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Chapter 5
Reducibility

Overview

2

• previously, we established Turing machines as a model of 
general-purpose computing

• we presented several problems that were solvable on a 
TM and looked at one problem that was not solvable, ATM

• in this chapter, we will look at other unsolvable problems

• we can prove problems are unsolvable using reducibility

Overview

3

• reduction: method of converting one problem into 
another such that the solution to the second problem can 
be used to solve the first

• we use reduction in everyday life

• finding your way around in a new city is made easy by 
finding a map

• reduce the problem of finding your way around to the 
problem of obtaining a map

Overview

4

• reducibility always involves two problems, A and B

• if A reduces to B, we use a solution to B to solve A

• e.g., A is the problem of finding your way around a city 
and B is the problem of finding a map

• reducibility says nothing about solving A or B alone

• only about the solvability of A in the presence of a 
solution to B

Overview

5

• further examples of reducibility 

• problem of traveling from Boston to Paris reduces to 
the problem of buying a plane ticket

• that problem reduces to the problem of earning the 
money for the ticket

• that problem reduces to finding a job

Overview

6

• reducibility is also used for mathematical problems

• problem of measuring the area of a rectangle reduces 
to the problem of measuring its length and width

• the problem of solving a system of linear equations 
reduces to the problem of inverting a matrix
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Overview

7

• reducibility helps in classifying problems by decidability

• when A is reducible to B, solving A cannot be harder 
than solving B because a solution to B gives a solution 
to A

• if A is reducible to B and B is decidable, then A is also 
decidable

• if A is undecidable and reducible to B, then B is 
undecidable

• we can use this to prove problems are undecidable

• show that some other problem already known to be 
undecidable reduces to it

Undecidable Problems from Language Theory

8

• we already established the undecidability of ATM, the 
problem of determining whether a Turing machine 
accepts a given input

• through a fairly long proof

• but now, we can use this result to show other problems 
are undecidable

• e.g., the related problem HALTTM

Undecidable Problems from Language Theory

9

• HALTTM is the problem of determining whether a TM 
halts by accepting or rejecting a given input

• known as the halting problem

• use the undecidability of ATM to prove the 
undecidability of HALTTM by reducing ATM to HALTTM

http://thebeardsage.com/undecidable-language-halttm/

Undecidable Problems from Language Theory

10

• HALTTM = {<M,w> | M is a TM and M halts on input w}

• Theorem 5.1: HALTTM is undecidable

• proof idea

• use proof by contradiction

• assume HALTTM is decidable to show ATM is 
decidable, which contradicts our previous result

• assume TM R decides HALTTM

• use R to construct S, a TM that decides ATM

• imagine you are S – how would you decide ATM?

Undecidable Problems from Language Theory

11

• HALTTM = {<M,w> | M is a TM and M halts on input w}

• Theorem 5.1: HALTTM is undecidable (cont.)

• proof idea

• imagine you are S – how would you decide ATM?

• on input <M,w>

•accept if M accepts

•reject if M rejects or loops forever

• simulate M on w

• if it accepts or rejects, do the same

•may not be able to tell if M is looping

•simulation will not terminate – BAD for a decider

• therefore, this idea doesn’t work

Undecidable Problems from Language Theory

12

• HALTTM = {<M,w> | M is a TM and M halts on input w}
• Theorem 5.1: HALTTM is undecidable (cont.)

• proof idea
• instead, use TM R that decides HALTTM

• now test whether M halts on w
• if R doesn’t halt on w, reject because <M,w> not in 

ATM

• if R does halt on w, simulation can be performed as 
described without danger of looping

• so, if TM R exists, we can decide ATM

• but we know ATM is undecidable
• by this contradiction, R cannot exist
• therefore, HALTTM is undecidable
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Undecidable Problems from Language Theory

13

• HALTTM = {<M,w> | M is a TM and M halts on input w}
• Theorem 5.1: HALTTM is undecidable (cont.)

