
11/21/2024

1

Chapter 7
Time Complexity

Overview

2

• previously, we looked at whether a problem was solvable

• even if it is solvable, however, it may not be solvable
practically due to time or memory

• computational complexity theory

• considers time, memory, and other resources required
for solving computational problems

• we will focus on time

Measuring Complexity

3

• example: A = {0k1k | k ≥ 0}
• A is context-free, so it is decidable
• how much time does a single-tape TM need to decide A?
• low-level TM description with head motion so that we can

count the number of steps it uses when it runs
M1 = "On input string w:

1. Scan across the tape and reject if a 0 is found to
the right of a 1.

2. Repeat if both 0s and 1s remain on the tape:
3. Scan across the tape, crossing off a single 0

 and a single 1.
4. If 0s still remain after all the 1s have been crossed

off, or if 1s still remain after all the 0s have been
crossed off, reject. Otherwise, if neither 0s nor 1s
remain on the tape, accept."

Measuring Complexity

4

• to analyze this TM, we need to introduce some
terminology

• the number of steps an algorithm uses on a particular
input may depend on several parameters
• e.g., if the input is a graph, the number of steps may
depend on the number of nodes, the number of edges,
and the maximum degree of the graph, or some
combination of these or other factors

• for simplicity, we compute the run time of an algorithm
as a function of the length of the input string alone

• worst-case analysis: longest running time of all inputs of
a particular length

• average-case analysis: average of all running times of
inputs of a particular length

Measuring Complexity

5

Measuring Complexity

6

• the exact running time of an algorithm is often a complex
expression

• we estimate it instead

• asymptotic analysis

• run time for large inputs

• only consider the highest order term of the expression
representing the run time of the algorithm

• disregard coefficient of that term

• disregard all other terms

• highest order term dominates all other terms on large
input

1 2

3 4

5 6

11/21/2024

2

Measuring Complexity

7

• asymptotic analysis

• example: f(n) = 6n3 + 2n2 + 20n + 45

• 4 terms

• highest term: 6n3

• disregard coefficient 6

• f is asymptotically at most n3

• big-O notation: f(n) = O(n3)

Measuring Complexity

8

Measuring Complexity

9

• asymptotic analysis

• f(n) = O(g(n))

• intuitively, f ≤ g

• disregards behavior for small n

• example: f(n) = 5n3 + 2n2 + 22n + 6

• f(n) = O(n3)

• formal definition:

• let c = 6, n0 = 10

• 5n3 + 2n2 + 22n + 6 ≤ 6n3 for every n ≥ 10

• also, f(n) = O(n4), but f(n) ≠ O(n2)

Measuring Complexity

10

• asymptotic analysis
• big-O works with log’s in a different way
• usually we specify the base of a log
• e.g., x = log2 n

• changing the base changes the value of logb n by a
constant factor
• logb n = log2 n / log2 b

• for f(n) = O(log n)
• do not need to specify the base since it’s a

constant factor

• example: f(n) = 3n log2 n + 5n log2 log2 n + 2
• f(n) = O(n log n)

Measuring Complexity

11

• big-O notation can appear in expressions

• f(n) = O(n2) + O(n)

• O(n2) dominates, so f(n) = O(n2)

• if big-O in exponent

• f(n) = 2O(n)

• upper bound of 2cn for some c

• f(n) = 2O(lg n)

• if n = 2O(log n), nc = 2c lg n

• nc = O(2O(log n))

• f(n) = O(n3)

Measuring Complexity

12

• polynomial bounds: nc

• exponential bounds: 2n^δ for δ > 0

• small-o notation

• big-O: ≤

• small-o: <

7 8

9 10

11 12

11/21/2024

3

Measuring Complexity

13

Measuring Complexity

14

• examples:

1. sqrt(n) = o(n)

2. n = o(n log log n)

3. n log log n = o(n log n)

4. n log n = o(n2)

5. n2 = o(n3)

• f(n) = O(f(n))

• f(n) ≠ o(f(n))

Measuring Complexity

15

• example: A = {0k1k | k ≥ 0}
• A is context-free, so it is decidable
• how much time does a single-tape TM need to decide A?
• low-level TM description with head motion so that we can

count the number of steps it uses when it runs
M1 = "On input string w:

1. Scan across the tape and reject if a 0 is found to
the right of a 1.

2. Repeat if both 0s and 1s remain on the tape:
3. Scan across the tape, crossing off a single 0

 and a single 1.
4. If 0s still remain after all the 1s have been crossed

off, or if 1s still remain after all the 0s have been
crossed off, reject. Otherwise, if neither 0s nor 1s
remain on the tape, accept."

Measuring Complexity

16

• example: A = {0k1k | k ≥ 0}
• consider each stage separately
• stage 1:

1. Scan across the tape and reject if a 0 is found to
the right of a 1.

• verifies input 0*1*
• n steps, where n is the length of the input

• repositioning head at left-hand end of tape
• n steps

• total: 2n steps
• O(n)
• repositioning not mentioned in description, but OK

since it only adds a constant factor

Measuring Complexity

17

• example: A = {0k1k | k ≥ 0}

• stages 2 and 3:

2. Repeat if both 0s and 1s remain on the tape:

3. Scan across the tape, crossing off a single 0
 and a single 1.

• repeatedly scans tape and crosses of a 0 and 1 on
each scan

• each scan uses O(n) steps

• cross off 2 symbols, so at most n/2 scans

• total time for both stages: (n/2)O(n) = O(n2) steps

Measuring Complexity

18

• example: A = {0k1k | k ≥ 0}

• stage 4:

4. If 0s still remain after all the 1s have been crossed
off, or if 1s still remain after all the 0s have been
crossed off, reject. Otherwise, if neither 0s nor 1s
remain on the tape, accept.

