
11/14/2024

1

Chapter 5
Reducibility

Overview

2

• previously, we established Turing machines as a model of
general-purpose computing

• we presented several problems that were solvable on a
TM and looked at one problem that was not solvable, ATM

• in this chapter, we will look at other unsolvable problems

• we can prove problems are unsolvable using reducibility

Overview

3

• reduction: method of converting one problem into
another such that the solution to the second problem can
be used to solve the first

• we use reduction in everyday life

• finding your way around in a new city is made easy by
finding a map

• reduce the problem of finding your way around to the
problem of obtaining a map

Overview

4

• reducibility always involves two problems, A and B

• if A reduces to B, we use a solution to B to solve A

• e.g., A is the problem of finding your way around a city
and B is the problem of finding a map

• reducibility says nothing about solving A or B alone

• only about the solvability of A in the presence of a
solution to B

Overview

5

• further examples of reducibility

• problem of traveling from Boston to Paris reduces to
the problem of buying a plane ticket

• that problem reduces to the problem of earning the
money for the ticket

• that problem reduces to finding a job

Overview

6

• reducibility is also used for mathematical problems

• problem of measuring the area of a rectangle reduces
to the problem of measuring its length and width

• the problem of solving a system of linear equations
reduces to the problem of inverting a matrix

1 2

3 4

5 6

11/14/2024

2

Overview

7

• reducibility helps in classifying problems by decidability

• when A is reducible to B, solving A cannot be harder
than solving B because a solution to B gives a solution
to A

• if A is reducible to B and B is decidable, then A is also
decidable

• if A is undecidable and reducible to B, then B is
undecidable

• we can use this to prove problems are undecidable

• show that some other problem already known to be
undecidable reduces to it

Undecidable Problems from Language Theory

8

• we already established the undecidability of ATM, the
problem of determining whether a Turing machine
accepts a given input

• through a fairly long proof

• but now, we can use this result to show other problems
are undecidable

• e.g., the related problem HALTTM

Undecidable Problems from Language Theory

9

• HALTTM is the problem of determining whether a TM
halts by accepting or rejecting a given input

• known as the halting problem

• use the undecidability of ATM to prove the
undecidability of HALTTM by reducing ATM to HALTTM

http://thebeardsage.com/undecidable-language-halttm/

Undecidable Problems from Language Theory

10

• HALTTM = {<M,w> | M is a TM and M halts on input w}

• Theorem 5.1: HALTTM is undecidable

• proof idea

• use proof by contradiction

• assume HALTTM is decidable to show ATM is
decidable, which contradicts our previous result

• assume TM R decides HALTTM

• use R to construct S, a TM that decides ATM

• imagine you are S – how would you decide ATM?

Undecidable Problems from Language Theory

11

• HALTTM = {<M,w> | M is a TM and M halts on input w}

• Theorem 5.1: HALTTM is undecidable (cont.)

• proof idea

• imagine you are S – how would you decide ATM?

• on input <M,w>

•accept if M accepts

•reject if M rejects or loops forever

• simulate M on w

• if it accepts or rejects, do the same

•may not be able to tell if M is looping

•simulation will not terminate – BAD for a decider

• therefore, this idea doesn’t work

Undecidable Problems from Language Theory

12

• HALTTM = {<M,w> | M is a TM and M halts on input w}
• Theorem 5.1: HALTTM is undecidable (cont.)

• proof idea
• instead, use TM R that decides HALTTM

• now test whether M halts on w
• if R doesn’t halt on w, reject because <M,w> not in

ATM

• if R does halt on w, simulation can be performed as
described without danger of looping

• so, if TM R exists, we can decide ATM

• but we know ATM is undecidable
• by this contradiction, R cannot exist
• therefore, HALTTM is undecidable

7 8

9 10

11 12

11/14/2024

3

Undecidable Problems from Language Theory

13

• HALTTM = {<M,w> | M is a TM and M halts on input w}
• Theorem 5.1: HALTTM is undecidable (cont.)

