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Chapter 7
Time Complexity

Overview
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• previously, we looked at whether a problem was solvable

• even if it is solvable, however, it may not be solvable 
practically due to time or memory

• computational complexity theory

• considers time, memory, and other resources required 
for solving computational problems

• we will focus on time

Measuring Complexity
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• example: A = {0k1k | k ≥ 0}
• A is context-free, so it is decidable
• how much time does a single-tape TM need to decide A?
• low-level TM description with head motion so that we can 

count the number of steps it uses when it runs
M1 = "On input string w:

1. Scan across the tape and reject if a 0 is found to 
the right of a 1.

2. Repeat if both 0s and 1s remain on the tape:
3.    Scan across the tape, crossing off a single 0

    and a single 1.
4. If 0s still remain after all the 1s have been crossed 

off, or if 1s still remain after all the 0s have been 
crossed off, reject. Otherwise, if neither 0s nor 1s 
remain on the tape, accept."

Measuring Complexity
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• to analyze this TM, we need to introduce some 
terminology

• the number of steps an algorithm uses on a particular 
input may depend on several parameters
• e.g., if the input is a graph, the number of steps may 
depend on the number of nodes, the number of edges, 
and the maximum degree of the graph, or some 
combination of these or other factors

• for simplicity, we compute the run time of an algorithm 
as a function of the length of the input string alone

• worst-case analysis: longest running time of all inputs of 
a particular length

• average-case analysis: average of all running times of 
inputs of a particular length

Measuring Complexity
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• the exact running time of an algorithm is often a complex 
expression

• we estimate it instead

• asymptotic analysis

• run time for large inputs

• only consider the highest order term of the expression 
representing the run time of the algorithm

• disregard coefficient of that term

• disregard all other terms

• highest order term dominates all other terms on large 
input
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• asymptotic analysis

• example: f(n) = 6n3 + 2n2 + 20n + 45

• 4 terms

• highest term: 6n3

• disregard coefficient 6

• f is asymptotically at most n3

• big-O notation: f(n) = O(n3)

Measuring Complexity
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• asymptotic analysis

• f(n) = O(g(n))

• intuitively, f ≤ g

• disregards behavior for small n

• example: f(n) = 5n3 + 2n2 + 22n + 6

• f(n) = O(n3)

• formal definition:

• let c = 6, n0 = 10

• 5n3 + 2n2 + 22n + 6 ≤ 6n3 for every n ≥ 10

• also, f(n) = O(n4), but f(n) ≠ O(n2)

Measuring Complexity
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• asymptotic analysis
• big-O works with log’s in a different way
• usually we specify the base of a log
• e.g., x = log2 n

• changing the base changes the value of logb n by a 
constant factor
• logb n = log2 n / log2 b

• for f(n) = O(log n)
• do not need to specify the base since it’s a 

constant factor

• example: f(n) = 3n log2 n + 5n log2 log2 n + 2
• f(n) = O(n log n)

Measuring Complexity
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• big-O notation can appear in expressions

• f(n) = O(n2) + O(n)

• O(n2) dominates, so f(n) = O(n2)

• if big-O in exponent

• f(n) = 2O(n)

• upper bound of 2cn for some c

• f(n) = 2O(lg n)

• if n = 2O(log n), nc = 2c lg n

• nc = O(2O(log n))

• f(n) = O(n3)

Measuring Complexity
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• polynomial bounds: nc

• exponential bounds: 2n^δ for δ > 0

• small-o notation

• big-O: ≤

• small-o: <
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• examples:

1. sqrt(n) = o(n)

2. n = o(n log log n)

3. n log log n = o(n log n)

4. n log n = o(n2)

5. n2 = o(n3)

• f(n) = O(f(n))

• f(n) ≠ o(f(n))

Measuring Complexity
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• example: A = {0k1k | k ≥ 0}
• A is context-free, so it is decidable
• how much time does a single-tape TM need to decide A?
• low-level TM description with head motion so that we can 

count the number of steps it uses when it runs
M1 = "On input string w:

1. Scan across the tape and reject if a 0 is found to 
the right of a 1.

2. Repeat if both 0s and 1s remain on the tape:
3.    Scan across the tape, crossing off a single 0

    and a single 1.
4. If 0s still remain after all the 1s have been crossed 

off, or if 1s still remain after all the 0s have been 
crossed off, reject. Otherwise, if neither 0s nor 1s 
remain on the tape, accept."

Measuring Complexity

16

• example: A = {0k1k | k ≥ 0}
• consider each stage separately
• stage 1:

1. Scan across the tape and reject if a 0 is found to 
the right of a 1.

• verifies input 0*1*
• n steps, where n is the length of the input

• repositioning head at left-hand end of tape
• n steps

• total: 2n steps
• O(n)
• repositioning not mentioned in description, but OK 

since it only adds a constant factor

Measuring Complexity
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• example: A = {0k1k | k ≥ 0}

• stages 2 and 3:

2. Repeat if both 0s and 1s remain on the tape:

3.     Scan across the tape, crossing off a single 0
    and a single 1.

• repeatedly scans tape and crosses of a 0 and 1 on 
each scan

• each scan uses O(n) steps

• cross off 2 symbols, so at most n/2 scans

• total time for both stages: (n/2)O(n) = O(n2) steps

Measuring Complexity
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• example: A = {0k1k | k ≥ 0}

• stage 4:

4. If 0s still remain after all the 1s have been crossed 
off, or if 1s still remain after all the 0s have been 
crossed off, reject. Otherwise, if neither 0s nor 1s 
remain on the tape, accept.

