Chapter 5 Reducibility

Overview

- previously, we established Turing machines as a model of general-purpose computing
- we presented several problems that were solvable on a TM and looked at one problem that was not solvable, $A_{\rm TM}$
- in this chapter, we will look at other unsolvable problems
- we can prove problems are unsolvable using reducibility

1

2

Overview

- reduction: method of converting one problem into another such that the solution to the second problem can be used to solve the first
- we use reduction in everyday life
 - finding your way around in a new city is made easy by finding a map
 - reduce the problem of finding your way around to the problem of obtaining a map

Overview

- reducibility always involves two problems, A and B
 if A reduces to B, we use a solution to B to solve A
 - \bullet e.g., A is the problem of finding your way around a city and B is the problem of finding a map
 - reducibility says nothing about solving A or B alone
 only about the solvability of A in the presence of a solution to B

3

Overview

- further examples of reducibility
 - problem of traveling from Boston to Paris reduces to the problem of buying a plane ticket
 - that problem reduces to the problem of earning the money for the ticket
 - that problem reduces to finding a job

Overview

- reducibility is also used for mathematical problems
 problem of measuring the area of a rectangle reduces to the problem of measuring its length and width
- the problem of solving a system of linear equations reduces to the problem of inverting a matrix

Overview

- reducibility helps in classifying problems by decidability
 when A is reducible to B, solving A cannot be harder
 - than solving B because a solution to B gives a solution to \boldsymbol{A}
 - if A is reducible to B and B is decidable, then A is also decidable
 - if A is undecidable and reducible to B, then B is undecidable
 - we can use this to prove problems are undecidable
 - show that some other problem already known to be undecidable reduces to it

Undecidable Problems from Language Theory

- we already established the undecidability of A_{TM} , the problem of determining whether a Turing machine accepts a given input
 - through a fairly long proof
- $\boldsymbol{\cdot}$ but now, we can use this result to show other problems are undecidable
 - \bullet e.g., the related problem HALT_{TM}

8

Undecidable Problems from Language Theory

- \bullet HALT_{TM} is the problem of determining whether a TM halts by accepting or rejecting a given input
- known as the halting problem
- use the undecidability of A_{TM} to prove the undecidability of HALT_{TM} by reducing A_{TM} to HALT_{TM}

9

7

Undecidable Problems from Language Theory

- HALT_{TM} = {<M,w> | M is a TM and M halts on input w}
- Theorem 5.1: HALT_{TM} is undecidable (cont.)
 - proof idea
 - imagine you are S how would you decide $A_{\text{TM}}\texttt{?}$
 - on input <M,w>
 - accept if M accepts
 - reject if M rejects or loops forever
 - simulate M on w
 - if it accepts or rejects, do the same
 - $\ensuremath{\cdot}\xspace$ may not be able to tell if M is looping
 - simulation will not terminate BAD for a decider
 - therefore, this idea doesn't work

Undecidable Problems from Language Theory

- HALT_{TM} = {<M,w> | M is a TM and M halts on input w}
- \bullet Theorem 5.1: HALT_{TM} is undecidable
- proof idea
 - use proof by contradiction
 - \bullet assume HALT_{TM} is decidable to show A_{TM} is decidable, which contradicts our previous result
 - $\boldsymbol{\cdot}$ assume TM R decides $\mathsf{HALT}_{\mathsf{TM}}$
 - $\boldsymbol{\cdot}$ use R to construct S, a TM that decides \boldsymbol{A}_{TM}
 - imagine you are S how would you decide A_{TM} ?