• proof
• assume TM R decides HALTTM

• construct TM S to decide ATM

 S = “On input <M,w>, an encoding of a TM M and
 string w:

1. Run TM R on input <M,w>.
2. If R rejects, reject.
3. If R accepts, simulate M on w until it halts.
4. If M accepted, accept; if M rejected, reject.”

• if R decides HALTTM, S decides ATM, but since ATM is
undecidable, HALTTM must also be undecidable

Undecidable Problems from Language Theory

14

• we can use this strategy to prove other problems are
undecidable

• common to proofs of undecidability, except for the
undecidability of ATM itself, which was proved directly
using the diagonalization method

Undecidable Problems from Language Theory

15

• ETM = {<M> | M is a TM and L(M) = Ø}

• Theorem 5.2: ETM is undecidable

• proof idea

• follow same strategy as before

• assume ETM is decidable to show ATM is decidable,
which contradicts our previous result

• assume TM R decides ETM

• use R to construct S, a TM that decides ATM

• how will S work when it receives input <M,w>?

Undecidable Problems from Language Theory

16

• ETM = {<M> | M is a TM and L(M) = Ø}

• Theorem 5.2: ETM is undecidable

• proof idea (cont.)

• S can run R on input <M> to see whether it accepts

• if so, L(M) is empty and does not accept w

• if R rejects <M>, all we know is L(M) is not empty
and M accepts some string

•but we still don’t know if it accepts w

• therefore, this idea doesn’t work

Undecidable Problems from Language Theory

17

• ETM = {<M> | M is a TM and L(M) = Ø}

• Theorem 5.2: ETM is undecidable

• proof idea (cont.)

• instead of running R on <M>, run R on a modification
of <M>

• modify M so that it rejects all strings except w

• on input w, it works as usual

• run R to determine if the modified machine
recognizes the empty language

•the language will be nonempty iff it accepts w

• if R accepts with the modified machine, the
modified machine doesn’t accept anything, so M
doesn’t accept w

Undecidable Problems from Language Theory

18

• ETM = {<M> | M is a TM and L(M) = Ø}

• Theorem 5.2: ETM is undecidable

• proof

• modified machine labeled M1

 M1 = “On input x:

1. If x ≠ w, reject (compare character by character)

2. If x = w, run M on input w and accept if M does.”

http://thebeardsage.com/undecidable-language-etm/

13 14

15 16

17 18

11/14/2024

4

Undecidable Problems from Language Theory

19

• ETM = {<M> | M is a TM and L(M) = Ø}

• Theorem 5.2: ETM is undecidable

• proof

• TM R decides ETM and constructs S that decides ATM

 S = “On input <M,w>, an encoding of a TM M and a
 string w:

1. Use the description of M and w to construct the TM M1
just as described.

2. Run R on input <M1>

3. If R accepts, reject; if R rejects, accept.”

• S can compute a description of M1 from a description of M
and w – needs to add extra states to M to test x = w

• if R were a decider for ETM, S would be a decider for ATM

• a decider for ATM cannot exist, so ETM must be undecidable

Undecidable Problems from Language Theory

20

• another problem of interest is whether a TM can
recognize a language that is recognized by a simpler
computational model

• e.g., REGULARTM

• problem of determining whether a TM has an
equivalent finite automaton

• this is the same problem as determining whether a
TM can recognize a regular language

Undecidable Problems from Language Theory

21

• REGULARTM = {<M> | M is a TM and L(M) is a regular
language}

• Theorem 5.3: REGULARTM is undecidable

• proof idea

• follow same reduction from ATM as before

• assume REGULARTM is decidable by TM R and use this
result to show ATM is decidable, which contradicts our
previous result

• how will S use R to do so?

Undecidable Problems from Language Theory

22

• REGULARTM = {<M> | M is a TM and L(M) is a regular
language}

• Theorem 5.3: REGULARTM is undecidable
• proof idea (cont.)