• single scan to decide whether to accept or reject

• O(n)
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• example: A = {0k1k | k ≥ 0}

• total time for all stages

• O(n) + O(n2) + O(n) = O(n2)

• so, running time = O(n2)

Measuring Complexity
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• notation for classifying languages according to timing 
requirements

• for A = {0k1k | k ≥ 0}

• A ∈ TIME(n2)

• M1 decides A in time O(n2)

• TIME(n2) contains all languages that can be decided 
in O(n2) time

Measuring Complexity
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• is there a machine that decides A more quickly?

• is A in TIME(t(n)) for t(n) = o(n2)?

• try crossing off 2 0s and 1s on each scan, instead of just 1

• reduces running time by factor of 2, so does not affect 
the asymptotic time

• can try a different algorithm

Measuring Complexity
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• example: A = {0k1k | k ≥ 0}
M2 = "On input string w:

1. Scan across the tape and reject if a 0 is found 
to the right of a 1.

2. Repeat if both 0s and 1s remain on the tape:
3.    Scan across the tape, checking whether the

   total number of 0s and 1s remaining is even or
   odd. If it is odd, reject.

4.    Scan again across the tape, crossing off every
   other 0 starting with the first 0, and then
   crossing off every other 1 starting with the
   first 1.

5. If no 0s and no 1s remain on the tape, accept. 
Otherwise, reject."

Measuring Complexity

23

• does M2 actually decide A?

• every scan in stage 4 reduces the number of remaining 
0s by half, with any remainder discarded

• if we start with 13 0s, we end up with 6 0s

• then 3, then 1, then 0

• same with the number of 1s

• even/odd parity of 0s and 1s in stage 3

• starting with 13 0s, odd

• 6, even

• 3, odd

• 1, odd

• not performed on 0 due to stage 2 condition

Measuring Complexity
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• does M2 actually decide A?

• even/odd parity of 0s and 1s in stage 3

• 13: odd even odd odd

• replace even with 0 and odd with 1, then reverse

• corresponds to 1101 (13 in binary)

• when stage 3 checks total number of 0s and 1s 
remaining is even

• actually checking on agreement of parity of 0s and 1s

• if all parities agree, binary representations agree

• so, numbers are equal
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• running time of M2 

• every stage takes O(n) time

• stages 1 and 5 are executed once

• total: O(n) time

• stage 4 crosses off at least half 0s and 1s each 
iteration

• at most: 1 + lg n iterations

• total time for stages 2, 3, and 4

• (1 + lg n) O(n) = O(n log n)

• total running time of M2

• O(n) + O(n log n) = O(n log n)

Measuring Complexity
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• previously A ∈ TIME(n2)

• but now A ∈ TIME(n log n), which is better

• cannot be further improved on TM with single tape

• any language that can be decided in o(n log n) time on 
single-tape TM is regular

• if the TM has a second tape, it can be decided in linear 
time: O(n)

• copies 0s to second tape and matches against the 1s

Measuring Complexity
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• example: A = {0k1k | k ≥ 0}

M3 = "On input string w:

1. Scan across the tape and reject if a 0 is found 
to the right of a 1.

2. Scan across the 0s on tape 1 until the first 1. At 
the same time, copy the 0s onto tape 2.

3. Scan across the 1s on tape 1 until the end of the 
input. For each 1 read on tape 1, cross off a 0 on 
tape 2. If all 0s are crossed off before all the 
1s are read, reject.

4. If all the 0s have now been crossed off, accept. 
If any 0s remain, reject."

Measuring Complexity
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• running time of M3 

• every stage takes O(n) steps

• total: O(n) time

• O(n) is best running time possible because it takes n 
steps just to read the input

• summary

• fastest single-tape TM for A: O(n log n)

• fastest two-tape TM for A: O(n)

Measuring Complexity

29

• important difference between complexity theory and 
computability theory

• computability theory

• Church-Turing thesis implies all reasonable models of 
computation are equivalent

• complexity theory

• choice of model affects the time complexity of 
languages

• e.g., languages that are decidable in linear time on one 
model are not necessarily decidable in linear time on 
another

Measuring Complexity

30

• with complexity theory, we classify problems according to 
their time complexity

• but with which model?

• fortunately, time requirements don’t differ greatly for 
typical deterministic models

• so, the choice of model isn’t crucial
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• complexity relationships among models

• how does the choice of model affect time complexity of 
languages?

• three models

• single-tape TM

• multitape TM

• nondeterministic TM

Measuring Complexity
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• Theorem 7.8: Let t(n) be a function where t(n) ≥ n.  Then 
every t(n) time multitape TM has an equivalent O(t2(n)) 
time single-tape TM.

• proof idea

• can convert any multitape TM into a single-tape TM 
that simulates it

• analyze simulation to determine how much additional 
time it requires

• simulating each step on the multitape TM takes 
O(t(n)) steps on the single-tape TM

• total time is therefore O(t2(n))

Measuring Complexity
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• Theorem 7.8: Let t(n) be a function where t(n) ≥ n.  Then 
every t(n) time multitape TM has an equivalent O(t2(n)) 
time single-tape TM.