10

Undecidable Problems from Language Theory

- HALT_{TM} = {<M,w> | M is a TM and M halts on input w}
- Theorem 5.1: HALT_{TM} is undecidable (cont.)
 proof idea
 - instead, use TM R that decides HALT_{TM}
 - now test whether M halts on w
 - if R doesn't halt on w, reject because <M,w> not in A_{TM}
 - if R does halt on w, simulation can be performed as described without danger of looping
 - so, if TM R exists, we can decide A_{TM} but we know A_{TM} is undecidable
 - by this contradiction, R cannot exist
 - therefore, $HALT_{TM}$ is undecidable

- HALT_{TM} = {<M,w> | M is a TM and M halts on input w}
- Theorem 5.1: HALT_{TM} is undecidable (cont.)
 - proof
 - assume TM R decides HALT_{TM}
 - construct TM S to decide A_{TM}
 - S = "On input <M,w>, an encoding of a TM M and string w:
 - 1. Run TM R on input < M, w>.
 - 2. If R rejects, reject.
 - 3. If R accepts, simulate M on w until it halts.
 - 4. If M accepted, accept; if M rejected, reject."
 - \bullet if R decides HALT_{TM}. S decides A_{TM} , but since A_{TM} is undecidable, HALT_{TM} must also be undecidable

13

Undecidable Problems from Language Theory

- E_{TM} = {<M> | M is a TM and L(M) = Ø}
- Theorem 5.2: E_{TM} is undecidable
 - proof idea
 - follow same strategy as before
 - assume E_{TM} is decidable to show A_{TM} is decidable, which contradicts our previous result
 - assume TM R decides E_{TM}
 - use R to construct S, a TM that decides A_{TM}
 - how will S work when it receives input < M, w>?

15

Undecidable Problems from Language Theory

- $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$
- Theorem 5.2: E_{TM} is undecidable
 - proof idea (cont.)
 - instead of running R on <M>, run R on a modification of <M>
 - modify M so that it rejects all strings except w
 - on input w, it works as usual
 - run R to determine if the modified machine recognizes the empty language
 - $\ensuremath{\cdot}\xspace$ the language will be nonempty iff it accepts w
 - if R accepts with the modified machine, the modified machine doesn't accept anything, so M doesn't accept w

Undecidable Problems from Language Theory E_{TM} = {⟨M⟩ | M is a TM and L(M) = Ø} Theorem 5.2: E_{TM} is undecidable proof modified machine labeled M₁ M₁ = "On input x: If x ≠ w, reject (compare character by character) If x = w, run M on input w and accept if M does."

Undecidable Problems from Language Theory

- we can use this strategy to prove other problems are undecidable
- common to proofs of undecidability, except for the undecidability of A_{TM} itself, which was proved directly using the diagonalization method

14

Undecidable Problems from Language Theory

- $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$
- \bullet Theorem 5.2: E_{TM} is undecidable
- proof idea (cont.)
 - S can run R on input <M> to see whether it accepts
 - $\boldsymbol{\cdot}$ if so, L(M) is empty and does not accept w
 - if R rejects <M>, all we know is L(M) is not empty and M accepts some string
 - •but we still don't know if it accepts w
 - therefore, this idea doesn't work

- $E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \}$
- Theorem 5.2: E_{TM} is undecidable
 - proof
 - TM R decides E_{TM} and constructs S that decides A_{TM}
 - S = "On input <M,w>, an encoding of a TM M and a string w:
 - 1. Use the description of M and w to construct the TM M_1 just as described.
 - Run R on input < M₁>
 - 3. If R accepts, reject; if R rejects, accept."
 - S can compute a description of M_1 from a description of M and w needs to add extra states to M to test x = w
 - if R were a decider for E_{TM} . S would be a decider for A_{TM} • a decider for A_{TM} cannot exist, so E_{TM} must be undecidable

19

Undecidable Problems from Language Theory

- \bullet REGULAR $_{TM}$ = {<M> | M is a TM and L(M) is a regular language}
- \bullet Theorem 5.3: $\mathsf{REGULAR}_{\mathsf{TM}}$ is undecidable
 - proof idea
 - follow same reduction from A_{TM} as before
 - \cdot assume REGULAR_{TM} is decidable by TM R and use this result to show A_{TM} is decidable, which contradicts our previous result
 - how will S use R to do so?