• proof
• assume TM R decides HALTTM

• construct TM S to decide ATM

   S = “On input <M,w>, an encoding of a TM M and
           string w:

1. Run TM R on input <M,w>.
2. If R rejects, reject.
3. If R accepts, simulate M on w until it halts.
4. If M accepted, accept; if M rejected,  reject.”

• if R decides HALTTM, S decides ATM, but since ATM is 
undecidable, HALTTM must also be undecidable

Undecidable Problems from Language Theory

14

• we can use this strategy to prove other problems are 
undecidable

• common to proofs of undecidability, except for the 
undecidability of ATM itself, which was proved directly 
using the diagonalization method

Undecidable Problems from Language Theory

15

• ETM = {<M> | M is a TM and L(M) = Ø}

• Theorem 5.2: ETM is undecidable

• proof idea

• follow same strategy as before

• assume ETM is decidable to show ATM is decidable, 
which contradicts our previous result

• assume TM R decides ETM

• use R to construct S, a TM that decides ATM

• how will S work when it receives input <M,w>?

Undecidable Problems from Language Theory

16

• ETM = {<M> | M is a TM and L(M) = Ø}

• Theorem 5.2: ETM is undecidable

• proof idea (cont.)

• S can run R on input <M> to see whether it accepts

• if so, L(M) is empty and does not accept w

• if R rejects <M>, all we know is L(M) is not empty 
and M accepts some string

•but we still don’t know if it accepts w

• therefore, this idea doesn’t work

Undecidable Problems from Language Theory

17

• ETM = {<M> | M is a TM and L(M) = Ø}

• Theorem 5.2: ETM is undecidable

• proof idea (cont.)

• instead of running R on <M>, run R on a modification 
of <M>

• modify M so that it rejects all strings except w

• on input w, it works as usual

• run R to determine if the modified machine 
recognizes the empty language

•the language will be nonempty iff it accepts w

• if R accepts with the modified machine, the 
modified machine doesn’t accept anything, so M 
doesn’t accept w

Undecidable Problems from Language Theory

18

• ETM = {<M> | M is a TM and L(M) = Ø}

• Theorem 5.2: ETM is undecidable

• proof

• modified machine labeled M1

  M1 = “On input x:

1. If x ≠ w, reject (compare character by character)

2. If x = w, run M on input w and accept if M does.”

http://thebeardsage.com/undecidable-language-etm/
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Undecidable Problems from Language Theory

19

• ETM = {<M> | M is a TM and L(M) = Ø}

• Theorem 5.2: ETM is undecidable

• proof

• TM R decides ETM and constructs S that decides ATM

  S = “On input <M,w>, an encoding of a TM M and a 
          string w:

1. Use the description of M and w to construct the TM M1 
just as described.

2. Run R on input <M1>

3. If R accepts, reject; if R rejects, accept.”

• S can compute a description of M1 from a description of M 
and w – needs to add extra states to M to test x = w

• if R were a decider for ETM, S would be a decider for ATM

• a decider for ATM cannot exist, so ETM must be undecidable

Undecidable Problems from Language Theory

20

• another problem of interest is whether a TM can 
recognize a language that is recognized by a simpler 
computational model

• e.g., REGULARTM

• problem of determining whether a TM has an 
equivalent finite automaton

• this is the same problem as determining whether a 
TM can recognize a regular language

Undecidable Problems from Language Theory

21

• REGULARTM = {<M> | M is a TM and L(M) is a regular 
language}

• Theorem 5.3: REGULARTM is undecidable

• proof idea

• follow same reduction from ATM as before

• assume REGULARTM is decidable by TM R and use this 
result to show ATM is decidable, which contradicts our 
previous result

• how will S use R to do so?

Undecidable Problems from Language Theory

22

• REGULARTM = {<M> | M is a TM and L(M) is a regular 
language}

• Theorem 5.3: REGULARTM is undecidable
• proof idea (cont.)