• proof

• let M be a k-tape TM that runs in t(n) time

• construct TM S that runs in O(t2(n)) time

• S simulates M, as described in Theorem 3.13

• S uses its single tape to represent all k tapes of M

• tapes are stored consecutively, with M’s heads 
marked at certain locations

Measuring Complexity
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• Theorem 7.8: Let t(n) be a function where t(n) ≥ n.  Then 
every t(n) time multitape TM has an equivalent O(t2(n)) 
time single-tape TM.
• proof (cont.)
• initially, S puts its tape into the format that 
represents all tapes of k then simulates M’s steps

• to simulate one step, S scans all information stored on 
its tape to determine the symbols under M’s tape 
heads

• S makes another pass over its tape to update the tape 
contents and head positions

• if one of M’s heads moves rightward onto the 
previously unread portion of its tape, S must increase 
the amount of space allocated to this tape
• shifts a portion of its own tape one cell to the right

Measuring Complexity
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• Theorem 7.8: Let t(n) be a function where t(n) ≥ n.  Then 
every t(n) time multitape TM has an equivalent O(t2(n)) 
time single-tape TM.

• proof (cont.)

• analyze simulation

• for each step of M, S makes 2 passes over the active 
portion of its tape

• obtain the information to determine the next move

• carry it out

• length of active portion of S’s tape determines how 
long S takes to scan it

• to get upper bound, sum lengths of active portions 
of M’s k tapes

Measuring Complexity

36

• Theorem 7.8: Let t(n) be a function where t(n) ≥ n.  Then 
every t(n) time multitape TM has an equivalent O(t2(n)) 
time single-tape TM.

• proof (cont.)

• each active portion is at most t(n)

• M uses t(n) tape cells in t(n) steps if the head moves 
rightward at every step

• fewer if head ever moves leftward

• to simulate each of M’s steps

• S performs 2 scans and up to k rightward shifts

•each uses O(t(n)) time

• total time for S to simulate one of M’s steps: 
O(t(n))

31 32

33 34

35 36



11/21/2024

7

Measuring Complexity

37

• Theorem 7.8: Let t(n) be a function where t(n) ≥ n.  Then 
every t(n) time multitape TM has an equivalent O(t2(n)) 
time single-tape TM.

• proof (cont.)

• total time

• initial stage (formatting): O(n)

• to simulate t(n) steps of M, using O(t(n)) steps

•t(n) x O(t(n)) = O(t2(n))

•each uses O(t(n)) time

• total time: O(n) + O(t2(n)) steps

• running time: O(t2(n))

Measuring Complexity

38

• any language that is decidable on a nondeterministic TM is 
decidable on a deterministic single-tape TM that requires 
significantly more time

• first, we must define the running time of a 
nondeterministic TM, where all its computation 
branches halt on all inputs

Measuring Complexity

39

• measuring deterministic and nondeterministic time

Measuring Complexity
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• the definition of the running time of a NTM is not 
intended to correspond to any real-world computing 
device

• it is a useful mathematical definition that assists in 
characterizing the complexity of an important class of 
computational problems

Measuring Complexity

41

• Theorem 7.11: Let t(n) be a function where t(n) ≥ n.  Then every 
t(n) time nondeterministic single-tape TM has an equivalent 
2O(t(n)) time deterministic single-tape TM.
• proof

• let N be a NTM running in t(n) time
• construct TM D to simulate N as in Theorem 3.16 by 

searching N’s nondeterministic computation tree
• analyze that simulation
• on input of length n, every branch of N’s 

nondeterministic computation tree has a length of at 
most t(n)

• every node in the tree can have at most b children
•b is the maximum number of legal choices given by the 
transition function

• total number of leaves is at most bt(n)

Measuring Complexity

42

• Theorem 7.11: Let t(n) be a function where t(n) ≥ n.  Then 
every t(n) time nondeterministic single-tape TM has an 
equivalent 2O(t(n)) time deterministic single-tape TM.

• proof (cont.)

• simulation proceeds through breadth first exploration

• visits all nodes at depth d before going on to depth 
d+1

• total number of nodes in tree < 2 x max number of 
leaves

•O(bt(n))

• travel from root to node is O(t(n))

• total running time of D: O(t(n))bt(n) = 2O(t(n))

37 38

39 40
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• Theorem 7.11: Let t(n) be a function where t(n) ≥ n.  Then 
every t(n) time nondeterministic single-tape TM has an 
equivalent 2O(t(n)) time deterministic single-tape TM.

• proof (cont.)