21

Undecidable Problems from Language Theory

- \bullet REGULAR_TM = {<M> | M is a TM and L(M) is a regular language}
- \bullet Theorem 5.3: REGULAR_{TM} is undecidable
- proof idea (cont.)
 - note that $M_{\rm 2}$ is not constructed to actually run on some input
 - only use it to feed its description into the decider for $\mathsf{REGULAR}_{\mathsf{TM}}$ that we have assumed to exist
 - once this decider returns its answer, we can use it to determine if M accepts w
 - \bullet thus, we can decide $A_{\text{TM}},$ a contradiction

Undecidable Problems from Language Theory

- another problem of interest is whether a TM can recognize a language that is recognized by a simpler computational model
 - e.g., REGULAR_{TM}
 - problem of determining whether a TM has an equivalent finite automaton
 - this is the same problem as determining whether a TM can recognize a regular language

20

Undecidable Problems from Language Theory

- + REGULAR $_{\mathsf{TM}}$ = {<M> | M is a TM and L(M) is a regular language}
- \bullet Theorem 5.3: REGULAR_{TM} is undecidable
 - proof idea (cont.)
 - S takes its input <M,w> and modifies M to recognize a regular language iff M accepts w
 - new TM called M2
 - design M_2 to recognize nonregular language $\{0^{n_1n}\mid n\geq 0\}$ if M does not accept w
 - and to recognize the regular language Σ^\star if M accepts w
 - how will S construct M_2 from M and w? - M_2 will automatically accept all strings 0^n1^n
 - \cdot if M accepts w, M₂ accepts all other strings

22

Undecidable Problems from Language Theory

- REGULAR _ TM = {<M> | M is a TM and L(M) is a regular language}
- + Theorem 5.3: $\mathsf{REGULAR}_\mathsf{TM}$ is undecidable
 - proof
 - let R be a TM that decides $\mathsf{REGULAR}_{\mathsf{TM}}$ and construct S to decide A_{TM}
 - S = "On input <M,w>, an encoding of a TM M and a string w:
 - 1. Construct the following TM M_2 .
 - M2 = "On input x:
 - 1. If x has the form O^n1^n , accept.
 - 2. If x does not have this form, run M on input w and accept if M accepts w.
 - 2. Run R on input <M₂>
 - 3. If R accepts, accept; if R rejects, reject."

- similarly, the following problems can be shown to be undecidable
 - whether the language of a TM is context-free
 - whether the language of a TM is decidable
 - whether the language of a TM is finite
- \bullet Rice's Theorem: Showing any property of the languages recognized by a TM is undecidable
- so far, we've used the reduction to A_{TM} as our strategy
- \bullet can also reduce from other undecidable languages, such as E_{TM}

25

Undecidable Problems from Language Theory

- EQ_{TM} = { $\langle M_1, M_2 \rangle$ | M_1 and M_2 are TMs and L(M_1) = L(M_2)}
- Theorem 5.4: EQ_{TM} is undecidable
 - proof idea
 - \cdot show that if EQ_{TM} were decidable, then E_{TM} would be decidable by using a reduction from E_{TM} to EQ_{TM}
 - recall that E_{TM} is the problem of determining if M is empty
 - if one of the languages happens to be Ø, our problem becomes determining if the other language is empty
 - in this way, the E_{TM} problem is a special case of the $\mathsf{EQ}_{\mathsf{TM}}$ problem
 - this makes the reduction easy
- 27

Undecidable Problems from Language Theory

- restrictions via computation histories
 - \cdot the computation history method is an important technique for proving A_{TM} is reducible to certain languages
 - useful when the problem to be shown to be undecidable involves testing for the existence of something
 - e.g., Hilbert's tenth problem for testing for integral roots of a polynomial

Undecidable Problems from Language Theory

- \bullet next, we'll prove the testing the equivalence of two TMs is an undecidable problem
 - we could use reduction to A_{TM} to prove this, but we'll use reduction to E_{TM} instead