• single scan to decide whether to accept or reject

• O(n)

13 14

15 16

17 18

11/21/2024

4

Measuring Complexity

19

• example: A = {0k1k | k ≥ 0}

• total time for all stages

• O(n) + O(n2) + O(n) = O(n2)

• so, running time = O(n2)

Measuring Complexity

20

• notation for classifying languages according to timing
requirements

• for A = {0k1k | k ≥ 0}

• A ∈ TIME(n2)

• M1 decides A in time O(n2)

• TIME(n2) contains all languages that can be decided
in O(n2) time

Measuring Complexity

21

• is there a machine that decides A more quickly?

• is A in TIME(t(n)) for t(n) = o(n2)?

• try crossing off 2 0s and 1s on each scan, instead of just 1

• reduces running time by factor of 2, so does not affect
the asymptotic time

• can try a different algorithm

Measuring Complexity

22

• example: A = {0k1k | k ≥ 0}
M2 = "On input string w:

1. Scan across the tape and reject if a 0 is found
to the right of a 1.

2. Repeat if both 0s and 1s remain on the tape:
3. Scan across the tape, checking whether the

 total number of 0s and 1s remaining is even or
 odd. If it is odd, reject.

4. Scan again across the tape, crossing off every
 other 0 starting with the first 0, and then
 crossing off every other 1 starting with the
 first 1.

5. If no 0s and no 1s remain on the tape, accept.
Otherwise, reject."

Measuring Complexity

23

• does M2 actually decide A?

• every scan in stage 4 reduces the number of remaining
0s by half, with any remainder discarded

• if we start with 13 0s, we end up with 6 0s

• then 3, then 1, then 0

• same with the number of 1s

• even/odd parity of 0s and 1s in stage 3

• starting with 13 0s, odd

• 6, even

• 3, odd

• 1, odd

• not performed on 0 due to stage 2 condition

Measuring Complexity

24

• does M2 actually decide A?

• even/odd parity of 0s and 1s in stage 3

• 13: odd even odd odd

• replace even with 0 and odd with 1, then reverse

• corresponds to 1101 (13 in binary)

• when stage 3 checks total number of 0s and 1s
remaining is even

• actually checking on agreement of parity of 0s and 1s

• if all parities agree, binary representations agree

• so, numbers are equal

19 20

21 22

23 24

11/21/2024

5

Measuring Complexity

25

• running time of M2

• every stage takes O(n) time

• stages 1 and 5 are executed once

• total: O(n) time

• stage 4 crosses off at least half 0s and 1s each
iteration

• at most: 1 + lg n iterations

• total time for stages 2, 3, and 4

• (1 + lg n) O(n) = O(n log n)

• total running time of M2

• O(n) + O(n log n) = O(n log n)

Measuring Complexity

26

• previously A ∈ TIME(n2)

• but now A ∈ TIME(n log n), which is better

• cannot be further improved on TM with single tape

• any language that can be decided in o(n log n) time on
single-tape TM is regular

• if the TM has a second tape, it can be decided in linear
time: O(n)

• copies 0s to second tape and matches against the 1s

Measuring Complexity

27

• example: A = {0k1k | k ≥ 0}

M3 = "On input string w:

1. Scan across the tape and reject if a 0 is found
to the right of a 1.

2. Scan across the 0s on tape 1 until the first 1. At
the same time, copy the 0s onto tape 2.

3. Scan across the 1s on tape 1 until the end of the
input. For each 1 read on tape 1, cross off a 0 on
tape 2. If all 0s are crossed off before all the
1s are read, reject.

4. If all the 0s have now been crossed off, accept.
If any 0s remain, reject."

Measuring Complexity

28

• running time of M3

• every stage takes O(n) steps

• total: O(n) time

• O(n) is best running time possible because it takes n
steps just to read the input

• summary

• fastest single-tape TM for A: O(n log n)

• fastest two-tape TM for A: O(n)

Measuring Complexity

29

• important difference between complexity theory and
computability theory

• computability theory

• Church-Turing thesis implies all reasonable models of
computation are equivalent

• complexity theory

• choice of model affects the time complexity of
languages

• e.g., languages that are decidable in linear time on one
model are not necessarily decidable in linear time on
another

Measuring Complexity

30

• with complexity theory, we classify problems according to
their time complexity

• but with which model?

• fortunately, time requirements don’t differ greatly for
typical deterministic models

• so, the choice of model isn’t crucial

25 26

27 28

29 30

11/21/2024

6

Measuring Complexity

31

• complexity relationships among models

• how does the choice of model affect time complexity of
languages?

• three models

• single-tape TM

• multitape TM

• nondeterministic TM

Measuring Complexity

32

• Theorem 7.8: Let t(n) be a function where t(n) ≥ n. Then
every t(n) time multitape TM has an equivalent O(t2(n))
time single-tape TM.