• S takes its input <M,w> and modifies M to recognize a
regular language iff M accepts w
• new TM called M2

• design M2 to recognize nonregular language
{0n1n | n ≥ 0} if M does not accept w

• and to recognize the regular language Σ* if M
accepts w

• how will S construct M2 from M and w?
•M2 will automatically accept all strings 0n1n

• if M accepts w, M2 accepts all other strings

Undecidable Problems from Language Theory

23

• REGULARTM = {<M> | M is a TM and L(M) is a regular
language}

• Theorem 5.3: REGULARTM is undecidable

• proof idea (cont.)

• note that M2 is not constructed to actually run on
some input

• only use it to feed its description into the decider
for REGULARTM that we have assumed to exist

• once this decider returns its answer, we can use it
to determine if M accepts w

• thus, we can decide ATM, a contradiction

Undecidable Problems from Language Theory

24

• REGULARTM = {<M> | M is a TM and L(M) is a regular language}

• Theorem 5.3: REGULARTM is undecidable

• proof

• let R be a TM that decides REGULARTM and construct S to
decide ATM

 S = “On input <M,w>, an encoding of a TM M and a
 string w:

1. Construct the following TM M2.

 M2 = “On input x:

1. If x has the form 0n1n, accept.

2. If x does not have this form, run M on input w
and accept if M accepts w.

2. Run R on input <M2>

3. If R accepts, accept; if R rejects, reject.”

19 20

21 22

23 24

11/14/2024

5

Undecidable Problems from Language Theory

25

• similarly, the following problems can be shown to be
undecidable

• whether the language of a TM is context-free

• whether the language of a TM is decidable

• whether the language of a TM is finite

• Rice’s Theorem: Showing any property of the languages
recognized by a TM is undecidable

• so far, we’ve used the reduction to ATM as our strategy

• can also reduce from other undecidable languages, such
as ETM

Undecidable Problems from Language Theory

26

• next, we’ll prove the testing the equivalence of two TMs
is an undecidable problem

• we could use reduction to ATM to prove this, but we’ll
use reduction to ETM instead

http://thebeardsage.com/undecidable-language-eqtm/

Undecidable Problems from Language Theory

27

• EQTM = {<M1, M2> | M1 and M2 are TMs and L(M1) = L(M2)}

• Theorem 5.4: EQTM is undecidable

• proof idea

• show that if EQTM were decidable, then ETM would be
decidable by using a reduction from ETM to EQTM

• recall that ETM is the problem of determining if M is
empty

• if one of the languages happens to be Ø, our problem
becomes determining if the other language is empty

• in this way, the ETM problem is a special case of the
EQTM problem

• this makes the reduction easy

Undecidable Problems from Language Theory

28

• EQTM = {<M1, M2> | M1 and M2 are TMs and L(M1) = L(M2)}
• Theorem 5.4: EQTM is undecidable

• proof
• let R be a TM that decides EQTM and construct TM S
to decide ETM

 S = “On input <M>, where M is a TM:
1. Run R on input <M,M1>, where M1 is a TM that

rejects all inputs.
2. If R accepts, accept; if R rejects, reject.”

• if R decides EQTM, S decides ETM

• but ETM is undecidable, so EQTM must also be
undecidable

Undecidable Problems from Language Theory

29

• restrictions via computation histories

• the computation history method is an important
technique for proving ATM is reducible to certain
languages

• useful when the problem to be shown to be undecidable
involves testing for the existence of something

• e.g., Hilbert’s tenth problem for testing for integral
roots of a polynomial

Undecidable Problems from Language Theory

30

• restrictions via computation histories

• the computation history for a TM on an input is just
the sequence of configurations that the machine goes
through as it processes the input

• a complete record of the computation of the machine

25 26

27 28

29 30

11/14/2024

6

Undecidable Problems from Language Theory

31

• restrictions via computation histories

• computation histories are finite sequences

• if M doesn’t halt on w, no accepting or rejecting
computation history exists for M on w