• S takes its input <M,w> and modifies M to recognize a 
regular language iff M accepts w
• new TM called M2

• design M2 to recognize nonregular language 
{0n1n | n ≥ 0} if M does not accept w

• and to recognize the regular language Σ* if M 
accepts w

• how will S construct M2 from M and w?
•M2 will automatically accept all strings 0n1n 

• if M accepts w, M2 accepts all other strings

Undecidable Problems from Language Theory

23

• REGULARTM = {<M> | M is a TM and L(M) is a regular 
language}

• Theorem 5.3: REGULARTM is undecidable

• proof idea (cont.)

• note that M2 is not constructed to actually run on 
some input

• only use it to feed its description into the decider 
for REGULARTM that we have assumed to exist

• once this decider returns its answer, we can use it 
to determine if M accepts w

• thus, we can decide ATM, a contradiction

Undecidable Problems from Language Theory

24

• REGULARTM = {<M> | M is a TM and L(M) is a regular language}

• Theorem 5.3: REGULARTM is undecidable

• proof

• let R be a TM that decides REGULARTM and construct S to 
decide ATM

  S = “On input <M,w>, an encoding of a TM M and a 
          string w:

1. Construct the following TM M2.

      M2 = “On input x:

1. If x has the form 0n1n, accept.

2. If x does not have this form, run M on input w 
and accept if M accepts w.

2. Run R on input <M2>

3. If R accepts, accept; if R rejects, reject.”
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Undecidable Problems from Language Theory

25

• similarly, the following problems can be shown to be 
undecidable

• whether the language of a TM is context-free

• whether the language of a TM is decidable

• whether the language of a TM is finite

• Rice’s Theorem: Showing any property of the languages 
recognized by a TM is undecidable

• so far, we’ve used the reduction to ATM as our strategy

• can also reduce from other undecidable languages, such 
as ETM

Undecidable Problems from Language Theory

26

• next, we’ll prove the testing the equivalence of two TMs 
is an undecidable problem

• we could use reduction to ATM to prove this, but we’ll 
use reduction to ETM instead

http://thebeardsage.com/undecidable-language-eqtm/

Undecidable Problems from Language Theory

27

• EQTM = {<M1, M2> | M1 and M2 are TMs and L(M1) = L(M2)}

• Theorem 5.4: EQTM is undecidable

• proof idea

• show that if EQTM were decidable, then ETM would be 
decidable by using a reduction from ETM to EQTM

• recall that ETM is the problem of determining if M is 
empty 

• if one of the languages happens to be Ø, our problem 
becomes determining if the other language is empty

• in this way, the ETM problem is a special case of the 
EQTM problem

• this makes the reduction easy

Undecidable Problems from Language Theory

28

• EQTM = {<M1, M2> | M1 and M2 are TMs and L(M1) = L(M2)}
• Theorem 5.4: EQTM is undecidable

• proof
• let R be a TM that decides EQTM and construct TM S 
to decide ETM 

  S = “On input <M>, where M is a TM:
1. Run R on input <M,M1>, where M1 is a TM that 

rejects all inputs.
2. If R accepts, accept; if R rejects, reject.”

• if R decides EQTM, S decides ETM

• but ETM is undecidable, so EQTM must also be 
undecidable

Undecidable Problems from Language Theory

29

• restrictions via computation histories

• the computation history method is an important 
technique for proving ATM is reducible to certain 
languages

• useful when the problem to be shown to be undecidable 
involves testing for the existence of something

• e.g., Hilbert’s tenth problem for testing for integral 
roots of a polynomial

Undecidable Problems from Language Theory

30

• restrictions via computation histories

• the computation history for a TM on an input is just 
the sequence of configurations that the machine goes 
through as it processes the input

• a complete record of the computation of the machine

25 26
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Undecidable Problems from Language Theory