• proof idea

• can convert any multitape TM into a single-tape TM
that simulates it

• analyze simulation to determine how much additional
time it requires

• simulating each step on the multitape TM takes
O(t(n)) steps on the single-tape TM

• total time is therefore O(t2(n))

Measuring Complexity

33

• Theorem 7.8: Let t(n) be a function where t(n) ≥ n. Then
every t(n) time multitape TM has an equivalent O(t2(n))
time single-tape TM.

• proof

• let M be a k-tape TM that runs in t(n) time

• construct TM S that runs in O(t2(n)) time

• S simulates M, as described in Theorem 3.13

• S uses its single tape to represent all k tapes of M

• tapes are stored consecutively, with M’s heads
marked at certain locations

Measuring Complexity

34

• Theorem 7.8: Let t(n) be a function where t(n) ≥ n. Then
every t(n) time multitape TM has an equivalent O(t2(n))
time single-tape TM.
• proof (cont.)
• initially, S puts its tape into the format that
represents all tapes of k then simulates M’s steps

• to simulate one step, S scans all information stored on
its tape to determine the symbols under M’s tape
heads

• S makes another pass over its tape to update the tape
contents and head positions

• if one of M’s heads moves rightward onto the
previously unread portion of its tape, S must increase
the amount of space allocated to this tape
• shifts a portion of its own tape one cell to the right

Measuring Complexity

35

• Theorem 7.8: Let t(n) be a function where t(n) ≥ n. Then
every t(n) time multitape TM has an equivalent O(t2(n))
time single-tape TM.

• proof (cont.)

• analyze simulation

• for each step of M, S makes 2 passes over the active
portion of its tape

• obtain the information to determine the next move

• carry it out

• length of active portion of S’s tape determines how
long S takes to scan it

• to get upper bound, sum lengths of active portions
of M’s k tapes

Measuring Complexity

36

• Theorem 7.8: Let t(n) be a function where t(n) ≥ n. Then
every t(n) time multitape TM has an equivalent O(t2(n))
time single-tape TM.

• proof (cont.)

• each active portion is at most t(n)

• M uses t(n) tape cells in t(n) steps if the head moves
rightward at every step

• fewer if head ever moves leftward

• to simulate each of M’s steps

• S performs 2 scans and up to k rightward shifts

•each uses O(t(n)) time

• total time for S to simulate one of M’s steps:
O(t(n))

31 32

33 34

35 36

11/21/2024

7

Measuring Complexity

37

• Theorem 7.8: Let t(n) be a function where t(n) ≥ n. Then
every t(n) time multitape TM has an equivalent O(t2(n))
time single-tape TM.

• proof (cont.)

• total time

• initial stage (formatting): O(n)

• to simulate t(n) steps of M, using O(t(n)) steps

•t(n) x O(t(n)) = O(t2(n))

•each uses O(t(n)) time

• total time: O(n) + O(t2(n)) steps

• running time: O(t2(n))

Measuring Complexity

38

• any language that is decidable on a nondeterministic TM is
decidable on a deterministic single-tape TM that requires
significantly more time

• first, we must define the running time of a
nondeterministic TM, where all its computation
branches halt on all inputs

Measuring Complexity

39

• measuring deterministic and nondeterministic time

Measuring Complexity

40

• the definition of the running time of a NTM is not
intended to correspond to any real-world computing
device

• it is a useful mathematical definition that assists in
characterizing the complexity of an important class of
computational problems

Measuring Complexity

41

• Theorem 7.11: Let t(n) be a function where t(n) ≥ n. Then every
t(n) time nondeterministic single-tape TM has an equivalent
2O(t(n)) time deterministic single-tape TM.
• proof

• let N be a NTM running in t(n) time
• construct TM D to simulate N as in Theorem 3.16 by

searching N’s nondeterministic computation tree
• analyze that simulation
• on input of length n, every branch of N’s

nondeterministic computation tree has a length of at
most t(n)

• every node in the tree can have at most b children
•b is the maximum number of legal choices given by the
transition function

• total number of leaves is at most bt(n)

Measuring Complexity

42

• Theorem 7.11: Let t(n) be a function where t(n) ≥ n. Then
every t(n) time nondeterministic single-tape TM has an
equivalent 2O(t(n)) time deterministic single-tape TM.

• proof (cont.)

• simulation proceeds through breadth first exploration

• visits all nodes at depth d before going on to depth
d+1

• total number of nodes in tree < 2 x max number of
leaves

•O(bt(n))

• travel from root to node is O(t(n))

• total running time of D: O(t(n))bt(n) = 2O(t(n))

37 38

39 40

41 42

11/21/2024

8

Measuring Complexity

43

• Theorem 7.11: Let t(n) be a function where t(n) ≥ n. Then
every t(n) time nondeterministic single-tape TM has an
equivalent 2O(t(n)) time deterministic single-tape TM.

• proof (cont.)