• total running time of D: O(t(n))bt(n) = 2O(t(n))

• in Theorem 3.16, the TM D has three tapes

• converting to a single-tape TM at most squares the 
running time

• thus, the running time of the single-tape simulator is 

• (2O(t(n)))2 = 2O(2t(n)) = 2O(t(n))

The Class P

44

• from the previous theorems, there is at most a square or 
polynomial difference between deterministic single-tape 
and multitape TMs

• exponential difference between complexity of problems 
on deterministic vs. nondeterministic TMs

The Class P

45

• polynomial time differences considered small but 
exponential differences large

• dramatic time differences between growth rates

• e.g., for n = 1000

• n3 = 1B

• 2n > number of atoms in the universe

• polynomial algorithms typically good enough to solve 
problems

• exponential algorithms not useful

The Class P

46

• exponential run time often results from brute-force 
algorithms

• exhaustively searching through a solution space

• e.g., factoring a number by searching through all 
potential divisors

• search space is exponential

• a deeper understanding of the problem may lead to a 
polynomial time algorithm

The Class P

47

• all reasonable deterministic models are polynomially 
equivalent

• any one can simulate another with only a polynomial 
increase in running time

• reasonable: in terms of run time on a computer

• our focus will be on aspects of time complexity that are 
unaffected by polynomial differences in run time

• the issue is computation, not properties of particular 
models such as TMs

• n vs. n3 is a big difference practically, but we ignore 
such differences when considering polynomial time vs. 
nonpolynomial time

The Class P

48

• the class P plays a central role in our theory and is 
important because

• P is invariant for all models of computation that are 
polynomially equivalent to deterministic single-tape TMs

• P roughly corresponds to problems that are reasonably 
solvable on a computer

• runs in some nk time

• n1000 may not be practical, but any solution that goes 
from exponential time to polynomial time is notable

43 44

45 46
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• Example Problems in P

• high-level description of algorithm free from any 
particular computational model

• we will continue to describe algorithms with numbered 
stages

• number of stages and number of steps important

The Class P

50

• to show an algorithm runs in polynomial time, we need to 
do two things

• give polynomial upper bound using big-O notation on the 
number of stages that the algorithm uses on input of 
size n

• examine the individual stages to ensure each can be 
implemented in polynomial time on a reasonable 
deterministic model

• choose stages when describing algorithm

• polynomial number of stages, each of which can be 
performed in polynomial time results in a polynomial

The Class P

51

• must also consider encoding of the problem

• use <> to represent some reasonable encoding

• reasonable = polynomial time encoding/decoding

• e.g., encoding 17 as 11111111111111111 is not reasonable 
since it is exponentially larger than other encodings, 
such as base k notation for k ≥ 2

The Class P

52

• encoding of graphs

• list of nodes and its edges

• adjacency matrix

• reasonable = run time on number of nodes vs. the size of 
the graph representation

• should be polynomial on the number of nodes

The Class P

53

• PATH problem

• determine whether a directed graph G contains a 
directed path from s to t

    PATH = {<G,s,t> | G is a directed graph that has a
                   directed path from s to t}

The Class P

54

• Theorem 7.14: PATH ∈ P
• proof idea
• present a polynomial time algorithm that decides 
PATH

• brute-force algorithm won’t work
• e.g., examine all paths to find one from s to t
• if m is the number of nodes in G, the path cannot 
be longer than m
•all such paths = mm, which is exponential

• instead, use polynomial algorithm
• breadth-first search
• successively mark all nodes in G reachable from s by 

directed paths of 1, 2, 3, …, m

49 50

51 52

53 54
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• Theorem 7.14: PATH ∈ P
• proof

• a polynomial time algorithm M for PATH
M = "On input <G, s, t>, where G is a directed graph with
        nodes s and t:

1. Place a mark on node s.
2. Repeat the following until no more nodes are marked:
3.    Scan all the edges of G.  If an edge (a,b) is found

   going from a marked node a to an unmarked node b,
   mark node b.

4. If t is marked, accept.  Otherwise, reject."

• analyze algorithm to ensure it runs in polynomial time
• stages 1 and 4: performed once in polynomial time
• stage 3 runs at most m times
• total time = 1 + 1 + m, so M is a polynomial algorithm for 

PATH

The Class P

56

• the next problem concerns relatively prime numbers

• two numbers are relatively prime if their largest 
common factor is 1

• e.g., 10 and 21 are relatively prime

• e.g., 10 and 22 are not

RELPRIME = {<x, y> | x and y are relatively prime}

The Class P

57

• Theorem 7.15: RELPRIME ∈ P

• proof idea

• one algorithm searches through all possible divisors of 
both numbers and accepts if none are greater than 1

• magnitude of a number in binary is exponential in the 
length of its base

• therefore, the brute-force algorithm searches an 
exponential number of divisors; hence, it is exponential

• Euclidean algorithm for greatest common divisor

• gcd(x,y): largest integer that evenly divides both x and y

•e.g., gcd(18,24) = 6

•x and y are relatively prime if gcd(x,y) = 1

• denoted by E in algorithm

• uses mod function

The Class P

58

• Theorem 7.15: RELPRIME ∈ P

• proof

• Euclidean algorithm E

  E = "On input <x, y>, where x and y are natural numbers 
         in binary:

1. Repeat until y = 0.

2.    Assign x = x mod y.

3.    Exchange x and y.

4. Output x."

The Class P

59

• Theorem 7.15: RELPRIME ∈ P

• proof

• Algorithm R uses E

  R = "On input <x, y>, where x and y are natural numbers 
         in binary:

1. Run E on <x, y>.

2. If the result is 1, accept.  Otherwise, reject."

• if E runs in polynomial time, so does R

• E is known to be correct

• need to show E runs in polynomial time

The Class P

60

• E runs in polynomial time 
• every execution of stage 2 reduces x by at least half
• after stage 2, x < y due to mod
• after stage 3, x > y by exchange
• then in stage 2, if x/2 ≥ y, then x mod y < y ≤ x/2 and x is 

reduced by at least half
• if x/2 < y, x mod y = x – y < x/2 and x is cut by at least half

• since x and y are exchanged in stage 3, both x and y are 
reduced by at least half every other iteration
• max times stages 2 and 3 executed is lesser of 2 log2 x and 

2 log2 y
• both logs are proportional to lengths of representations
• number of stages executed = O(n)
• each stage of E uses polynomial time, so total running time 

is polynomial

55 56
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• Theorem 7.16: Every context-free language ∈ P

• proof idea

• we know every CFL is decidable

• Theorem 4.9 provided an algorithm that decides it

• if algorithm runs in polynomial time, done

• let L be a CFL generated by CFG G in Chomsky NF

• any derivation of string w has 2n – 1 steps, |w| = n

• if any of these derives w, accepts; if not, rejects

• this algorithm does not run in polynomial time

•number of derivations with k steps may be 
exponential in k

The Class P

62

• Theorem 7.16: Every context-free language ∈ P
• proof idea

• use dynamic programming to get a polynomial algorithm
• uses information about subproblems to solve larger problems
• record solutions in table

• subproblem: determine if each variable in G generates each 
substring of w
• uses n x n table to store solutions to subproblems
• (i,j)th entry contains variables that generate wiwi+1…wj

• algorithm fills table for each substring of w of length 1, 2, …
• uses entries of shorter length for entries for longer lengths
• e.g., longer length string is split into shorter strings
• for each split, rule A → BC checked to see if B generates the 
first part of the string and C the second part, using table 
entries

• if so, A generates substring and added to table
• algorithm starts with strings of length 1, i.e., using rules of 
the form A → b

The Class P

63

• Theorem 7.16: Every context-free language ∈ P
• let G be a CFG in Chomsky normal form for CFL L
• proof

D = "On input w = w1…wn:
1. For w = ε, if S → ε is a rule, accept; else, reject.
2. For i = 1 to n:    [examine each substring of length 1]
3.    For each variable A:
4.       Test whether A → b is a rule, where b = wi.
5.        If so, place A in table(i,i).
6. For l = 2 to n:         [l is the length of the substring]
7.    For i = 1 to n – l + 1   [i start position of substring]
8.       Let j = i + l – 1          [j end position of substring]
9.       For k = i to j – 1                         [k split position]
10.          For each rule A → BC:
11.             If table(i,k) contains B and table(k + 1, j) contains C,

               put A in table(i,j)
12. If S is in table(1,n), accept; else, reject."

The Class P

64

• each stage easily implemented to run in polynomial time

• stages 4 and 5 run at most nv times, where v is the 
number of variables in G (constant), and run in O(n)

• stage 6 runs at most n times

• each time stage 6 runs, stage 7 runs at most n times

• each time stage 7 runs, stages 8 and 9 run at most n 
times

• each time stage 9 runs, stage 10 runs r times, where r is 
the number of rules of G (constant)

• thus, stage 11, the inner loop, runs O(n3) times

• therefore, D executes in O(n3) stages

The Class NP

65

• we can avoid brute-force search in many problems to 
obtain polynomial time solutions

• avoiding brute-force approaches in other problems haven’t 
been successful

• so far, polynomial time algorithms for these problems 
are not known to exist

• polynomial solutions may exist, but for some problems, 
no polynomial solution may be possible

• the complexities of many problems are linked

• a polynomial solution for one problem may be used to 
solve an entire class of problems

The Class NP

66

• example: Hamiltonian path: directed path through a 
directed graph that visits each node exactly once

  HAMPATH = {<G, s, t> | G is a directed graph with a 
                           Hamiltonian path from s to t}
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The Class NP

67

• example: Hamiltonian path: directed path through a 
directed graph that visits each node exactly once

  HAMPATH = {<G, s, t> | G is a directed graph with a 
                           Hamiltonian path from s to t}

• exponential algorithm for HAMPATH using brute-force 
algorithm for PATH (Theorem 7.14)

• just add a check to verify the path is Hamiltonian

• no one knows if HAMPATH is solvable in polynomial time

The Class NP

68

• polynomial verifiability

• ability to verify if a solution is correct in polynomial 
time

• even if we cannot actually determine if a solution exists 
in polynomial time

• HAMPATH is polynomially verifiable

The Class NP

69

• example: show that a natural number is a composite (non- 
prime)

     COMPOSITES = {x | x = pq for integers p,q > 1}

• easy to verify a number is composite

• just find a divisor

• but this is non-polynomial

• COMPOSITES is polynomially verifiable since relatively 
recent, but more complicated, polynomial time algorithm 
was discovered

The Class NP

70

• some problems may not be polynomially verifiable

• example: HAMPATH, the complement of HAMPATH

• even if HAMPATH were solved, no good way to verify 
its nonexistence without using the same exponential 
algorithm used to solve it

The Class NP

71

• verifier uses additional information: c in the definition to 
verify that a string is a member of A

• called the certificate, or proof, of membership

• for polynomial verifiers, certificate has polynomial 
length (in w)