31

• restrictions via computation histories

• computation histories are finite sequences

• if M doesn’t halt on w, no accepting or rejecting 
computation history exists for M on w

• deterministic machines have at most one computation 
history for any given input

• nondeterministic machines may have many computation 
histories for a single input

• we’ll focus on deterministic machines

Undecidable Problems from Language Theory

32

• our first undecidability proof using computational history 
is called a linear bounded automaton

Undecidable Problems from Language Theory

33

• a linear bounded automaton is a TM with a limited amount 
of memory

• can only solve problems requiring memory that can fit 
within the tape used for input

• using a tape alphabet larger than the input alphabet 
allows available memory to be increased up by a 
constant factor

• for input length n, the amount of available memory is 
linear in n

Undecidable Problems from Language Theory

34

• despite these limitations, linear bounded automata 
(LBAs) are quite powerful

• deciders for ADFA, ACFG, EDFA, and ECFG, are all LBAs

• every CFL can be decided by an LBA

• trying to find a decidable language that can’t be 
decided by an LBA takes work

• ALBA is the problem of determining whether an LBA 
accepts its input

• even though same as the undecidable problem ATM 
where the TM is restricted to an LBA, we show that 
ALBA is decidable

Undecidable Problems from Language Theory

35

• ALBA = {<M,w> | M is an LBA that accepts string w}
• the following lemma will be useful
• Lemma 5.8: Let M be an LBA with q states and g symbols 
in the tape alphabet. There are exactly qngn distinct 
configurations of M for a tape of length n.
• proof

• a configuration for M is a snapshot of computation
• a configuration consists of the state of control, 
position of the head, and contents of the tape

• M has q states 
• tape length n with M on one of those n positions
• gn possible strings of tape symbols on the tape
• multiplying these gives total number of configurations

Undecidable Problems from Language Theory

36

• ALBA = {<M,w> | M is an LBA that accepts string w}

• Theorem 5.9: ALBA is decidable.

• proof idea

• simulate M on w

• if M halts and accepts or rejects, we accept or 
reject accordingly

• difficulty is when M loops on w

•we need to be able to detect looping so that we 
can halt and reject

31 32
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Undecidable Problems from Language Theory

37

• ALBA = {<M,w> | M is an LBA that accepts string w}
• Theorem 5.9: ALBA is decidable.

• proof idea (cont.)
• to detect looping

• as M computes on w, it goes from configuration to 
configuration

• if M ever repeats a configuration again and again, we 
have detected a loop

• because M is an LBA, the amount of tape available is 
limited
• Lemma 5.8 states M can only be in a limited number of 
configurations

• therefore, limited amount of time before M can enter 
some configuration previously entered

• so, simulate M for number of steps given in lemma
• if M has not halted by then, it must be looping

Undecidable Problems from Language Theory

38

• ALBA = {<M,w> | M is an LBA that accepts string w}

• Theorem 5.9: ALBA is decidable.

• proof

L = “On input <M,w>, where M is an LBA and w is a 
string:

1. Simulate M on w for qngn steps or until it halts.

2. If M has halted, accept if it has accepted and 
reject if it has rejected.  If it has not halted, 
reject.”

• if M has not halted within qngn steps, it must be 
repeating a configuration and therefore looping

• the algorithm therefore rejects in this situation

Undecidable Problems from Language Theory

39

• this result shows that LBAs and TMs differ in one 
essential way

• for LBAs, the acceptance problem is decidable, but for 
TMs, it isn’t

• certain other problems involving LBAs are undecidable

• emptiness problem ELBA

A Simple Undecidable Problem

40

• undecidability is not confined to problems concerning 
automata

• one example is the Post Correspondence problem (PCP)

• string manipulation problem

A Simple Undecidable Problem

41

• Post Correspondence problem (PCP)

• puzzle problem with a collection of dominos

• each domino contains two strings: one on each side

• example of individual domino

• collection of dominos

A Simple Undecidable Problem

42

• Post Correspondence problem (PCP)