• deterministic machines have at most one computation
history for any given input

• nondeterministic machines may have many computation
histories for a single input

• we’ll focus on deterministic machines

Undecidable Problems from Language Theory

32

• our first undecidability proof using computational history
is called a linear bounded automaton

Undecidable Problems from Language Theory

33

• a linear bounded automaton is a TM with a limited amount
of memory

• can only solve problems requiring memory that can fit
within the tape used for input

• using a tape alphabet larger than the input alphabet
allows available memory to be increased up by a
constant factor

• for input length n, the amount of available memory is
linear in n

Undecidable Problems from Language Theory

34

• despite these limitations, linear bounded automata
(LBAs) are quite powerful

• deciders for ADFA, ACFG, EDFA, and ECFG, are all LBAs

• every CFL can be decided by an LBA

• trying to find a decidable language that can’t be
decided by an LBA takes work

• ALBA is the problem of determining whether an LBA
accepts its input

• even though same as the undecidable problem ATM
where the TM is restricted to an LBA, we show that
ALBA is decidable

Undecidable Problems from Language Theory

35

• ALBA = {<M,w> | M is an LBA that accepts string w}
• the following lemma will be useful
• Lemma 5.8: Let M be an LBA with q states and g symbols
in the tape alphabet. There are exactly qngn distinct
configurations of M for a tape of length n.
• proof

• a configuration for M is a snapshot of computation
• a configuration consists of the state of control,
position of the head, and contents of the tape

• M has q states
• tape length n with M on one of those n positions
• gn possible strings of tape symbols on the tape
• multiplying these gives total number of configurations

Undecidable Problems from Language Theory

36

• ALBA = {<M,w> | M is an LBA that accepts string w}

• Theorem 5.9: ALBA is decidable.

• proof idea

• simulate M on w

• if M halts and accepts or rejects, we accept or
reject accordingly

• difficulty is when M loops on w

•we need to be able to detect looping so that we
can halt and reject

31 32

33 34

35 36

11/14/2024

7

Undecidable Problems from Language Theory

37

• ALBA = {<M,w> | M is an LBA that accepts string w}
• Theorem 5.9: ALBA is decidable.

• proof idea (cont.)
• to detect looping

• as M computes on w, it goes from configuration to
configuration

• if M ever repeats a configuration again and again, we
have detected a loop

• because M is an LBA, the amount of tape available is
limited
• Lemma 5.8 states M can only be in a limited number of
configurations

• therefore, limited amount of time before M can enter
some configuration previously entered

• so, simulate M for number of steps given in lemma
• if M has not halted by then, it must be looping

Undecidable Problems from Language Theory

38

• ALBA = {<M,w> | M is an LBA that accepts string w}

• Theorem 5.9: ALBA is decidable.

• proof

L = “On input <M,w>, where M is an LBA and w is a
string:

1. Simulate M on w for qngn steps or until it halts.

2. If M has halted, accept if it has accepted and
reject if it has rejected. If it has not halted,
reject.”

• if M has not halted within qngn steps, it must be
repeating a configuration and therefore looping

• the algorithm therefore rejects in this situation

Undecidable Problems from Language Theory

39

• this result shows that LBAs and TMs differ in one
essential way

• for LBAs, the acceptance problem is decidable, but for
TMs, it isn’t

• certain other problems involving LBAs are undecidable

• emptiness problem ELBA

A Simple Undecidable Problem

40

• undecidability is not confined to problems concerning
automata

• one example is the Post Correspondence problem (PCP)

• string manipulation problem

A Simple Undecidable Problem

41

• Post Correspondence problem (PCP)

• puzzle problem with a collection of dominos

• each domino contains two strings: one on each side

• example of individual domino

• collection of dominos

A Simple Undecidable Problem

42

• Post Correspondence problem (PCP)