• total running time of D: O(t(n))bt(n) = 2O(t(n))

• in Theorem 3.16, the TM D has three tapes

• converting to a single-tape TM at most squares the
running time

• thus, the running time of the single-tape simulator is

• (2O(t(n)))2 = 2O(2t(n)) = 2O(t(n))

The Class P

44

• from the previous theorems, there is at most a square or
polynomial difference between deterministic single-tape
and multitape TMs

• exponential difference between complexity of problems
on deterministic vs. nondeterministic TMs

The Class P

45

• polynomial time differences considered small but
exponential differences large

• dramatic time differences between growth rates

• e.g., for n = 1000

• n3 = 1B

• 2n > number of atoms in the universe

• polynomial algorithms typically good enough to solve
problems

• exponential algorithms not useful

The Class P

46

• exponential run time often results from brute-force
algorithms

• exhaustively searching through a solution space

• e.g., factoring a number by searching through all
potential divisors

• search space is exponential

• a deeper understanding of the problem may lead to a
polynomial time algorithm

The Class P

47

• all reasonable deterministic models are polynomially
equivalent

• any one can simulate another with only a polynomial
increase in running time

• reasonable: in terms of run time on a computer

• our focus will be on aspects of time complexity that are
unaffected by polynomial differences in run time

• the issue is computation, not properties of particular
models such as TMs

• n vs. n3 is a big difference practically, but we ignore
such differences when considering polynomial time vs.
nonpolynomial time

The Class P

48

• the class P plays a central role in our theory and is
important because

• P is invariant for all models of computation that are
polynomially equivalent to deterministic single-tape TMs

• P roughly corresponds to problems that are reasonably
solvable on a computer

• runs in some nk time

• n1000 may not be practical, but any solution that goes
from exponential time to polynomial time is notable

43 44

45 46

47 48

11/21/2024

9

The Class P

49

• Example Problems in P

• high-level description of algorithm free from any
particular computational model

• we will continue to describe algorithms with numbered
stages

• number of stages and number of steps important

The Class P

50

• to show an algorithm runs in polynomial time, we need to
do two things

• give polynomial upper bound using big-O notation on the
number of stages that the algorithm uses on input of
size n

• examine the individual stages to ensure each can be
implemented in polynomial time on a reasonable
deterministic model

• choose stages when describing algorithm

• polynomial number of stages, each of which can be
performed in polynomial time results in a polynomial

The Class P

51

• must also consider encoding of the problem

• use <> to represent some reasonable encoding

• reasonable = polynomial time encoding/decoding

• e.g., encoding 17 as 11111111111111111 is not reasonable
since it is exponentially larger than other encodings,
such as base k notation for k ≥ 2

The Class P

52

• encoding of graphs

• list of nodes and its edges

• adjacency matrix

• reasonable = run time on number of nodes vs. the size of
the graph representation

• should be polynomial on the number of nodes

The Class P

53

• PATH problem

• determine whether a directed graph G contains a
directed path from s to t

 PATH = {<G,s,t> | G is a directed graph that has a
 directed path from s to t}

The Class P

54

• Theorem 7.14: PATH ∈ P
• proof idea
• present a polynomial time algorithm that decides
PATH

• brute-force algorithm won’t work
• e.g., examine all paths to find one from s to t
• if m is the number of nodes in G, the path cannot
be longer than m
•all such paths = mm, which is exponential

• instead, use polynomial algorithm
• breadth-first search
• successively mark all nodes in G reachable from s by

directed paths of 1, 2, 3, …, m

49 50

51 52

53 54

11/21/2024

10

The Class P

55

• Theorem 7.14: PATH ∈ P
• proof

• a polynomial time algorithm M for PATH
M = "On input <G, s, t>, where G is a directed graph with
 nodes s and t:

1. Place a mark on node s.
2. Repeat the following until no more nodes are marked:
3. Scan all the edges of G. If an edge (a,b) is found

 going from a marked node a to an unmarked node b,
 mark node b.

4. If t is marked, accept. Otherwise, reject."

• analyze algorithm to ensure it runs in polynomial time
• stages 1 and 4: performed once in polynomial time
• stage 3 runs at most m times
• total time = 1 + 1 + m, so M is a polynomial algorithm for

PATH

The Class P

56

• the next problem concerns relatively prime numbers

• two numbers are relatively prime if their largest
common factor is 1

• e.g., 10 and 21 are relatively prime

• e.g., 10 and 22 are not

RELPRIME = {<x, y> | x and y are relatively prime}

The Class P

57

• Theorem 7.15: RELPRIME ∈ P

• proof idea

• one algorithm searches through all possible divisors of
both numbers and accepts if none are greater than 1

• magnitude of a number in binary is exponential in the
length of its base

• therefore, the brute-force algorithm searches an
exponential number of divisors; hence, it is exponential

• Euclidean algorithm for greatest common divisor

• gcd(x,y): largest integer that evenly divides both x and y

•e.g., gcd(18,24) = 6

•x and y are relatively prime if gcd(x,y) = 1

• denoted by E in algorithm

• uses mod function

The Class P

58

• Theorem 7.15: RELPRIME ∈ P

• proof

• Euclidean algorithm E

 E = "On input <x, y>, where x and y are natural numbers
 in binary:

1. Repeat until y = 0.

2. Assign x = x mod y.

3. Exchange x and y.

4. Output x."

The Class P

59

• Theorem 7.15: RELPRIME ∈ P

• proof

• Algorithm R uses E

 R = "On input <x, y>, where x and y are natural numbers
 in binary:

1. Run E on <x, y>.

2. If the result is 1, accept. Otherwise, reject."

• if E runs in polynomial time, so does R

• E is known to be correct

• need to show E runs in polynomial time

The Class P

60

• E runs in polynomial time
• every execution of stage 2 reduces x by at least half
• after stage 2, x < y due to mod
• after stage 3, x > y by exchange
• then in stage 2, if x/2 ≥ y, then x mod y < y ≤ x/2 and x is

reduced by at least half
• if x/2 < y, x mod y = x – y < x/2 and x is cut by at least half

• since x and y are exchanged in stage 3, both x and y are
reduced by at least half every other iteration
• max times stages 2 and 3 executed is lesser of 2 log2 x and

2 log2 y
• both logs are proportional to lengths of representations
• number of stages executed = O(n)
• each stage of E uses polynomial time, so total running time

is polynomial

55 56

57 58

59 60

11/21/2024

11

The Class P

61

• Theorem 7.16: Every context-free language ∈ P

• proof idea

• we know every CFL is decidable

• Theorem 4.9 provided an algorithm that decides it

• if algorithm runs in polynomial time, done

• let L be a CFL generated by CFG G in Chomsky NF

• any derivation of string w has 2n – 1 steps, |w| = n

• if any of these derives w, accepts; if not, rejects

• this algorithm does not run in polynomial time

•number of derivations with k steps may be
exponential in k

The Class P

62

• Theorem 7.16: Every context-free language ∈ P
• proof idea

• use dynamic programming to get a polynomial algorithm
• uses information about subproblems to solve larger problems
• record solutions in table

• subproblem: determine if each variable in G generates each
substring of w
• uses n x n table to store solutions to subproblems
• (i,j)th entry contains variables that generate wiwi+1…wj

• algorithm fills table for each substring of w of length 1, 2, …
• uses entries of shorter length for entries for longer lengths
• e.g., longer length string is split into shorter strings
• for each split, rule A → BC checked to see if B generates the
first part of the string and C the second part, using table
entries

• if so, A generates substring and added to table
• algorithm starts with strings of length 1, i.e., using rules of
the form A → b

The Class P

63

• Theorem 7.16: Every context-free language ∈ P
• let G be a CFG in Chomsky normal form for CFL L
• proof

D = "On input w = w1…wn:
1. For w = ε, if S → ε is a rule, accept; else, reject.
2. For i = 1 to n: [examine each substring of length 1]
3. For each variable A:
4. Test whether A → b is a rule, where b = wi.
5. If so, place A in table(i,i).
6. For l = 2 to n: [l is the length of the substring]
7. For i = 1 to n – l + 1 [i start position of substring]
8. Let j = i + l – 1 [j end position of substring]
9. For k = i to j – 1 [k split position]
10. For each rule A → BC:
11. If table(i,k) contains B and table(k + 1, j) contains C,

 put A in table(i,j)
12. If S is in table(1,n), accept; else, reject."

The Class P

64

• each stage easily implemented to run in polynomial time

• stages 4 and 5 run at most nv times, where v is the
number of variables in G (constant), and run in O(n)

• stage 6 runs at most n times

• each time stage 6 runs, stage 7 runs at most n times

• each time stage 7 runs, stages 8 and 9 run at most n
times

• each time stage 9 runs, stage 10 runs r times, where r is
the number of rules of G (constant)

• thus, stage 11, the inner loop, runs O(n3) times

• therefore, D executes in O(n3) stages

The Class NP

65

• we can avoid brute-force search in many problems to
obtain polynomial time solutions

• avoiding brute-force approaches in other problems haven’t
been successful

• so far, polynomial time algorithms for these problems
are not known to exist

• polynomial solutions may exist, but for some problems,
no polynomial solution may be possible

• the complexities of many problems are linked

• a polynomial solution for one problem may be used to
solve an entire class of problems

The Class NP

66

• example: Hamiltonian path: directed path through a
directed graph that visits each node exactly once

 HAMPATH = {<G, s, t> | G is a directed graph with a
 Hamiltonian path from s to t}

61 62

63 64

65 66

11/21/2024

12

The Class NP

67

• example: Hamiltonian path: directed path through a
directed graph that visits each node exactly once

 HAMPATH = {<G, s, t> | G is a directed graph with a
 Hamiltonian path from s to t}

• exponential algorithm for HAMPATH using brute-force
algorithm for PATH (Theorem 7.14)

• just add a check to verify the path is Hamiltonian

• no one knows if HAMPATH is solvable in polynomial time

The Class NP

68

• polynomial verifiability

• ability to verify if a solution is correct in polynomial
time

• even if we cannot actually determine if a solution exists
in polynomial time

• HAMPATH is polynomially verifiable

The Class NP

69

• example: show that a natural number is a composite (non-
prime)

 COMPOSITES = {x | x = pq for integers p,q > 1}

• easy to verify a number is composite

• just find a divisor

• but this is non-polynomial

• COMPOSITES is polynomially verifiable since relatively
recent, but more complicated, polynomial time algorithm
was discovered

The Class NP

70

• some problems may not be polynomially verifiable

• example: HAMPATH, the complement of HAMPATH

• even if HAMPATH were solved, no good way to verify
its nonexistence without using the same exponential
algorithm used to solve it

The Class NP

71

• verifier uses additional information: c in the definition to
verify that a string is a member of A