• task: make a list of these dominos (repetitions OK) so 
that the string along the top is the same as the 
symbols on the bottom

• termed a match

• top string: abcaaabc

• bottom string: same

• another way to show the match (deform dominos to 
line up match)

37 38
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A Simple Undecidable Problem

43

• Post Correspondence problem (PCP)

• for some collections of dominos, finding a match may 
not be possible

• this collection cannot contain a match because every 
top string is longer than its corresponding bottom 
string

A Simple Undecidable Problem

44

• Post Correspondence problem (PCP)

• the problem is to determine whether a collection of 
dominos has a match

• this problem is unsolvable by algorithms

A Simple Undecidable Problem

45

• Post Correspondence problem (PCP)

• first, we’ll state the problem precisely and express it 
as a language

• an instance is a collection P of dominos

• a match is a sequence

      i1, i2, …, il     where  ti1, ti2, …, til = bi1, bi2, …, bil

• the problem is to determine whether P has a match

   PCP = {<P> | P is an instance of the PCP with a match}

A Simple Undecidable Problem

46

• Post Correspondence problem (PCP)

      PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof idea (cont.)

• how do we construct P so that a match is an 
accepting computation history for M on w?

• choose dominos in P so that making a match forces 
a simulation of M to occur

• each domino links a position or positions in one 
configuration with the corresponding one in the 
next configuration

A Simple Undecidable Problem

47

• Post Correspondence problem (PCP)

      PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof idea (cont.)

• three small technical points

1. assume M on w never attempts to move its head 
off the left-hand end of the tape

• must alter M to prevent this behavior

2. if w = ε, use _ (  ) in place of w in the construction

3. modify PCP to require that match starts with the 
first domino (eliminate this requirement later)

A Simple Undecidable Problem

48

• Modified Post Correspondence problem (MPCP)

      MPCP = {<P> | P is an instance of the PCP with a match
                           that starts with the first domino}

• Theorem 5.15: PCP is undecidable

• proof

• let TM R decide PCP and construct S deciding ATM

     M = (Q, Σ, Γ, δ, q0, qaccept, qreject) 

• S constructs an instance of the PCP P that has a 
match iff M accepts w

• S first constructs P’ of the MPCP

• described in 7 parts, each of which covers a 
particular aspect of simulating M on w

43 44

45 46

47 48



11/14/2024

9

A Simple Undecidable Problem

49

• Post Correspondence problem (PCP)

      PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

1. put                          into P’ as the first domino  

• the match must begin with this domino

• the bottom string begins with the first config-
uration in the accepting history for M on w

A Simple Undecidable Problem

50

• Post Correspondence problem (PCP)

      PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example) (cont.)

1. partial match achieved so far

• to get a match, need to extend top string to 
match bottom string

• use additional dominos

• cause M’s next configuration to appear at the 
extension of the bottom by forcing a single-step 
simulation of M

A Simple Undecidable Problem

51

• Post Correspondence problem (PCP)

      PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)  (cont.)

•next three steps perform simulation

• part 2 handles head motions to the right

• part 3 handles head motions to the left

• part 4 handles tape cells not adjacent to the 
head

A Simple Undecidable Problem

52

• Post Correspondence problem (PCP)

      PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example) (cont.)

2. for every a,b ∈ Γ and q,r ∈ Q where q ≠ qreject

• if δ(q,a) = (r,b,R), put        into P’

A Simple Undecidable Problem

53

• Post Correspondence problem (PCP)

      PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example) (cont.)

