
Pattern Search Behavior in Nonlinear

Optimization

A thesis submitted in partial fulfillment of the requirements for a

Bachelor of Science with Honors in Computer Science

from the College of William & Mary in Virginia,

by

Elizabeth D. Dolan

Accepted for

Thesis Advisor:
Virginia J. Torczon

Stephen K. Park

Michael W. Trosset

1 Acknowledgments

My investigations were made possible through the help and support of a number of

individuals. Michael Lewis, Michael Trosset, and Steve Park gain my much deserved

appreciation for their contributions mentioned within the text and for their time

spent with me discussing problems small and large. I want here especially to thank

friends not mentioned elsewhere. Lisa, Brian, Chris, and Sean helped me by read-

ing through the thesis with me line by line, engaging in long discussions of pattern

searches, plotting tedious graphs for me when I was running up on deadlines, and just

being generally supportive. Their behind-the-scenes contributions kept me sane and

motivated. Another individual who I have never met has earned my gratitude and

respect: Danny Thorne at the University of Kentucky. I emailed him out of the blue

after finding a reference on one of his old web pages to a function that had become

a stumbling block to my work. He responded the following day with the answer and

the explanation for the problem I was having, and I want to thank him for his act of

kindness to a stranger. And Virginia Torczon, for all of your patience, wisdom and

good humor, someday I’d like to take you to Beethoven’s Inn.