The Class NP

72

• for HAMPATH, a certificate would be a Hamiltonian path 
from s to t

• for COMPOSITES, a certificate would be one of its 
divisors

• the verifier can check in polynomial time that the input is 
in the language when given the certificate

67 68
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The Class NP

73

• class NP is important because it contains many problems 
of practical interest

• HAMPATH

• COMPOSITES

• also a member of P, a subset of NP, but proving is 
harder

• NP: nondeterministic polynomial time

• using nondeterministic polynomial time Turing machines

The Class NP

74

• NTM to decide HAMPATH in nondeterministic polynomial time
• time of a  nondeterministic machine is the time used by the 

longest computational branch (Definition 7.9)
N1 = "on input <G, s, t>, where G is a directed graph with
        nodes s and t:

1. Write a list of numbers, p1, …, pm, where m is the 
number of nodes in G.  Each number in the list is 
nondeterministically selected to be between 1 and m.

2. Check for repetitions in the list.  If any found, reject.
3. Check whether s = p1 and t = pm.  If either fail, reject.
4. For each i between 1 and m – 1, check whether (pi, pi+1) 

is  an edge of G.  If any are not, reject.  Otherwise, all 
tests have been passed, so accept."

• each stage runs in polynomial time, so this algorithm runs in 
nondeterministic polynomial time

The Class NP

75

• Theorem 7.20: A language is in NP iff it is decided by 
some nondeterministic polynomial time Turing machine.

• proof idea

• show how to convert a polynomial time verifier to an 
equivalent NTM and vice versa

• NTM simulates verifier by guessing the certificate

• verifier simulates NTM by using the accepting 
branch as the certificate

The Class NP

76

• Theorem 7.20: A language is in NP iff it is decided by 
some nondeterministic polynomial time Turing machine.
• proof
• let A ∈ NP and show A is decided by a polynomial time 
NTM N

• let V be the polynomial time verifier for A 
• TM that runs in time nk

      N = "on input w of length n:
1. Nondeterministically select string c of length at 

most nk.
2. Run V on input <w,c>.
3. If V accepts, accept; otherwise, reject."

The Class NP

77

• Theorem 7.20: A language is in NP iff it is decided by 
some nondeterministic polynomial time Turing machine.

• proof

• other direction

• assume A is decided by polynomial time NTM N

• construct a polynomial time verifier V

      V = "on input <w,c> where w and c are strings:

1. Simulate N on input w, treating each symbol of c 
as a description of the nondeterministic choice 
to make at each step (as in Theorem 3.16).

2. If this branch of N’s computation accepts, 
accept; otherwise, reject."

The Class NP

78

• analogous to deterministic time complexity class 
TIME(t(n))

• NP insensitive to choice of reasonable nondeterministic 
computational model

• each stage in nondeterministic polynomial time algorithm 
must have an obvious polynomial time

• every branch uses at most polynomial many stages
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The Class NP

79

• example NP problems

• clique problem

• clique: subgraph in an undirected graph where every 
two nodes are connected by an edge

• k-clique: clique that contains k nodes

• 5-clique

The Class NP

80

• example NP problems

• clique problem: determine if a graph contains a clique of 
a specified size

   CLIQUE = {<G,k> | G is undirected graph with k-clique}

• Theorem 7.24: CLIQUE is in NP

• proof idea: the clique is the certificate

The Class NP

81

• Theorem 7.24: CLIQUE is in NP

• proof

• verifier V for CLIQUE

     V = "on input <<G,k>,c>:

1. Test whether c is a subgraph with k nodes in G.

2. Test whether G contains all edges connecting 
nodes in c.

3. If both pass, accept; otherwise, reject."

The Class NP

82

• Theorem 7.24: CLIQUE is in NP

• alternative proof using nondeterministic polynomial time 
Turing machine

• NTM N for CLIQUE

     N = "on input <G,k>, where G is a graph:

1. Nondeterministically select a subset c of k nodes  
in G.

2. Test whether G contains all edges connecting 
nodes in c.

3. If yes, accept; otherwise, reject."

The Class NP

83

• example NP problems

• subset sum: given a collection of numbers x1, …, xk and a 
target number t, determine whether the collection 
contains a subcollection that adds up to t

   SUBSET-SUM = {<S,t> | S = {x1, …, xk} and for some 
                {y1, …, yl} ⊆ {x1, …, xk},  Σyi = t}

• example: <{4, 11, 16, 21, 27}, 25> ∈ SUBSET-SUM 
because 4 + 21 = 25

• note that {x1, …, xk} and {y1, …, yl} are multisets, so 
elements can be repeated

The Class NP

84

• Theorem 7.25: SUBSET-SUM is in NP

• proof

• the subset is the certificate

• verifier V for SUBSET-SUM

     V = "on input <<S,t>,c>:

1. Test whether c is a collection of numbers that 
sum to t.

2. Test whether S contains all the numbers in c.

3. If both pass, accept; otherwise, reject."
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The Class NP

85

• Theorem 7.25: SUBSET-SUM is in NP

• alternative proof using nondeterministic polynomial time 
Turing machine

N = "on input <S,t>:

1. Nondeterministically select a subset c of the 
numbers in S.

2. Test whether c is a collection of numbers that 
sum to t.

3. If the test passes, accept; otherwise, reject."

The Class NP

86

• complements of these sets, CLIQUE and SUBSET-SUM 
are not obviously members of NP

• verifying that something is not present seems to be 
more difficult than verifying that it is preset

• separate class, coNP

• contains languages that are complements of languages 
in NP

• unknown whether coNP is different from NP

The Class NP

87

• P vs. NP

• P = class of languages for which membership can be
      decided quickly

• NP = class of languages for which membership can be
      verified quickly

• quickly = polynomial time

• HAMPATH and CLIQUE are members of NP, but are not 
known to be in P

• P and NP could be equal!