26

Undecidable Problems from Language Theory

- EQ_{TM} = { $\langle M_1, M_2 \rangle$ | M_1 and M_2 are TMs and L(M_1) = L(M_2)}
- Theorem 5.4: EQ_{TM} is undecidable
- proof
 - let R be a TM that decides EQ_{TM} and construct TM S to decide E_{TM}
 - S = "On input <M>, where M is a TM:
 - 1. Run R on input <M,M_1>, where M_1 is a TM that rejects all inputs.
 - 2. If R accepts, accept; if R rejects, reject."
 - if R decides EQ_{TM} , S decides E_{TM}
 - but E_{TM} is undecidable, so $\mathsf{EQ}_{\mathsf{TM}}$ must also be undecidable

28

Undecidable Problems from Language Theory

- restrictions via computation histories
 - the computation history for a TM on an input is just the sequence of configurations that the machine goes through as it processes the input
 - a complete record of the computation of the machine

DEFINITION 5.5 Let *M* be a Turing machine and *w* an input string. An accepting computation bitary for *M* on *w* is a sequence of configurations, $C_1, C_2, ..., C_t$, where C_1 is the start configuration of *M* on *w*, C_t is an accepting configuration of *M*, and each C_t legally follows from C_{t-1} according to the rules of *M*. A rejecting computation bitory for *M* on *w* is defined similarly, except that C_t is a rejecting configuration.

- restrictions via computation histories
- computation histories are finite sequences
- if M doesn't halt on w, no accepting or rejecting computation history exists for M on w
- deterministic machines have at most one computation history for any given input
- nondeterministic machines may have many computation histories for a single input
- we'll focus on deterministic machines

Undecidable Problems from Language Theory

• our first undecidability proof using computational history is called a linear bounded automaton

32

31

Undecidable Problems from Language Theory

- $\boldsymbol{\cdot}$ a linear bounded automaton is a TM with a limited amount of memory
 - can only solve problems requiring memory that can fit within the tape used for input
 - using a tape alphabet larger than the input alphabet allows available memory to be increased up by a constant factor
 - $\boldsymbol{\cdot}$ for input length n, the amount of available memory is linear in n

33

Undecidable Problems from Language Theory

- A_{LBA} = {<M,w> | M is an LBA that accepts string w}
- the following lemma will be useful
- Lemma 5.8: Let M be an LBA with q states and g symbols in the tape alphabet. There are exactly qngⁿ distinct configurations of M for a tape of length n.
- proof
 - $\boldsymbol{\cdot}$ a configuration for $\boldsymbol{\mathsf{M}}$ is a snapshot of computation
- a configuration consists of the state of control,
- position of the head, and contents of the tape • M has q states
- tape length n with M on one of those n positions
- gⁿ possible strings of tape symbols on the tape
- multiplying these gives total number of configurations

Undecidable Problems from Language Theory

- \cdot despite these limitations, linear bounded automata (LBAs) are quite powerful
 - deciders for A_{DFA} , A_{CFG} , E_{DFA} , and E_{CFG} , are all LBAs
 - every CFL can be decided by an LBA
 - trying to find a decidable language that can't be decided by an LBA takes work
 - \mathbf{A}_{LBA} is the problem of determining whether an LBA accepts its input
 - even though same as the undecidable problem $A_{\rm TM}$ where the TM is restricted to an LBA, we show that $A_{\rm LBA}$ is decidable

34

Undecidable Problems from Language Theory

- A_{LBA} = {<M,w> | M is an LBA that accepts string w}
- Theorem 5.9: A_{LBA} is decidable.
- proof idea
 - simulate M on w
 - $\boldsymbol{\cdot}$ if M halts and accepts or rejects, we accept or reject accordingly
 - $\ensuremath{\cdot}$ difficulty is when M loops on w
 - •we need to be able to detect looping so that we can halt and reject