• called the certificate, or proof, of membership

• for polynomial verifiers, certificate has polynomial
length (in w)

The Class NP

72

• for HAMPATH, a certificate would be a Hamiltonian path
from s to t

• for COMPOSITES, a certificate would be one of its
divisors

• the verifier can check in polynomial time that the input is
in the language when given the certificate

67 68

69 70

71 72

11/21/2024

13

The Class NP

73

• class NP is important because it contains many problems
of practical interest

• HAMPATH

• COMPOSITES

• also a member of P, a subset of NP, but proving is
harder

• NP: nondeterministic polynomial time

• using nondeterministic polynomial time Turing machines

The Class NP

74

• NTM to decide HAMPATH in nondeterministic polynomial time
• time of a nondeterministic machine is the time used by the

longest computational branch (Definition 7.9)
N1 = "on input <G, s, t>, where G is a directed graph with
 nodes s and t:

1. Write a list of numbers, p1, …, pm, where m is the
number of nodes in G. Each number in the list is
nondeterministically selected to be between 1 and m.

2. Check for repetitions in the list. If any found, reject.
3. Check whether s = p1 and t = pm. If either fail, reject.
4. For each i between 1 and m – 1, check whether (pi, pi+1)

is an edge of G. If any are not, reject. Otherwise, all
tests have been passed, so accept."

• each stage runs in polynomial time, so this algorithm runs in
nondeterministic polynomial time

The Class NP

75

• Theorem 7.20: A language is in NP iff it is decided by
some nondeterministic polynomial time Turing machine.

• proof idea

• show how to convert a polynomial time verifier to an
equivalent NTM and vice versa

• NTM simulates verifier by guessing the certificate

• verifier simulates NTM by using the accepting
branch as the certificate

The Class NP

76

• Theorem 7.20: A language is in NP iff it is decided by
some nondeterministic polynomial time Turing machine.
• proof
• let A ∈ NP and show A is decided by a polynomial time
NTM N

• let V be the polynomial time verifier for A
• TM that runs in time nk

 N = "on input w of length n:
1. Nondeterministically select string c of length at

most nk.
2. Run V on input <w,c>.
3. If V accepts, accept; otherwise, reject."

The Class NP

77

• Theorem 7.20: A language is in NP iff it is decided by
some nondeterministic polynomial time Turing machine.

• proof

• other direction

• assume A is decided by polynomial time NTM N

• construct a polynomial time verifier V

 V = "on input <w,c> where w and c are strings:

1. Simulate N on input w, treating each symbol of c
as a description of the nondeterministic choice
to make at each step (as in Theorem 3.16).

2. If this branch of N’s computation accepts,
accept; otherwise, reject."

The Class NP

78

• analogous to deterministic time complexity class
TIME(t(n))

• NP insensitive to choice of reasonable nondeterministic
computational model

• each stage in nondeterministic polynomial time algorithm
must have an obvious polynomial time

• every branch uses at most polynomial many stages

73 74

75 76

77 78

11/21/2024

14

The Class NP

79

• example NP problems

• clique problem

• clique: subgraph in an undirected graph where every
two nodes are connected by an edge

• k-clique: clique that contains k nodes

• 5-clique

The Class NP

80

• example NP problems

• clique problem: determine if a graph contains a clique of
a specified size

 CLIQUE = {<G,k> | G is undirected graph with k-clique}

• Theorem 7.24: CLIQUE is in NP

• proof idea: the clique is the certificate

The Class NP

81

• Theorem 7.24: CLIQUE is in NP

• proof

• verifier V for CLIQUE

 V = "on input <<G,k>,c>:

1. Test whether c is a subgraph with k nodes in G.

2. Test whether G contains all edges connecting
nodes in c.

3. If both pass, accept; otherwise, reject."

The Class NP

82

• Theorem 7.24: CLIQUE is in NP

• alternative proof using nondeterministic polynomial time
Turing machine

• NTM N for CLIQUE

 N = "on input <G,k>, where G is a graph:

1. Nondeterministically select a subset c of k nodes
in G.

2. Test whether G contains all edges connecting
nodes in c.

3. If yes, accept; otherwise, reject."

The Class NP

83

• example NP problems

• subset sum: given a collection of numbers x1, …, xk and a
target number t, determine whether the collection
contains a subcollection that adds up to t

 SUBSET-SUM = {<S,t> | S = {x1, …, xk} and for some
 {y1, …, yl} ⊆ {x1, …, xk}, Σyi = t}

• example: <{4, 11, 16, 21, 27}, 25> ∈ SUBSET-SUM
because 4 + 21 = 25

• note that {x1, …, xk} and {y1, …, yl} are multisets, so
elements can be repeated

The Class NP

84

• Theorem 7.25: SUBSET-SUM is in NP

• proof

• the subset is the certificate

• verifier V for SUBSET-SUM

 V = "on input <<S,t>,c>:

1. Test whether c is a collection of numbers that
sum to t.

2. Test whether S contains all the numbers in c.

3. If both pass, accept; otherwise, reject."

79 80

81 82

83 84

11/21/2024

15

The Class NP

85

• Theorem 7.25: SUBSET-SUM is in NP

• alternative proof using nondeterministic polynomial time
Turing machine

N = "on input <S,t>:

1. Nondeterministically select a subset c of the
numbers in S.

2. Test whether c is a collection of numbers that
sum to t.

3. If the test passes, accept; otherwise, reject."

The Class NP

86

• complements of these sets, CLIQUE and SUBSET-SUM
are not obviously members of NP

• verifying that something is not present seems to be
more difficult than verifying that it is preset

• separate class, coNP

• contains languages that are complements of languages
in NP

• unknown whether coNP is different from NP

The Class NP

87

• P vs. NP

• P = class of languages for which membership can be
 decided quickly

• NP = class of languages for which membership can be
 verified quickly

• quickly = polynomial time

• HAMPATH and CLIQUE are members of NP, but are not
known to be in P

• P and NP could be equal!