2

Contents

1 Acknowledgments 2

2 Motivation 7

3 Theory Defining A Pattern Search 9

4 Pattern Search Implementation Suite 10

4.1 Pattern Search Base Class . 11

4.2 CompassSearch . 14

4.3 NLessSearch . 15

4.3.1 Constructing the NLess Pattern 15

4.4 The Hooke and Jeeves Pattern Search 17

4.5 Optimism in Hooke and Jeeves – Birth of EdHJ Search 18

5 Test Functions 21

6 Test and Implementation 22

6.1 Creating the Test Functions . 24

7 Results 25

7.1 Halting Criteria . 28

7.1.1 Variance vs ∆ . 32

7.1.2 Simplex Gradient vs ∆ . 33

7.1.3 Summary . 33

7.2 Numerical Error in the HJ Search . 34

3

7.2.1 History . 35

7.2.2 Example . 36

7.2.3 Explaining the Error . 37

7.2.4 The Simple Fix . 40

7.2.5 Regarding the Theory . 41

7.2.6 Further Observations . 42

8 Further Study 42

9 Displays of Results 49

9.1 Halting Criteria . 49

9.2 Efficiency . 51

9.3 Function Value Accuracy . 59

9.4 Distance From the Optimum . 68

10 Source Code 77

10.1 Source Code for Generating Test Parameters 77

10.1.1 objective.h . 77

10.1.2 objective.cc . 77

10.2 Source Code for Pattern Search Base Class 80

10.2.1 PatternSearch.h . 80

10.2.2 PatternSearch.cc . 81

10.3 Source Code for Derived Classes . 86

10.3.1 CompassSearch.h . 86

10.3.2 CompassSearch.cc . 87

4

10.3.3 NLessSearch.h . 89

10.3.4 NLessSearch.cc . 90

10.3.5 HJSearch.h . 93

10.3.6 HJSearch.cc . 93

10.3.7 EdHJSearch.h . 96

10.3.8 EdHJSearch.cc . 96

List of Figures

1 A simple example of pattern search 11

2 Building the NLessSearch Pattern from a Regular Simplex 16

3 HJSearch Behavior At ∆ Reduction 19

4 Halting tolerance Values . 22

5 HJSearch Numerical Error—first signs of trouble 38

6 HJSearch Numerical Error—the final bog down 39

7 Hooke and Jeeves Search and Edited Hooke and Jeeves Search. . .

0 in two variables and trial 9 in five variables 52

8 trial 0 and trial 1 in two variables . 52

9 trial 2 and trial 3 in two variables . 52

10 trial 4 and trial 5 in two variables . 53

11 trial 6 and trial 7 in two variables . 53

12 trial 8 and trial 9 in two variables . 53

13 trial 0 and trial 1 in three variables 54

5

14 trial 2 and trial 3 in three variables 54

15 trial 4 and trial 5 in three variables 54

16 trial 6 and trial 7 in three variables 55

17 trial 8 and trial 9 in three variables 55

18 trial 0 and trial 1 in four variables . 55

19 trial 2 and trial 3 in four variables . 56

20 trial 4 and trial 5 in four variables . 56

21 trial 6 and trial 7 in four variables . 56

22 trial 8 and trial 9 in four variables . 57

23 trial 0 and trial 1 in five variables . 57

24 trial 2 and trial 3 in five variables . 57

25 trial 4 and trial 5 in five variables . 58

26 trial 6 and trial 7 in five variables . 58

27 trial 8 and trial 9 in five variables . 58

List of Tables

1 Stopping Criteria vs Function Value (with correct digits in red) 30

2 Stopping Criteria vs Function Value (with correct digits in red) 31

6

2 Motivation

Pattern searches have existed since at least the 1950’s [4], but their heuristic approach

to optimization had not been taken seriously until the recent development of math-

ematical theory supporting their use. Now that researchers have shown that pattern

search algorithms do converge globally [18, 13], the goal of this project is to study the

algorithms’ behavior through the process of implementation and experimentation.

The results should help scientists in many fields to make informed decisions when

considering available optimization methods.

In the course of my investigation, I have studied several pattern search algorithms,

the convergence theory behind them, and the problems for which they are most appli-

cable. I have implemented three of the standard sequential pattern search algorithms

as well as two of my own variations developed in response to my curiosity about

these algorithms and the flexibility afforded by the convergence theory. I have per-

formed extensive tests to study the efficiency and accuracy of these methods and have

noted some of the obstacles inherent in creating a reasonable testing model. I have

also examined multiple halting criteria commonly advocated for pattern searches and

compared their abilities to track improvement in the function value. I have ferreted

out numerical error that can arise in direct implementation of the canonical pattern

search algorithm [8], explained the ways in which the error is generated within the

algorithm, and shown the relationship between this issue of implementation and the

convergence theory. While these investigations have raised more questions in my

mind than they have answered, I have tried to establish a positive precedent for the

7

further study of the practicality of pattern search optimization methods.

While the theory supporting pattern search convergence has been improving

steadily, proponents of pattern search methods have little numerical evidence to

substantiate the corresponding theoretical results. Specifically lacking have been

implementations of some of the most basic methods in their sequential forms. Be-

cause many pattern searches appeal to the user’s common sense in their strategic

simplicity, over the years, programmers have produced straightforward implementa-

tions of what can now be classified as pattern search methods; however, few of these

implementations can be found in published form. Also, no suite of pattern search

implementations exists under a single umbrella for ease of comparison, probably for

the simple reason that research into the convergence of these algorithms has only

recently provided a description of the necessary and sufficient attributes that classify

a search as a pattern search with the accompanying convergence guarantees. The

optimization community now has the resources to determine whether an algorithm

qualifies as a pattern search and to maintain the framework of pattern searches while

gearing methods toward solving particular kinds of problems. In response to the need

for basic sequential implementations, as well as the desire for a foundation that may

be extended easily to create a variety of pattern searches, I have implemented a basic

pattern search suite using C++ classes.

8

3 Theory Defining A Pattern Search

Pattern searches minimize a real-valued function,

minimize f(x), where x ∈ Rn.

Assume the continuous differentiability of the function on an open neighborhood of

the compact level set L(x0) ⊂ Rn where L(x0) = {x : f(x) ≤ f(x0)}, and x0 is the

initial point at which the search begins. Problems for which pattern searches would

be most applicable include ones for which reliable derivative information cannot be

obtained.

Pattern search algorithms direct the search for a minimum through a pattern

containing at least n + 1 points per iteration, where the vectors representing the

direction and distance of each point relative to the current iterate form a positive

basis in Rn. Any set of positively independent vectors that positively span the search

space provides a positive basis. Other vectors may be included in the pattern as

trial steps in addition to those forming the positive basis, allowing for a fair amount

of flexibility in devising a search pattern. Further, an iteration of a pattern search

algorithm may require as few as one function evaluation because the search requires

only simple decrease to accept a new point. In that way even large patterns may be

used sparingly.

The lengths of trial steps may change between iterations, but the location of

the trial points relative to one another must maintain a particular structure. That

is, each trial point in the pattern lies on a vertex of a rational lattice or grid, as

does the current iterate. The term rational lattice reflects the requirement that the

9

distance between vertices remain a rational factor of the initial search step length, ∆0,

specified by the user. In this way, restrictions on the trial steps replace the conditions

of sufficient decrease usually imposed to prove global convergence for optimization

methods.