- A_{LBA} = {<M,w> | M is an LBA that accepts string w}
- Theorem 5.9: ALBA is decidable.
 - proof idea (cont.)
 - to detect looping
 - as M computes on w, it goes from configuration to configuration
 - if M ever repeats a configuration again and again, we have detected a loop
 because M is an LBA, the amount of tape available is
 - because M is an LBA, the amount of tape available is limited
 - Lemma 5.8 states M can only be in a limited number of configurations
 - therefore, limited amount of time before M can enter some configuration previously entered
 - so, simulate M for number of steps given in lemma
 - if M has not halted by then, it must be looping

37

Undecidable Problems from Language Theory

- this result shows that LBAs and TMs differ in one essential way
 - \bullet for LBAs, the acceptance problem is decidable, but for TMs, it isn't
- \cdot certain other problems involving LBAs are undecidable \cdot emptiness problem E_{LBA}

Undecidable Problems from Language Theory

- A_{LBA} = {<M,w> | M is an LBA that accepts string w}
- Theorem 5.9: A_{LBA} is decidable.
- proof
 - L = "On input <M,w>, where M is an LBA and w is a string:
 - 1. Simulate M on w for qngⁿ steps or until it halts.
 - If M has halted, accept if it has accepted and reject if it has rejected. If it has not halted, reject."
 - if M has not halted within qngⁿ steps, it must be repeating a configuration and therefore looping
 - the algorithm therefore rejects in this situation

38

40

A Simple Undecidable Problem

- $\boldsymbol{\cdot}$ undecidability is not confined to problems concerning automata
- one example is the Post Correspondence problem (PCP)
 string manipulation problem

39

A Simple Undecidable Problem

- Post Correspondence problem (PCP)
- puzzle problem with a collection of dominos
- $\boldsymbol{\cdot}$ each domino contains two strings: one on each side

• example of individual domino

collection of dominos

$\left\{ \left[\frac{b}{ca}\right], \; \left[\frac{a}{ab}\right], \; \left[\frac{ca}{a}\right], \; \left[\frac{abc}{c}\right] \right\}$

A Simple Undecidable Problem

- Post Correspondence problem (PCP)
- for some collections of dominos, finding a match may not be possible

 $\left\{ \left[\frac{abc}{ab}\right], \left[\frac{ca}{a}\right], \left[\frac{acc}{ba}\right] \right\}$

 this collection cannot contain a match because every top string is longer than its corresponding bottom string

43

A Simple Undecidable Problem

- Post Correspondence problem (PCP)
 - \bullet first, we'll state the problem precisely and express it as a language
 - an instance is a collection P of dominos
 - $P = \left\{ \begin{bmatrix} t_1 \\ b_1 \end{bmatrix}, \begin{bmatrix} t_2 \\ b_2 \end{bmatrix}, \dots, \begin{bmatrix} t_k \\ b_k \end{bmatrix} \right\}$
 - a match is a sequence
 - $i_1, i_2, ..., i_l$ where $t_{i1}, t_{i2}, ..., t_{il} = b_{i1}, b_{i2}, ..., b_{il}$ • the problem is to determine whether P has a match

PCP = {<P> | P is an instance of the PCP with a match}

45

A Simple Undecidable Problem

- Post Correspondence problem (PCP)
 - PCP = {<P> | P is an instance of the PCP with a match}
- Theorem 5.15: PCP is undecidable
 - proof idea (cont.)
 - three small technical points
 assume M on w never attempts to move its head off the left-hand end of the tape
 - must alter M to prevent this behavior

 $\left[\frac{t_1}{b_1}\right]$

- 2. if $w = \varepsilon$, use _ (u) in place of w in the construction
- 3. modify PCP to require that match starts with the first domino (eliminate this requirement later)