The Class NP

88

• P = NP is one of the greatest unsolved problems in
computer science
• if P = NP, any polynomially verifiable problem would be
polynomially decidable

• most researchers believe they are not equal because
much time has been spent trying to find polynomial
solutions to NP problems without success

• proving the classes are unequal is beyond scientific
reach, as it would entail showing that no fast algorithm
exists to replace brute-force search

• best deterministic method known for deciding languages
in NP uses exponential time, so we can prove

• but don’t know if NP is contained in a smaller class

The Class NP

89

• one of these possibilities is correct

NP-Completeness

90

• NP-complete problems are important because if a
polynomial time algorithm is found for one problem, all
problems in NP would be solvable in polynomial time

• this would show P = NP

• similarly, if any problem in NP is proven to require more
than polynomial time, all others would, too

• in general, most believe that P ≠ NP, so showing a
problem is NP-complete also suggests that no polynomial
time algorithm will be found

85 86

87 88

89 90

11/21/2024

16

NP-Completeness

91

• one of the simplest NP-complete problems is satisfiability

• Boolean variables connected with AND, OR, and NOT

• a Boolean formula is satisfiable if some assignment of
0s and 1s makes the formula evaluate to 1 (TRUE)

• e.g., for φ = (¬x  y)  (x  ¬z)

• x = 0, y = 1, and z = 0 satisfies φ

SAT = {<φ> | φ is a satisfiable Boolean formula}

SAT ∈ P iff P = NP

NP-Completeness

92

• polynomial time reducibility

• when A reduces to B, a solution to B can be used to
solve A

NP-Completeness

93

• polynomial time reducibility

• to test whether w ∈ A, use the reduction f to map w to
f(w) and test whether f(w) ∈ B

NP-Completeness

94

• polynomial time reducibility

• if one language is polynomial time reducible to a
language already known to be have a polynomial time
solution, we obtain a polynomial time solution to the
original language

NP-Completeness

95

• polynomial time reducibility
• Theorem 7.31: if A ≤p B and B ∈ P, then A ∈ P
• proof: let M be a polynomial algorithm deciding B and
let f be the polynomial reduction from A to B, then a
polynomial algorithm N decides A

 N = "On input w:
1. Compute f(w).
2. Run M on input f(w) and output whatever M

outputs. "

• f is a reduction from A to B, so w ∈ A when f(w) ∈ B
• M accepts f(w) whenever w ∈ A
• N runs in polynomial time because its stages do so

NP-Completeness

96

• 3SAT

• literal: Boolean variable (x) or negated Boolean variable

• clause: several literals connected with or’s ()

• conjunctive normal form (cnf): several clauses connected
with and’s ()

• example: (x1  ¬x2  ¬x3  x4)  (x3  ¬x5  x6)  (x3  ¬x6)

• 3cnf-formula: all the clauses have 3 literals

• example: (x1  ¬x2  ¬x3)  (x3  ¬x5  x6)  (x3  ¬x6  x4)

• if an assignment satisfies the formula, each clause must
contain at least one literal that evaluates to 1

3SAT = {<φ> | φ is a satisfiable 3cnf-formula}

91 92

93 94

95 96

11/21/2024

17

NP-Completeness

97

• Thm 7.32: 3SAT is polynomial time reducible to CLIQUE

• proof idea

• convert formulas to graphs

• in constructed graphs, cliques of a specified size
correspond to satisfying assignments of the formula

• structures in the graph are designed to mimic the
behavior of the variables and classes

NP-Completeness

98

• Thm 7.32: 3SAT is polynomial time reducible to CLIQUE
• proof
• let φ = (a1  b1  c1)  (a2  b2  c2)  …  (ak  bk  ck)
• the reduction f generates the string <G,k>
• nodes of G are organized into k groups of three nodes
each called triples t1, …, tk

• each triple corresponds to one of the clauses in φ
• each node in a triple corresponds to a literal in the
clause

• label each node in G with its corresponding literal in φ
• the edges in G connect all pairs of nodes except
• nodes in the same triple
• two nodes with contradictory labels, e.g., x2 and ¬x2

NP-Completeness

99

• Thm 7.32: 3SAT is polynomial time reducible to CLIQUE

• proof

• ex: φ = (x1  x1  x2)  (¬x1  ¬x2  ¬x2)  (¬x1  x2  x2)

• now show φ is satisfiable iff G has a k-clique

NP-Completeness

100

• Thm 7.32: 3SAT is polynomial time reducible to CLIQUE
• proof
• ex: φ = (x1  x1  x2)  (¬x1  ¬x2  ¬x2)  (¬x1  x2  x2)
• suppose φ has a satisfying assignment
• at least one TRUE in each clause

