
11/2/2023

1

Chapter 4
Decidability

Overview

2

• previously, we introduced Turing machines as a model of
general-purpose computing

• we also defined an algorithm in terms of Turing machines
through the Church-Turing thesis

• now, we will show that certain problems can be solved
algorithmically and others cannot

• why study unsolvability?

• useful to know that a problem is unsolvable so that it
must be simplified or altered before it can be solved
with an algorithm

• will help gain perspective on computation

Decidable Languages

3

• we now turn to examples of languages that are decidable
by algorithms

• focus on languages concerning automata and grammars

• often related to applications

• example: string membership in a language related to
compiling programs

• some problems concerning automata and grammars
are not decidable by algorithms

Decidable Languages

4

• decidable problems concerning regular languages

• computational problems concerning finite automata

• represent computational problems through languages

• already have a framework and terminology

• e.g., acceptance problem for DFAs of testing
whether a DFA accepts a given string

• ADFA = {<B,w> | B is a DFA that accepts w}

• the problem of testing whether DFA B accepts input
string w is the same as testing whether <B,w> is a
member of the language ADFA

• can express other computational problems similarly

• showing a language is decidable is the same as
showing the computational problem is decidable

Decidable Languages

5

• Theorem: ADFA is a decidable language

• proof idea

• show a TM M that decides ADFA

M = “On input <B,w>, where B is a DFA and w is a string:

1. Simulate B on input w

2. If the simulation ends in an accept state, accept.
If it ends in a nonaccepting state, reject.”

Decidable Languages

6

• Theorem: ADFA is a decidable language
• proof

• imagine writing a program to carry out the simulation
• first, examine input <B,w>

• we could represent DFA B by its five components:
Q, Σ, δ, q0, F

• when M receives input, checks whether it properly represents
DFA B and string w
• if not, M rejects

• M carries out simulation directly
• keeps track of B’s current state and position in w by writing it

on its tape
• starts at q0 and beginning of w
• state and position updated through transition function δ

• when M finishes processing last symbol of w
• accepts if B is in accepting state
• otherwise rejects

1 2

3 4

5 6

11/2/2023

2

Decidable Languages

7

• similarly, we can prove for NFAs, too

• ANFA = {<B,w> | B is a NFA that accepts w}

• the problem of testing whether NFA B accepts input
string w is the same as testing whether <B,w> is a
member of the language ANFA

Decidable Languages

8

• Theorem: ANFA is a decidable language

• proof

• show a TM N that decides ANFA

• could design N like M for DFAs, but for NFAs

• instead, we’ll convert N to a DFA first, then use M as
a subroutine

N = “On input <B,w>, where B is a NFA and w is a string:

1. Convert NFA B to an equivalent DFA C

2. Run TM M on input <C,w>

3. If M accepts, accept; otherwise, reject.”

Decidable Languages

9

• similarly, we can determine whether a regular expression
generates a given string

• AREX = {<R,w> | R is a RE that generates w}

Decidable Languages

10

• Theorem: AREX is a decidable language

• proof

• TM P decides AREX

P = “On input <R,w>, where R is a RE and w is a string:

1. Convert regular expression R to an equivalent
NFA A

2. Run TM N on input <A,w>

3. If N accepts, accept; otherwise, reject.”

Decidable Languages

11

• for decidability purposes, it is equivalent to present the
Turing machine with a DFA, NFA, or a regular expression
because the machines can convert from one form of
encoding to another

• next, we discuss emptiness testing for the language of a
finite automaton

• previously, we had to determine if a FA accepts a
particular string

• for emptiness testing, we have to determine if a FA
accepts any strings at all

• EDFA = {<A> | A is a DFA and L(A) = Ø}

Decidable Languages

12

• Theorem: EDFA is a decidable language
• proof

• a DFA accepts a string iff reaching an accept state
from the start state along the edges

• design a TM T that uses a marking system similar to
the connected graph TM

T = “On input <A>, where A is a DFA:
1. Mark the start state of A.
2. Repeat until no new states get marked:
3. Mark any state that has a transition coming into

 it from any state that is already marked.
4. If no accept state is marked, accept; otherwise,

reject.”