A Simple Undecidable Problem

Post Correspondence problem (PCP)

dominos has a match

• the problem is to determine whether a collection of

• this problem is unsolvable by algorithms

A Simple Undecidable Problem

- Post Correspondence problem (PCP)
 - PCP = {<P> | P is an instance of the PCP with a match}
- Theorem 5.15: PCP is undecidable
- proof idea (cont.)
 - how do we construct P so that a match is an accepting computation history for M on w?
 - choose dominos in P so that making a match forces a simulation of M to occur
 - each domino links a position or positions in one configuration with the corresponding one in the next configuration

46

44

A Simple Undecidable Problem

- Modified Post Correspondence problem (MPCP) MPCP = {<P> | P is an instance of the PCP with a match that starts with the first domino}
- Theorem 5.15: PCP is undecidable
- proof
 - let TM R decide PCP and construct S deciding A_{TM} M = (Q, Σ , Γ , δ , q_0 , q_{accept} , q_{reject})
 - S constructs an instance of the PCP P that has a match iff M accepts ${\rm w}$
 - S first constructs P' of the MPCP
 - described in 7 parts, each of which covers a particular aspect of simulating M on w

Post Correspondence problem (PCP) PCP = {<P> | P is an instance of the PCP with a match}
Theorem 5.15: PCP is undecidable

proof (cont.)
7 parts of simulation (through example)
1. put [#/#qow1w2...wn#] into P' as the first domino [t/b1]/(b1]
the match must begin with this domino
the bottom string begins with the first configuration in the accepting history for M on w

49

A Simple Undecidable Problem

- Post Correspondence problem (PCP)
 PCP = {<P> | P is an instance of the PCP with a match}
- Theorem 5.15: PCP is undecidable
 - proof (cont.)
 - 7 parts of simulation (through example) (cont.)
 - next three steps perform simulation
 - part 2 handles head motions to the right
 - $\boldsymbol{\cdot}$ part 3 handles head motions to the left
 - part 4 handles tape cells not adjacent to the head

51

A Simple Undecidable Problem

- Post Correspondence problem (PCP)
 - PCP = {<P> | P is an instance of the PCP with a match}
- Theorem 5.15: PCP is undecidable
 - proof (cont.)
 - 7 parts of simulation (through example) (cont.)
 - 3. for every a,b,c $\in \Gamma$ and q,r $\in Q$ where $q \neq q_{reject}$ • if $\delta(q,a) = (r,b,L)$, put $\left[\frac{cqa}{rcb}\right]$ into P'

50

A Simple Undecidable Problem

- Post Correspondence problem (PCP)
 - PCP = {<P> | P is an instance of the PCP with a match}
- Theorem 5.15: PCP is undecidable
- proof (cont.)
 - 7 parts of simulation (through example) (cont.)
 - 2. for every $a,b \in \Gamma$ and $q,r \in Q$ where $q \neq q_{reject}$ • if $\delta(q,a) = (r,b,R)$, put $\left[\frac{qa}{br}\right]$ into P'

52

A Simple Undecidable Problem

Post Correspondence problem (PCP)
 PCP = {<P> | P is an instance of the PCP with a match}

- Theorem 5.15: PCP is undecidable
- proof (cont.)
 - 7 parts of simulation (through example)

4. for every
$$a \in \Gamma$$

• put $\left[\frac{a}{a}\right]$ into P

A Simple Undecidable Problem

- Post Correspondence problem (PCP) PCP = {<P> | P is an instance of the PCP with a match}
- Theorem 5.15: PCP is undecidable
- proof (cont.)
 - 7 parts of simulation (through example)
 - example of process so far
 - let Γ = {0, 1, 2, _}
 - w is string 0100
 - start state is q₀
 - •upon reading 0, M enters state q_7 , writes a 2 on the tape and moves its head to the right $\delta(q_0,0) = (q_7,2,R)$

