proper subset 
of N

• since the mapping is possible, they are the same size

Undecidability

32

• a set A is countable if it is finite or has the same size 
as N

• from the previous example, E is countable

Undecidability

33

• example: Let Q = {m/n | m,n ∈ N} (rational numbers)

• Q seems to be much larger than N

• by Cantor’s definition, they are the same size 

• for mapping N to Q, list all elements of Q

• pair first element with 1, second element with 2, 
etc.

• each element of Q can only appear once

• create matrix where ith row contains all numbers 
with numerator i

• jth column has all denominators with j

• i/j is listed in the ith row, jth column

• for mapping, don’t go row by row (why not?)

Undecidability

34

• example: Let Q = {m/n | m,n ∈ N} (rational numbers)

• instead, go by diagonals

• don’t include any value that’s already been listed

• since we have the mapping, Q is countable

Undecidability

35

• after seeing these mappings, it may seem all infinite sets 
are the same size

• just have to show the correspondence to N

• but for some infinite sets, no correspondence to N 
exists

• uncountable

• the real numbers, R, are uncountable

• R: any number that has a decimal representation

•e.g., pi, sqrt(2)

Undecidability

36

• R is uncountable

• proof: show no correspondence exists between R and N

• use proof by contradiction

• suppose R is countable

• then a correspondence exists between R and N

• use construction to help

• choose each digit of x to make x different from 
one of the real numbers paired with an element 
from N

• e.g., f(1) = 3.14159…  f(2) = 55.55555… f(3) = …

31 32
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Undecidability
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• R is uncountable (cont.)

• suppose R is countable

• table showing one-to-one correspondence

• now, construct x between 0 and 1 and ensure x ≠ f(n) 
for any n

• let first digit of x be different from first digit of f(1)

• let second digit of x be different from f(2), etc.

• continue through diagonal of table

Undecidability

38

• R is uncountable (cont.)

• suppose R is countable

• now, x cannot be in the table since it differs by at 
least one digit with every element in the table

• avoid 0 or 9 since 0.199… = 0.200…

• contradiction: every real number is not in the table

• therefore, R is uncountable

Undecidability

39

• since R is uncountable

• some languages are not decidable or even Turing-
recognizable

• because there are uncountably many languages, but 
only countably many Turing machines

• therefore, some languages are not recognized by 
any Turing machine

Undecidability

40

• some languages are not Turing-recognizable

• first, show the set of all Turing machines is countable

• set of all strings Σ* is countable for any alphabet Σ

• with only finitely many strings of each length, write 
down strings of length 0, 1, 2, etc.

• set of all Turing machines is countable because each 
Turing machine M has an encoding into a string <M>

• if we omit those strings that are not legal 
encodings, we can make a list of Turing machines

Undecidability

41

• some languages are not Turing-recognizable (cont.)

• second, show the set of all languages is uncountable

• show set of all infinite binary sequences B is 
uncountable

• infinite binary sequence: unending sequence of 0s 
and 1s

• show B is uncountable using diagonalization as 
before for R

Undecidability

42

• some languages are not Turing-recognizable (cont.)

• second, show the set of all languages is uncountable

• let L be all languages over alphabet Σ

• show L is uncountable using correspondence with B

• let Σ* = {s1, s2, s3, …}

• each language A has a unique sequence in B

• ith bit is 1 if si ∈ A and 0 otherwise

•termed characteristic sequence of A

37 38
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Undecidability
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• some languages are not Turing-recognizable (cont.)

• second, show the set of all languages is uncountable

• e.g., if A were language of all strings beginning with 0 
over alphabet {0,1}, its characteristic sequence would 
be

• the function f where f(A) = characteristic sequence of 
A is one-to-one and onto, and hence a correspondence

• therefore, as B is uncountable, L is uncountable

• set of all L cannot correspond to all TM

• therefore, some languages are not recognized by any 
Turing machine

Undecidability

44

• now, we are ready to prove that ATM is undecidable
   where ATM = {<M,w> | M is a TM and M accepts w}

• proof

• assume ATM is decidable and obtain a contradiction

• suppose H is a decider for ATM

• on input <M,w>, H halts and accepts if M accepts w

• H halts and rejects if M fails to accept w

• therefore, H is a TM where

Undecidability

45

• now, we are ready to prove that ATM is undecidable
   where ATM = {<M,w> | M is a TM and M accepts w}

• proof (cont.)