7 8

9 10

11 12

11/2/2023

3

Decidable Languages

13

• next, determine whether determining if two DFAs
recognize the same language is decidable

• EQDFA = {<A,B> | A and B are DFAs and L(A) = L(B)}

Decidable Languages

14

• Theorem: EQDFA is a decidable language
• proof

• construct a new DFA C that accepts only those strings
that are accepted by either A or B, but not both
• if A and B recognize the same language, C will accept

nothing

• this is the symmetric difference of L(A) and L(B)
• L(C) = Ø if L(A) = L(B)

• construct C from A and B with the constructions for
proving the class of regular languages closed under
complementation, union, and intersection
• these construction algorithms can be performed with

Turing machines
• use previous theorem to test whether L(C) is empty
• if so, L(A) and L(B) must be equal

Decidable Languages

15

• Theorem: EQDFA is a decidable language

• proof (cont.)

F = “On input <A,B>, where A and B are DFAs:

1. Construct DFA C as described.

2. Run TM T from previous theorem on input <C>.

3. If T accepts, accept; otherwise, reject.”

Decidable Languages

16

• decidable problems concerning context-free languages

• describe algorithms to determine whether a CFG
generates a particular string and to determine whether
the language of a CFG is empty

• ACFG = {<G,w> | G is a CFG that generates string w}

Decidable Languages

17

• Theorem: ACFG is a decidable language
• proof idea

• we want to determine if G generates w
• use G to go through all derivations to find w

• doesn’t work – infinite number of derivations
• if G does not generate w, algorithm would compute
forever

• this is a recognizer, not a decider
• for a decider, ensure that the algorithm tries only a finite

number of derivations
• previously, we showed if G were in Chomsky normal form,

any derivation of w has 2n – 1 steps, where n = |w|
• so, we can just check derivations with 2n – 1 steps
• only a finite number of such derivations
• can convert G to Chomsky normal form

Decidable Languages

18

• Theorem: ACFG is a decidable language

• proof (cont.)

S = “On input <G,w>, where G is a CFG and w is a string:

1. Convert G to an equivalent grammar in Chomsky
normal form.

2. List all derivations with 2n – 1 steps, where n =
|w|; except if n= 0, then instead list all
derivations with one step.

3. If any of these derivations generates w, accept;
otherwise, reject.”

13 14

15 16

17 18

11/2/2023

4

Decidable Languages

19

• determining whether a CFG generates a particular string
is related to compiling programming languages

• algorithm for TM S is very inefficient and would never
be used in practice

• but is easy to describe and we don’t care about
efficiency

• recall that we have procedures for converting back and
forth between CFGs and PDAs

• so, everything about CFG decidability is true for PDAs

• for emptiness testing for CFGs, we can show the problem
is decidable

• ECFG = {<G> | G is a CFG and L(G) = Ø}

Decidable Languages

20

• Theorem: ECFG is a decidable language
• proof idea

• could use TM S that states whether a CFG generates a
particular w

• to determine if L(G) = Ø, we could try generating all
possible w’s, one by one, but infinite number of w’s

• instead, test whether start variable can generate a string
of terminals
• in general, determines for each variable whether it is

capable of generating a string of terminals
• if so, algorithm places a mark on that variable

• first, mark all of the terminal symbols in the grammar
• scan the rules of the grammar
• if a rule is found that permits a variable to be replaced

by some string of symbols, all of which are already
marked, mark this variable, too

• continue until no more variables can be marked

Decidable Languages

21

• Theorem: ECFG is a decidable language

• proof

R = “On input <G>, where G is a CFG:

1. Mark all terminal symbols in G.

2. Repeat until no new variables get marked:

3. Mark any variable A where G has a rule
 A → U1U2…Uk and each symbol U1…Uk has
 already been marked.

4. If the start variable is not marked, accept;
otherwise, reject.”

Decidable Languages

22

• next, determine whether determining if two CFGs
generate the same language

• EQCFG = {<G,H> | G and H are CFGs and L(G) = L(H)}

• for EQDFA, we use EDFA

• but, we cannot use ECFG to prove EQCFG is decidable
since the CFLs are not closed under complementation
or intersection