The Class NP

88

• P = NP is one of the greatest unsolved problems in 
computer science
• if P = NP, any polynomially verifiable problem would be 
polynomially decidable

• most researchers believe they are not equal because 
much time has been spent trying to find polynomial 
solutions to NP problems without success

• proving the classes are unequal is beyond scientific 
reach, as it would entail showing that no fast algorithm 
exists to replace brute-force search

• best deterministic method known for deciding languages 
in NP uses exponential time, so we can prove 

• but don’t know if NP is contained in a smaller class

The Class NP

89

• one of these possibilities is correct

NP-Completeness

90

• NP-complete problems are important because if a 
polynomial time algorithm is found for one problem, all 
problems in NP would be solvable in polynomial time

• this would show P = NP

• similarly, if any problem in NP is proven to require more 
than polynomial time, all others would, too

• in general, most believe that P ≠ NP, so showing a 
problem is NP-complete also suggests that no polynomial 
time algorithm will be found

85 86
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NP-Completeness

91

• one of the simplest NP-complete problems is satisfiability

• Boolean variables connected with AND, OR, and NOT

• a Boolean formula is satisfiable if some assignment of 
0s and 1s makes the formula evaluate to 1 (TRUE)

• e.g., for φ = (¬x  y)  (x  ¬z)

• x = 0, y = 1, and z = 0 satisfies φ

SAT = {<φ> | φ is a satisfiable Boolean formula}

SAT ∈ P iff P = NP

NP-Completeness

92

• polynomial time reducibility

• when A reduces to B, a solution to B can be used to 
solve A

NP-Completeness

93

• polynomial time reducibility

• to test whether w ∈ A, use the reduction f to map w to 
f(w) and test whether f(w) ∈ B

NP-Completeness

94

• polynomial time reducibility

• if one language is polynomial time reducible to a 
language already known to be have a polynomial time 
solution, we obtain a polynomial time solution to the 
original language

NP-Completeness

95

• polynomial time reducibility
• Theorem 7.31: if A ≤p B and B ∈ P, then A ∈ P
• proof: let M be a polynomial algorithm deciding B and 
let f be the polynomial reduction from A to B, then a 
polynomial algorithm N decides A

   N = "On input w:
1. Compute f(w).
2. Run M on input f(w) and output whatever M 

outputs. "

• f is a reduction from A to B, so w ∈ A when f(w) ∈ B
• M accepts f(w) whenever w ∈ A
• N runs in polynomial time because its stages do so

NP-Completeness

96

• 3SAT

• literal: Boolean variable (x) or negated Boolean variable

• clause: several literals connected with or’s ()

• conjunctive normal form (cnf): several clauses connected 
with and’s ()

• example: (x1  ¬x2  ¬x3  x4)  (x3  ¬x5  x6)  (x3  ¬x6)

• 3cnf-formula: all the clauses have 3 literals

• example: (x1  ¬x2  ¬x3)  (x3  ¬x5  x6)  (x3  ¬x6  x4)

• if an assignment satisfies the formula, each clause must 
contain at least one literal that evaluates to 1

3SAT = {<φ> | φ is a satisfiable 3cnf-formula}
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NP-Completeness

97

• Thm 7.32: 3SAT is polynomial time reducible to CLIQUE

• proof idea

• convert formulas to graphs

• in constructed graphs, cliques of a specified size 
correspond to satisfying assignments of the formula

• structures in the graph are designed to mimic the 
behavior of the variables and classes

NP-Completeness

98

• Thm 7.32: 3SAT is polynomial time reducible to CLIQUE
• proof
• let φ = (a1  b1  c1)  (a2  b2  c2)  …  (ak  bk  ck)
• the reduction f generates the string <G,k>
• nodes of G are organized into k groups of three nodes 
each called triples t1, …, tk

• each triple corresponds to one of the clauses in φ
• each node in a triple corresponds to a literal in the 
clause

• label each node in G with its corresponding literal in φ
• the edges in G connect all pairs of nodes except
• nodes in the same triple
• two nodes with contradictory labels, e.g., x2 and ¬x2 

NP-Completeness

99

• Thm 7.32: 3SAT is polynomial time reducible to CLIQUE

• proof

• ex: φ = (x1  x1  x2)  (¬x1  ¬x2  ¬x2)  (¬x1  x2  x2)

• now show φ is satisfiable iff G has a k-clique

NP-Completeness

100

• Thm 7.32: 3SAT is polynomial time reducible to CLIQUE
• proof
• ex: φ = (x1  x1  x2)  (¬x1  ¬x2  ¬x2)  (¬x1  x2  x2)
• suppose φ has a satisfying assignment
• at least one TRUE in each clause