• task: make a list of these dominos (repetitions OK) so
that the string along the top is the same as the
symbols on the bottom

• termed a match

• top string: abcaaabc

• bottom string: same

• another way to show the match (deform dominos to
line up match)

37 38

39 40

41 42

11/14/2024

8

A Simple Undecidable Problem

43

• Post Correspondence problem (PCP)

• for some collections of dominos, finding a match may
not be possible

• this collection cannot contain a match because every
top string is longer than its corresponding bottom
string

A Simple Undecidable Problem

44

• Post Correspondence problem (PCP)

• the problem is to determine whether a collection of
dominos has a match

• this problem is unsolvable by algorithms

A Simple Undecidable Problem

45

• Post Correspondence problem (PCP)

• first, we’ll state the problem precisely and express it
as a language

• an instance is a collection P of dominos

• a match is a sequence

 i1, i2, …, il where ti1, ti2, …, til = bi1, bi2, …, bil

• the problem is to determine whether P has a match

 PCP = {<P> | P is an instance of the PCP with a match}

A Simple Undecidable Problem

46

• Post Correspondence problem (PCP)

 PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof idea (cont.)

• how do we construct P so that a match is an
accepting computation history for M on w?

• choose dominos in P so that making a match forces
a simulation of M to occur

• each domino links a position or positions in one
configuration with the corresponding one in the
next configuration

A Simple Undecidable Problem

47

• Post Correspondence problem (PCP)

 PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof idea (cont.)

• three small technical points

1. assume M on w never attempts to move its head
off the left-hand end of the tape

• must alter M to prevent this behavior

2. if w = ε, use _ () in place of w in the construction

3. modify PCP to require that match starts with the
first domino (eliminate this requirement later)

A Simple Undecidable Problem

48

• Modified Post Correspondence problem (MPCP)

 MPCP = {<P> | P is an instance of the PCP with a match
 that starts with the first domino}

• Theorem 5.15: PCP is undecidable

• proof

• let TM R decide PCP and construct S deciding ATM

 M = (Q, Σ, Γ, δ, q0, qaccept, qreject)

• S constructs an instance of the PCP P that has a
match iff M accepts w

• S first constructs P’ of the MPCP

• described in 7 parts, each of which covers a
particular aspect of simulating M on w

43 44

45 46

47 48

11/14/2024

9

A Simple Undecidable Problem

49

• Post Correspondence problem (PCP)

 PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

1. put into P’ as the first domino

• the match must begin with this domino

• the bottom string begins with the first config-
uration in the accepting history for M on w

A Simple Undecidable Problem

50

• Post Correspondence problem (PCP)

 PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example) (cont.)

1. partial match achieved so far

• to get a match, need to extend top string to
match bottom string

• use additional dominos

• cause M’s next configuration to appear at the
extension of the bottom by forcing a single-step
simulation of M

A Simple Undecidable Problem

51

• Post Correspondence problem (PCP)

 PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example) (cont.)

•next three steps perform simulation

• part 2 handles head motions to the right

• part 3 handles head motions to the left

• part 4 handles tape cells not adjacent to the
head

A Simple Undecidable Problem

52

• Post Correspondence problem (PCP)

 PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example) (cont.)

2. for every a,b ∈ Γ and q,r ∈ Q where q ≠ qreject

• if δ(q,a) = (r,b,R), put into P’

A Simple Undecidable Problem

53

• Post Correspondence problem (PCP)

 PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example) (cont.)