• select one TRUE literal in each triple
• if > 1, any OK

• these nodes form a k-clique
• k nodes – we choose one from each of k triples
• edges selected cannot violate exceptions
• cannot be from same triple since we selected only

one per triple
• no contradictory labels

NP-Completeness

101

• Thm 7.32: 3SAT is polynomial time reducible to CLIQUE
• proof

• ex: φ = (x1  x1  x2)  (¬x1  ¬x2  ¬x2)  (¬x1  x2  x2)
• suppose G has a k-clique
• no two of the clique’s nodes occur in the

same triple because no edges connect
nodes in the same triple

• each of the k triples contains exactly
one of the k-clique nodes

• assign truth values to variables of φ
so that each literal labeling a clique node is made TRUE
• always possible since contradictory nodes not connected

by an edge, and therefore won’t be in the same clique
• this assignment of variables satisfies φ because each

triple contains a clique node and hence each clause
contains a literal that is TRUE; hence, φ is satisfiable

NP-Completeness

102

• Theorems 7.31 and 7.32 tell us that if CLIQUE is solvable
in polynomial time, so is 3SAT

• remarkable since problems seem different

• polynomial time reducibility links their complexities

• CLIQUE is also NP-complete

97 98

99 100

101 102

11/21/2024

18

NP-Completeness

103

• Definition 7.34: A language B is NP-complete if it
satisfies two conditions:

1. B is in NP

2. every A in NP is polynomial time reducible to B

• Theorem 7.35: If B is NP-complete and B ∈ P, then P = NP

NP-Completeness

104

• Theorem 7.36: If B is NP-complete and B ≤p C for C in NP,
then C is NP-complete

• proof

• C is in NP (given)

• must show every A in NP is polynomial time reducible
to C

• since B is NP-complete, every language is polynomial
time reducible to B, and B is polynomial time reducible
to C

• if A is polynomial time reducible to B, and B to C, then
A is polynomial time reducible to C

• therefore, every language in NP is polynomial time
reducible to C

NP-Completeness

105

• once we have one NP-complete problem, we may obtain
others by polynomial time reduction

• establishing first NP-complete problem difficult

• start with SAT

NP-Completeness

106

• Theorem 7.37: SAT is NP-complete

• proof idea

• easy to show SAT in NP

• harder to show any language in NP is polynomial time
reducible to SAT

• need to construct polynomial time reduction for each
language A in NP to SAT

• reduction for A takes a string w and produces a
Boolean formula φ that simulates the NP machine for
A on input w

• if the machine accepts, φ has satisfying values

• otherwise, no satisfying assignment of values

• w ∈ A iff φ is satisfiable

NP-Completeness

107

• Theorem 7.37: SAT is NP-complete

• proof idea (cont.)

• constructing reduction to work in this way not
difficult

• but many details

• Boolean formulas contain AND, OR, and NOT

• similar to circuitry in computers

• hence, the fact that we can design a Boolean formula
to simulate a Turing machine should not be surprising

• this (long) proof is used to show the Cook-Levin
Theorem

NP-Completeness

108

• Corollary 7.42: 3SAT is NP-complete

• proof

• 3SAT is in NP

• need to prove all languages in NP reduce to 3SAT in
polynomial time

• could show SAT polynomial reduces to 3SAT

• instead, modify long proof to produce a formula in
conjunctive normal form with three literals per
clause

103 104

105 106

107 108

11/21/2024

19

Additional NP-Complete Problems

109

• NP-complete problems appear in many fields
• most naturally occurring NP problems are known to be
either in P or to be NP-complete
• for new problem, try to show NP-complete so that
time is not wasted trying to develop an algorithm that
may not exist

• to show languages are NP-complete
• show a polynomial time reduction from 3SAT to the
language

• other NP-complete problems could be used instead
• when constructing the reduction, look for structures
that can simulate variables and clauses in Boolean
formulas
• structures called gadgets

Additional NP-Complete Problems

110

• vertex cover

• G: undirected graph

• vertex cover: a subset of nodes where every edge of G
touches one of those nodes

• vertex cover problem asks whether a graph contains a
vertex cover of a specified size

 VERTEX-COVER = {<G,k> | G is an undirected graph that
 has a k-node vertex cover}

NP-Completeness

111

• Theorem 7.44: VERTEX-COVER is NP-complete

• proof idea

• show that is in NP and all NP-problems are polynomial
reducible to VERTEX-COVER

• first part: a certificate is simply a vertex cover of
size k

• second part: show 3SAT is polynomial time reducible
to VERTEX-COVER

•convert 3cnf-formula φ into a graph G and a
number k, so that φ is satisfiable whenever G has a
vertex cover with k nodes

•G simulates φ

NP-Completeness

112

• Theorem 7.44: VERTEX-COVER is NP-complete

• proof

• graph from reduction produced from

 φ = (x1  x1  x2)  (¬x1  ¬x2  ¬x2)  (¬x1  x2  x2)

NP-Completeness

113

• other NP-complete problems

• Theorem 7.46: HAMPATH is NP-complete

• Theorem 7.55: UHAMPATH is NP-complete

• Theorem 7.56: SUBSET-SUM is NP-complete

109 110

111 112

113

	Slide 1: Chapter 7 Time Complexity
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113