• construct new TM D with H as a subroutine

• call H to determine what M does when the input to 
M is its own description

• once D has determined this information, it does the 
opposite

•rejects if M accepts

•accepts if M does not accept

• similar to running a program on with itself as input

•e.g., an interpreter written in Python may be used 
on the interpreter

Undecidability

46

• now, we are ready to prove that ATM is undecidable
   where ATM = {<M,w> | M is a TM and M accepts w}

• proof (cont.)

• Turing machine D

  D = “On input <M>, where M is a TM:

1. Run H on input <M, <M>>.

2. Output the opposite of what H outputs.  That is, 
if H accepts, reject; and if H rejects, accept.”

Undecidability

47

• now, we are ready to prove that ATM is undecidable
   where ATM = {<M,w> | M is a TM and M accepts w}

• proof (cont.)

• in summary

• what happens when we run D on <D>?

• whatever D does, it is forced to do the opposite, 
which is a contradiction

• therefore, neither TM D nor TM H can exist

Undecidability

48

• now, we are ready to prove that ATM is undecidable
   where ATM = {<M,w> | M is a TM and M accepts w}
• proof (cont.)

• steps of proof in summary
• assume TM H decides
• use H to build TM D that takes input <M>, where D 

accepts its input exactly when M does not accept 
its input <M>

• run D on itself
• machines take the following actions

• H accepts <M,w> exactly when M accepts w
• D rejects <M> exactly when M accepts <M>
• D rejects <D> exactly when D accepts <D>

43 44

45 46

47 48
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Undecidability

49

• now, we are ready to prove that ATM is undecidable
   where ATM = {<M,w> | M is a TM and M accepts w}

• proof (cont.)

• diagonalization comes into play in tables of behavior 
for TMs H and D

• list all TMs down the rows, M1, M2, …

• descriptions across the columns <M1>, <M2>, …

• entries state whether machine in given row accepts 
input in given column

•accept if accepts

•blank if rejects or loops

Undecidability

50

• now, we are ready to prove that ATM is undecidable
   where ATM = {<M,w> | M is a TM and M accepts w}

• proof (cont.)

• e.g., with sample entries

• results of running H on same inputs as above

Undecidability

51

• now, we are ready to prove that ATM is undecidable
   where ATM = {<M,w> | M is a TM and M accepts w}

• proof (cont.)

• now add D to table

• both H and D are TMs

• D computes the opposite of the diagonal entries

• ? shows where contradiction occurs

Undecidability

52

• we just showed that ATM is undecidable

• is there a language that is not even Turing-recognizable?

• can’t use ATM because we showed ATM is Turing-
recognizable

• if both a language and its complement are Turing-
recognizable, the language is decidable

• so, if any language or its complement is not Turing-
recognizable, it is undecidable

• recall that the complement of a language is language 
consisting of al strings that are not in the language

• a language is co-Turing-recognizable if it is the 
complement of a Turing-recognizable language

Undecidability

53

• theorem: a language is decidable iff it is Turing-
recognizable and co-Turing-recognizable

• thus, a language is decidable exactly when both it and 
its complement are Turing-recognizable

• proof

• prove two directions

• first: if A is decidable, both A and its complement 
are Turing-recognizable

• any decidable language is Turing-recognizable

• the complement of a decidable language is also 
decidable

Undecidability

54

• theorem: a language is decidable iff it is Turing-
recognizable and co-Turing-recognizable

• proof (cont.)

• second: if both A and its complement are Turing-
recognizable, let M1 be the recognizer for A and M2 
be the recognizer for the complement of A

• the following TM is a decider for A

  M = “On input w:

1. Run both M1 and M2 on input w in parallel.

2. If M1 accepts, accept; if M2 accepts, reject.”

• running the machines in parallel means M has two 
tapes: one for simulating M1 and one for M2

• M takes turns simulating M1 and M2 until one accepts

49 50

51 52
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Undecidability

55

• theorem: a language is decidable iff it is Turing-
recognizable and co-Turing-recognizable

• proof (cont.)

• every string w is either in A or its complement

• therefore, either M1 or M2 must accept w

• M halts when M1 or M2 accepts

• therefore, it is a decider

• M accepts all strings in A and rejects all string not in 
A

• therefore M is a decider for A

• thus, A is decidable

Undecidability

56

• corollary: the complement of ATM is not Turing-
recognizable

• we know ATM is Turing-recognizable

• if the complement of ATM were Turing-recognizable, 
ATM would be decidable

• since ATM is not decidable, the complement of ATM must 
not be Turing-recognizable

55 56
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