3. for every a,b,c ∈ Γ and q,r ∈ Q where q ≠ qreject

• if δ(q,a) = (r,b,L), put        into P’

A Simple Undecidable Problem

54

• Post Correspondence problem (PCP)

      PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

4. for every a ∈ Γ

• put       into P’

49 50
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A Simple Undecidable Problem

55

• Post Correspondence problem (PCP)

      PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

• example of process so far

• let Γ = {0, 1, 2, _}

• w is string 0100

• start state is q0

•upon reading 0, M enters state q7, writes a 2 on the 
tape and moves its head to the right

 δ(q0,0) = (q7,2,R)

A Simple Undecidable Problem

56

• Post Correspondence problem (PCP)

      PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

• part 1 places the following domino in P’

 

• and the match begins

A Simple Undecidable Problem

57

• Post Correspondence problem (PCP)

      PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

• part 2 places the following domino in P’

 

• since δ(q0,0) = (q7,2,R)

A Simple Undecidable Problem

58

• Post Correspondence problem (PCP)

      PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

• part 4 places the following dominos in P’

 

• since 0, 1, 2, and _ are members of Γ

A Simple Undecidable Problem

59

• Post Correspondence problem (PCP)

      PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

• with part 5, the match is extended to 

 

• thus, the dominos of parts 2, 3, and 4 let us extend 
the match by adding the second configuration after 
the first, then adding the third, the fourth, etc.

•need to add a domino for copying the # symbol

A Simple Undecidable Problem

60

• Post Correspondence problem (PCP)

      PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

5. put the following into P’
                           

• the first allows us to copy the # symbol that 
marks the separation of the configurations

• the second allows us to add a blank symbol at the 
end to simulate the infinite blanks to the right 
that are otherwise suppressed

55 56
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A Simple Undecidable Problem

61

• Post Correspondence problem (PCP)

      PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

• in the example, let’s say we have δ(q7,1) = (q5,0,R)

• put the following in P’:

 

• partial match extends to 

A Simple Undecidable Problem

62

• Post Correspondence problem (PCP)

      PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

• now suppose we have δ(q5,0) = (q9,2,L)

• put the following in P’:

 

• first one has 0 L of head; partial match extends to 

A Simple Undecidable Problem

63

• Post Correspondence problem (PCP)

      PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

• as we construct a match, we are forced to simulate 
M on input w

• process continues until M reaches a halting state

• if accept, the top part of the partial match must 
catch up with the bottom to complete the match

•need to add more dominos

A Simple Undecidable Problem

64

• Post Correspondence problem (PCP)

      PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

6. for every a ∈ Γ, put the following into P’
                           

• adds pseudo-steps of TM after it has halted

• the head eats symbols until none are left

A Simple Undecidable Problem

65

• Post Correspondence problem (PCP)

      PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

• the partial match up to when TM halts is 

• with the added dominos, the match continues

A Simple Undecidable Problem

66

• Post Correspondence problem (PCP)

      PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• 7 parts of simulation (through example)

7. finally, we add the domino
                           

• and complete the match
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• Modified Post Correspondence problem (MPCP)

      MPCP = {<P> | P is an instance of the PCP with a match
                           that starts with the first domino}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• thus, construction of P’ is complete

• P’ is really just an instance of PCP instead of MPCP

• to convert P’ to P

• take the requirement that the match starts with 
the first domino and build it directly into the 
problem itself so that it becomes enforced 
automatically
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• Post Correspondence problem (PCP)

      PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• let u = u1u2…un be any string of length n

• define *u, u*, and *u* to be 

• *u adds the * before every character in u

• u* adds one after each character in u

• and *u* adds one both before and after every 
character in u
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• Post Correspondence problem (PCP)

      PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• to convert P’ to P, if P’ is the collection

• we let P be the collection

• since P is an instance of PCP, the only domino that could 
possibly start a match is the first one           
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• Post Correspondence problem (PCP)

      PCP = {<P> | P is an instance of the PCP with a match}

• Theorem 5.15: PCP is undecidable

• proof (cont.)

• since P is an instance of PCP, the only domino that could 
possibly start a match is the first one

• only one where both top and bottom start with same 
symbol, *

• the *s don’t affect matches because they interleave 
with the original symbols, which now occur in the even 
positions

• domino        allows top to add extra * at end of match
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