• actually, EQCFG is not decidable

Decidable Languages

23

• Theorem: every CFL is decidable

• proof idea

• goal: show CFL A is decidable

• could convert a PDA for A directly into a TM

• relatively easy

• PDA may be non-deterministic, but can be
converted into NTM, which can then be converted
into a DTM

• but, some branches of the PDA may go on forever

•this would also be reflected in the equivalent TM

• instead, use TM S that decided ACFG

Decidable Languages

24

• Theorem: every CFL is decidable

• proof

• let G be a CFG for A and design TM MG that decides
A; build a copy of G into MG

MG = “On input w:

1. Run TM S on input <G,w>.

2. If this machine accepts, accept; otherwise,
reject.”

19 20

21 22

23 24

11/2/2023

5

Decidable Languages

25

• we have now linked the relationships across the four main
classes of languages: regular, context-free, decidable,
and Turing-recognizable

Undecidability

26

• in this section, we will prove that a specific problem is
unsolvable

• philosophically important

• computers are extremely powerful, but some problems
test their limits

• often very ordinary problems

• e.g., verifying that a sorting program is correct

Undecidability

27

• both ADFA and ACFG were decidable

• ATM is undecidable

• ATM = {<M,w> | M is a TM and M accepts w}

• ATM is Turing-recognizable

• recognizers are more powerful than deciders

• requiring a TM to halt on all inputs restricts the
kinds of languages it can recognize

Undecidability

28

• the following Turing machine recognizes ATM

 U = “On input <M,w> where M is a TM and w is a string:

1. Simulate M on input w.

2. If M ever enters its accept state, accept; if M ever
enters its reject state, reject.”

• this machine loops on <M,w> if M loops on w

• therefore, this machine does not decide ATM

• if the algorithm had a way to determine that M was
not halting on w, it could reject

• however, an algorithm has no way to determine this

• Turing machine U is called the Universal Turing Machine

• capable of simulating every other Turing machine

Undecidability

29

• the proof of the undecidability of ATM uses diagonalization

• originally designed by Georg Cantor in 1873 to measure
infinite sets

• if we have two infinite sets, which one is larger?

• e.g., even integers vs. all strings over (0,1)

• can determine relative sizes by pairing elements (no
counting involved)

Undecidability

30

• can use mapping function

• also called
• injective – one-to-one
• surjective – onto
• bijective – one-to-one and onto

25 26

27 28

29 30

11/2/2023

6

Undecidability

31

• example: Let N = {1, 2, 3, …} (natural numbers) and
 E = {2, 4, 6, …} (even numbers)

• by Cantor’s definition, they are the same size

• for mapping N to E, use f(n) = 2n

• intuitively, E seems smaller since E is a proper subset
of N

• since the mapping is possible, they are the same size

Undecidability

32

• a set A is countable if it is finite or has the same size
as N

• from the previous example, E is countable

Undecidability

33

• example: Let Q = {m/n | m,n ∈ N} (rational numbers)

• Q seems to be much larger than N

• by Cantor’s definition, they are the same size

• for mapping N to Q, list all elements of Q

• pair first element with 1, second element with 2,
etc.

• each element of Q can only appear once

• create matrix where ith row contains all numbers
with numerator i

• jth column has all denominators with j

• i/j is listed in the ith row, jth column

• for mapping, don’t go row by row (why not?)