55

A Simple Undecidable Problem

- Theorem 5.15: PCP is undecidable
 - proof (cont.)
 - 7 parts of simulation (through example)
 - part 2 places the following domino in P'

$$\left[\frac{q_00}{2}\right]$$

• since $\delta(q_0,0) = (q_7,2,R)$

57

56

A Simple Undecidable Problem

- Post Correspondence problem (PCP)
 PCP = {<P> | P is an instance of the PCP with a match}
- Theorem 5.15: PCP is undecidable
 proof (cont.)
 - 7 parts of simulation (through example)
 - part 4 places the following dominos in P'

$$\begin{bmatrix} 0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 2\\2 \end{bmatrix}, \text{ and } \begin{bmatrix} 1\\1 \end{bmatrix}$$

 \bullet since 0, 1, 2, and _ are members of Γ

Post Correspondence problem (PCP) PCP = {<P> | P is an instance of the PCP with a match}
Theorem 5.15: PCP is undecidable
proof (cont.)
7 parts of simulation (through example)
in the example, let's say we have δ(q7,1) = (q5,0,R)
put the following in P': [q71/04]
partial match extends to
[2 (q7 1 0 0 #] 2 0 0 (q5) 0 0 0 #]

61

A Simple Undecidable Problem

- Theorem 5.15: PCP is undecidable
 - proof (cont.)
 - 7 parts of simulation (through example)
 - $\ensuremath{\bullet}$ as we construct a match, we are forced to simulate M on input w
 - process continues until M reaches a halting state
 - if accept, the top part of the partial match must catch up with the bottom to complete the match
 need to add more dominos

63

62

A Simple Undecidable Problem

- Post Correspondence problem (PCP)
 - PCP = {<P> | P is an instance of the PCP with a match}
- Theorem 5.15: PCP is undecidable
- proof (cont.)
 - 7 parts of simulation (through example)
 - 6. for every $a \in \Gamma$, put the following into P'

$$\left[\frac{a \, q_{\text{accept}}}{q_{\text{accept}}}\right]$$
 and $\left[\frac{q_{\text{accept}} \, a}{q_{\text{accept}}}\right]$

- adds pseudo-steps of TM after it has halted
- the head eats symbols until none are left

A Simple Undecidable Problem

- Modified Post Correspondence problem (MPCP) MPCP = {<P> | P is an instance of the PCP with a match that starts with the first domino}
- Theorem 5.15: PCP is undecidable
 - proof (cont.)
 - thus, construction of P' is complete
 - P' is really just an instance of PCP instead of MPCP
 - to convert P' to P
 - take the requirement that the match starts with the first domino and build it directly into the problem itself so that it becomes enforced automatically

67

A Simple Undecidable Problem

possibly start a match is the first one $\left[\frac{\star t_1}{\star h_1 \star}\right]$

69

A Simple Undecidable Problem

- Post Correspondence problem (PCP) PCP = {<P> | P is an instance of the PCP with a match}
- Theorem 5.15: PCP is undecidable
- proof (cont.)
 - let $u = u_1 u_2 \dots u_n$ be any string of length n
 - define *u, u*, and *u* to be
 - $\begin{array}{rcl} \star u &=& \ast u_1 \ast u_2 \ast u_3 \ast & \cdots & \ast u_n \\ u \star &=& u_1 \ast u_2 \ast u_3 \ast & \cdots & \ast u_n \ast \\ \star u \star &=& \ast u_1 \ast u_2 \ast u_3 \ast & \cdots & \ast u_n \ast \end{array}$

 - *u adds the * before every character in u
 - u* adds one after each character in u
 - and *u* adds one both before and after every character in u

68

A Simple Undecidable Problem

 Post Correspondence problem (PCP) PCP = {<P> | P is an instance of the PCP with a match} • Theorem 5.15: PCP is undecidable proof (cont.) • since P is an instance of PCP, the only domino that could possibly start a match is the first one $\begin{bmatrix} \star t_1 \\ \star b_1 \star \end{bmatrix}$ • only one where both top and bottom start with same symbol, * • the *s don't affect matches because they interleave with the original symbols, which now occur in the even positions • dominc $\left[\frac{*\diamond}{\diamond}\right]$ allows top to add extra * at end of match