• select one TRUE literal in each triple
• if > 1, any OK

• these nodes form a k-clique
• k nodes – we choose one from each of k triples
• edges selected cannot violate exceptions
• cannot be from same triple since we selected only 

one per triple
• no contradictory labels

NP-Completeness

101

• Thm 7.32: 3SAT is polynomial time reducible to CLIQUE
• proof

• ex: φ = (x1  x1  x2)  (¬x1  ¬x2  ¬x2)  (¬x1  x2  x2)
• suppose G has a k-clique
• no two of the clique’s nodes occur in the

same triple because no edges connect
nodes in the same triple

• each of the k triples contains exactly
one of the k-clique nodes

• assign truth values to variables of φ
so that each literal labeling a clique node is made TRUE
• always possible since contradictory nodes not connected 

by an edge, and therefore won’t be in the same clique
• this assignment of variables satisfies φ because each 

triple contains a clique node and hence each clause 
contains a literal that is TRUE; hence, φ is satisfiable

NP-Completeness

102

• Theorems 7.31 and 7.32 tell us that if CLIQUE is solvable 
in polynomial time, so is 3SAT

• remarkable since problems seem different

• polynomial time reducibility links their complexities

• CLIQUE is also NP-complete

97 98

99 100

101 102



11/21/2024

18

NP-Completeness

103

• Definition 7.34: A language B is NP-complete if it 
satisfies two conditions:

1. B is in NP

2. every A in NP is polynomial time reducible to B

• Theorem 7.35: If B is NP-complete and B ∈ P, then P = NP

NP-Completeness

104

• Theorem 7.36: If B is NP-complete and B ≤p C for C in NP, 
then C is NP-complete

• proof

• C is in NP (given)

• must show every A in NP is polynomial time reducible 
to C

• since B is NP-complete, every language is polynomial 
time reducible to B, and B is polynomial time reducible 
to C

• if A is polynomial time reducible to B, and B to C, then 
A is polynomial time reducible to C

• therefore, every language in NP is polynomial time 
reducible to C

NP-Completeness

105

• once we have one NP-complete problem, we may obtain 
others by polynomial time reduction

• establishing first NP-complete problem difficult

• start with SAT

NP-Completeness

106

• Theorem 7.37: SAT is NP-complete

• proof idea

• easy to show SAT in NP

• harder to show any language in NP is polynomial time 
reducible to SAT

• need to construct polynomial time reduction for each 
language A in NP to SAT

• reduction for A takes a string w and produces a 
Boolean formula φ that simulates the NP machine for 
A on input w

• if the machine accepts, φ has satisfying values

• otherwise, no satisfying assignment of values

• w ∈ A iff φ is satisfiable

NP-Completeness

107

• Theorem 7.37: SAT is NP-complete

• proof idea (cont.)

• constructing reduction to work in this way not 
difficult

• but many details

• Boolean formulas contain AND, OR, and NOT

• similar to circuitry in computers

• hence, the fact that we can design a Boolean formula 
to simulate a Turing machine should not be surprising

• this (long) proof is used to show the Cook-Levin 
Theorem

NP-Completeness

108

• Corollary 7.42: 3SAT is NP-complete

• proof 

• 3SAT is in NP

• need to prove all languages in NP reduce to 3SAT in 
polynomial time

• could show SAT polynomial reduces to 3SAT

• instead, modify long proof to produce a formula in 
conjunctive normal form with three literals per 
clause
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Additional NP-Complete Problems

109

• NP-complete problems appear in many fields
• most naturally occurring NP problems are known to be 
either in P or to be NP-complete
• for new problem, try to show NP-complete so that 
time is not wasted trying to develop an algorithm that 
may not exist

• to show languages are NP-complete
• show a polynomial time reduction from 3SAT to the 
language

• other NP-complete problems could be used instead
• when constructing the reduction, look for structures 
that can simulate variables and clauses in Boolean 
formulas
• structures called gadgets

Additional NP-Complete Problems

110

• vertex cover

• G: undirected graph

• vertex cover: a subset of nodes where every edge of G 
touches one of those nodes

• vertex cover problem asks whether a graph contains a 
vertex cover of a specified size 

  VERTEX-COVER = {<G,k> | G is an undirected graph that
                                            has a k-node vertex cover}

NP-Completeness

111

• Theorem 7.44: VERTEX-COVER is NP-complete

• proof idea

• show that is in NP and all NP-problems are polynomial 
reducible to VERTEX-COVER

• first part: a certificate is simply a vertex cover of 
size k

• second part: show 3SAT is polynomial time reducible 
to VERTEX-COVER

•convert 3cnf-formula φ into a graph G and a 
number k, so that φ is satisfiable whenever G has a 
vertex cover with k nodes

•G simulates φ

NP-Completeness

112

• Theorem 7.44: VERTEX-COVER is NP-complete

• proof

• graph from reduction produced from

   φ = (x1  x1  x2)  (¬x1  ¬x2  ¬x2)  (¬x1  x2  x2)

NP-Completeness

113

• other NP-complete problems

• Theorem 7.46: HAMPATH is NP-complete

• Theorem 7.55: UHAMPATH is NP-complete

• Theorem 7.56: SUBSET-SUM is NP-complete
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