Undecidability

34

• example: Let Q = {m/n | m,n ∈ N} (rational numbers)

• instead, go by diagonals

• don’t include any value that’s already been listed

• since we have the mapping, Q is countable

Undecidability

35

• after seeing these mappings, it may seem all infinite sets
are the same size

• just have to show the correspondence to N

• but for some infinite sets, no correspondence to N
exists

• uncountable

• the real numbers, R, are uncountable

• R: any number that has a decimal representation

•e.g., pi, sqrt(2)

Undecidability

36

• R is uncountable

• proof: show no correspondence exists between R and N

• use proof by contradiction

• suppose R is countable

• then a correspondence exists between R and N

• use construction to help

• choose each digit of x to make x different from
one of the real numbers paired with an element
from N

• e.g., f(1) = 3.14159… f(2) = 55.55555… f(3) = …

31 32

33 34

35 36

11/2/2023

7

Undecidability

37

• R is uncountable (cont.)

• suppose R is countable

• table showing one-to-one correspondence

• now, construct x between 0 and 1 and ensure x ≠ f(n)
for any n

• let first digit of x be different from first digit of f(1)

• let second digit of x be different from f(2), etc.

• continue through diagonal of table

Undecidability

38

• R is uncountable (cont.)

• suppose R is countable

• now, x cannot be in the table since it differs by at
least one digit with every element in the table

• avoid 0 or 9 since 0.199… = 0.200…

• contradiction: every real number is not in the table

• therefore, R is uncountable

Undecidability

39

• since R is uncountable

• some languages are not decidable or even Turing-
recognizable

• because there are uncountably many languages, but
only countably many Turing machines

• therefore, some languages are not recognized by
any Turing machine

Undecidability

40

• some languages are not Turing-recognizable

• first, show the set of all Turing machines is countable

• set of all strings Σ* is countable for any alphabet Σ

• with only finitely many strings of each length, write
down strings of length 0, 1, 2, etc.

• set of all Turing machines is countable because each
Turing machine M has an encoding into a string <M>

• if we omit those strings that are not legal
encodings, we can make a list of Turing machines

Undecidability

41

• some languages are not Turing-recognizable (cont.)

• second, show the set of all languages is uncountable

• show set of all infinite binary sequences B is
uncountable

• infinite binary sequence: unending sequence of 0s
and 1s

• show B is uncountable using diagonalization as
before for R

Undecidability

42

• some languages are not Turing-recognizable (cont.)

• second, show the set of all languages is uncountable

• let L be all languages over alphabet Σ

• show L is uncountable using correspondence with B

• let Σ* = {s1, s2, s3, …}

• each language A has a unique sequence in B

• ith bit is 1 if si ∈ A and 0 otherwise

•termed characteristic sequence of A

37 38

39 40

41 42

11/2/2023

8

Undecidability

43

• some languages are not Turing-recognizable (cont.)

• second, show the set of all languages is uncountable

• e.g., if A were language of all strings beginning with 0
over alphabet {0,1}, its characteristic sequence would
be

• the function f where f(A) = characteristic sequence of
A is one-to-one and onto, and hence a correspondence

• therefore, as B is uncountable, L is uncountable

• set of all L cannot correspond to all TM

• therefore, some languages are not recognized by any
Turing machine

Undecidability

44

• now, we are ready to prove that ATM is undecidable
 where ATM = {<M,w> | M is a TM and M accepts w}

• proof

• assume ATM is decidable and obtain a contradiction

• suppose H is a decider for ATM

• on input <M,w>, H halts and accepts if M accepts w

• H halts and rejects if M fails to accept w

• therefore, H is a TM where

Undecidability

45

• now, we are ready to prove that ATM is undecidable
 where ATM = {<M,w> | M is a TM and M accepts w}

• proof (cont.)

• construct new TM D with H as a subroutine

• call H to determine what M does when the input to
M is its own description

• once D has determined this information, it does the
opposite

•rejects if M accepts

•accepts if M does not accept

• similar to running a program on with itself as input

•e.g., an interpreter written in Python may be used
on the interpreter

Undecidability

46

• now, we are ready to prove that ATM is undecidable
 where ATM = {<M,w> | M is a TM and M accepts w}

• proof (cont.)