3. for every a,b,c ∈ Γ and q,r ∈ Q where q ≠ qreject

• if δ(q,a) = (r,b,L), put into P’

A Simple Undecidable Problem

54

• Post Correspondence problem (PCP)

 PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

4. for every a ∈ Γ

• put into P’

49 50

51 52

53 54

11/14/2024

10

A Simple Undecidable Problem

55

• Post Correspondence problem (PCP)

 PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

• example of process so far

• let Γ = {0, 1, 2, _}

• w is string 0100

• start state is q0

•upon reading 0, M enters state q7, writes a 2 on the
tape and moves its head to the right

 δ(q0,0) = (q7,2,R)

A Simple Undecidable Problem

56

• Post Correspondence problem (PCP)

 PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

• part 1 places the following domino in P’

• and the match begins

A Simple Undecidable Problem

57

• Post Correspondence problem (PCP)

 PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

• part 2 places the following domino in P’

• since δ(q0,0) = (q7,2,R)

A Simple Undecidable Problem

58

• Post Correspondence problem (PCP)

 PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

• part 4 places the following dominos in P’

• since 0, 1, 2, and _ are members of Γ

A Simple Undecidable Problem

59

• Post Correspondence problem (PCP)

 PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

• with part 5, the match is extended to

• thus, the dominos of parts 2, 3, and 4 let us extend
the match by adding the second configuration after
the first, then adding the third, the fourth, etc.

•need to add a domino for copying the # symbol

A Simple Undecidable Problem

60

• Post Correspondence problem (PCP)

 PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

5. put the following into P’

• the first allows us to copy the # symbol that
marks the separation of the configurations

• the second allows us to add a blank symbol at the
end to simulate the infinite blanks to the right
that are otherwise suppressed

55 56

57 58

59 60

11/14/2024

11

A Simple Undecidable Problem

61

• Post Correspondence problem (PCP)

 PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

• in the example, let’s say we have δ(q7,1) = (q5,0,R)

• put the following in P’:

• partial match extends to

A Simple Undecidable Problem

62

• Post Correspondence problem (PCP)

 PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

• now suppose we have δ(q5,0) = (q9,2,L)

• put the following in P’:

• first one has 0 L of head; partial match extends to

A Simple Undecidable Problem

63

• Post Correspondence problem (PCP)

 PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

• as we construct a match, we are forced to simulate
M on input w

• process continues until M reaches a halting state

• if accept, the top part of the partial match must
catch up with the bottom to complete the match

•need to add more dominos

A Simple Undecidable Problem

64

• Post Correspondence problem (PCP)

 PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

6. for every a ∈ Γ, put the following into P’

• adds pseudo-steps of TM after it has halted

• the head eats symbols until none are left

A Simple Undecidable Problem

65

• Post Correspondence problem (PCP)

 PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

• the partial match up to when TM halts is

• with the added dominos, the match continues

A Simple Undecidable Problem

66

• Post Correspondence problem (PCP)

 PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

7. finally, we add the domino

• and complete the match

61 62

63 64

65 66

11/14/2024

12

A Simple Undecidable Problem

67

• Modified Post Correspondence problem (MPCP)

 MPCP = {<P> | P is an instance of the PCP with a match
 that starts with the first domino}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• thus, construction of P’ is complete

• P’ is really just an instance of PCP instead of MPCP

• to convert P’ to P

• take the requirement that the match starts with
the first domino and build it directly into the
problem itself so that it becomes enforced
automatically

A Simple Undecidable Problem

68

• Post Correspondence problem (PCP)

 PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• let u = u1u2…un be any string of length n

• define *u, u*, and *u* to be

• *u adds the * before every character in u

• u* adds one after each character in u

• and *u* adds one both before and after every
character in u

A Simple Undecidable Problem

69

• Post Correspondence problem (PCP)

 PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• to convert P’ to P, if P’ is the collection

• we let P be the collection

• since P is an instance of PCP, the only domino that could
possibly start a match is the first one

A Simple Undecidable Problem

70

• Post Correspondence problem (PCP)

 PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• since P is an instance of PCP, the only domino that could
possibly start a match is the first one

• only one where both top and bottom start with same
symbol, *

• the *s don’t affect matches because they interleave
with the original symbols, which now occur in the even
positions

• domino allows top to add extra * at end of match

67 68

69 70

	Slide 1: Chapter 5 Reducibility
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70