• Turing machine D

 D = “On input <M>, where M is a TM:

1. Run H on input <M, <M>>.

2. Output the opposite of what H outputs. That is,
if H accepts, reject; and if H rejects, accept.”

Undecidability

47

• now, we are ready to prove that ATM is undecidable
 where ATM = {<M,w> | M is a TM and M accepts w}

• proof (cont.)

• in summary

• what happens when we run D on <D>?

• whatever D does, it is forced to do the opposite,
which is a contradiction

• therefore, neither TM D nor TM H can exist

Undecidability

48

• now, we are ready to prove that ATM is undecidable
 where ATM = {<M,w> | M is a TM and M accepts w}
• proof (cont.)

• steps of proof in summary
• assume TM H decides
• use H to build TM D that takes input <M>, where D

accepts its input exactly when M does not accept
its input <M>

• run D on itself
• machines take the following actions

• H accepts <M,w> exactly when M accepts w
• D rejects <M> exactly when M accepts <M>
• D rejects <D> exactly when D accepts <D>

43 44

45 46

47 48

11/2/2023

9

Undecidability

49

• now, we are ready to prove that ATM is undecidable
 where ATM = {<M,w> | M is a TM and M accepts w}

• proof (cont.)

• diagonalization comes into play in tables of behavior
for TMs H and D

• list all TMs down the rows, M1, M2, …

• descriptions across the columns <M1>, <M2>, …

• entries state whether machine in given row accepts
input in given column

•accept if accepts

•blank if rejects or loops

Undecidability

50

• now, we are ready to prove that ATM is undecidable
 where ATM = {<M,w> | M is a TM and M accepts w}

• proof (cont.)

• e.g., with sample entries

• results of running H on same inputs as above

Undecidability

51

• now, we are ready to prove that ATM is undecidable
 where ATM = {<M,w> | M is a TM and M accepts w}

• proof (cont.)

• now add D to table

• both H and D are TMs

• D computes the opposite of the diagonal entries

• ? shows where contradiction occurs

Undecidability

52

• we just showed that ATM is undecidable

• is there a language that is not even Turing-recognizable?

• can’t use ATM because we showed ATM is Turing-
recognizable

• if both a language and its complement are Turing-
recognizable, the language is decidable

• so, if any language or its complement is not Turing-
recognizable, it is undecidable

• recall that the complement of a language is language
consisting of al strings that are not in the language

• a language is co-Turing-recognizable if it is the
complement of a Turing-recognizable language

Undecidability

53

• theorem: a language is decidable iff it is Turing-
recognizable and co-Turing-recognizable

• thus, a language is decidable exactly when both it and
its complement are Turing-recognizable

• proof

• prove two directions

• first: if A is decidable, both A and its complement
are Turing-recognizable

• any decidable language is Turing-recognizable

• the complement of a decidable language is also
decidable

Undecidability

54

• theorem: a language is decidable iff it is Turing-
recognizable and co-Turing-recognizable

• proof (cont.)

• second: if both A and its complement are Turing-
recognizable, let M1 be the recognizer for A and M2
be the recognizer for the complement of A

• the following TM is a decider for A

 M = “On input w:

1. Run both M1 and M2 on input w in parallel.

2. If M1 accepts, accept; if M2 accepts, reject.”

• running the machines in parallel means M has two
tapes: one for simulating M1 and one for M2

• M takes turns simulating M1 and M2 until one accepts

49 50

51 52

53 54

11/2/2023

10

Undecidability

55

• theorem: a language is decidable iff it is Turing-
recognizable and co-Turing-recognizable

• proof (cont.)

• every string w is either in A or its complement

• therefore, either M1 or M2 must accept w

• M halts when M1 or M2 accepts

• therefore, it is a decider

• M accepts all strings in A and rejects all string not in
A

• therefore M is a decider for A

• thus, A is decidable

Undecidability

56

• corollary: the complement of ATM is not Turing-
recognizable

• we know ATM is Turing-recognizable

• if the complement of ATM were Turing-recognizable,
ATM would be decidable

• since ATM is not decidable, the complement of ATM must
not be Turing-recognizable

55 56

	Slide 1: Chapter 4 Decidability
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