An iteration of a pattern search algorithm calls for a comparison of the objective

function values of at least some subset of the points in the pattern to the value

of the function at the current iterate. At each iteration either a comparison shows

improvement (simple decrease) in the function value and the improving point becomes

the new iterate or no decrease in value is found at any point in the pattern. In the

latter case, the scale factor of the lattice is reduced so that the next iteration continues

the search on a finer grid. Typically, this process continues until the resolution of the

grid is deemed fine enough for the user. A discussion of various stopping criteria and

their effectiveness in signaling appropriate termination appears later in section 7.1.

For further insight into the details of the convergence theory not presented here, I

refer the reader to either [18] or [13].

4 Pattern Search Implementation Suite

I have included a visual of a simple pattern search in Figure 1 to help illustrate

the algorithmic concepts discussed with the implementation. In this example of a

CompassSearch, the search makes exploratory moves from the current iterate xk to

trial points in the coordinate directions. The trial steps are based on the length of ∆

and step across the theoretical rational lattice. If these exploratory moves locate no

10

improving points, the iteration is deemed unsuccessful or failed; and the size of ∆ is

scaled back to allow for a refinement of the search lattice. The search halts when ∆

falls below a predefined tolerance value.

xk

∆
︷ ︸︸ ︷

Figure 1: A simple example of pattern search

4.1 Pattern Search Base Class

My suite of PatternSearch software takes advantage of the class structure of C++

by deriving four separate searches from one base class. The simple CompassSearch

executes a form of coordinate search. The minimal positive basis NLessSearch ex-

plores the flexibility in the convergence theory. An implementation of the original

“pattern search” algorithm by Hooke and Jeeves [8], called HJSearch, and an edited

version of the Hooke and Jeeves method I have devised, called EdHJSearch, join

the other searches in that they all call procedures introduced in their parent class,

PatternSearch. The PatternSearch class is intended to provide programmers with

the tools to create a variety of simple and complex pattern searches.

The PatternSearch base class attempts to ease the creation of future pattern

search software in two ways: first by providing some default data types and functions

and second by requiring that the programmer implement the pure virtual function,

11

ExploratoryMoves, as a necessary component of any pattern search algorithm. By

implementing a base class and encouraging derived classes to use the same name for

the most basic general function inherent to all pattern searches, I also simplify my

testing implementation. The symmetry of the user’s required object declarations and

function executions allows for readability and ease of implementation.

While many successful implementations of pattern searches do not store their

patterns in a rigid structure, I provide for the possibility of using direct matrix-like

storage of the pattern vectors by declaring as a private data member a pointer to

an optional array of rml Vectors, the vector class objects I have gratefully inherited

and modified from the work of Dr. Robert Michael Lewis [12]. Search classes of

my own implementation that make use of this structure include CompassSearch and

NLessSearch. The accompanying functions for use with explicitly stored patterns

are optional in the sense that their implementation is not required (although default

implementations have been provided).

As the algorithm first coined a “pattern search” by Hooke and Jeeves exemplifies,

patterns of an amorphous nature may also prove successful without the rigidity of a

stored pattern matrix. My own twist on the original Hooke and Jeeves algorithm,

EdHJSearch, advocates an even more dynamic pattern that adjusts in response to

successful and unsuccessful exploratory moves.

The common feature of any optimization method lies in its need to interface

with a function supplied by the user. The information this suite absolutely requires

includes the dimension, n, of the search space, a function returning an initial iterate

x0, and a function f(x) to return values for given x ∈ Rn. My format for passing

12

arguments to this last function is derived mostly from the structure required by the

NEOS server [6, 7]. The Network-Enabled Optimization System (NEOS) at Argonne

National Laboratory provides an existing interface on the Web, currently located

at http://www-unix.mcs.anl.gov/neos/Server/, that allows people access to various

optimization implementations. I structure the arguments to my user functions after

theirs except that I also require a success flag in the call to evaluate the function

f(x). The success flag allows for the possibility of a function subroutine failing for

certain choices of x so that a search would not necessarily be crippled by the absence

of data at one, possibly unimportant, point.

Additionally, I offer optional variables for the user to specify, including the initial

choice of ∆; a limit on the number of function calls allowed such that the search will

halt when the number has been exceeded upon a call to the PatternSearch::Stop

function; and the desired stopping tolerance so that the search will not proceed

once ∆ has been reduced below tolerance. I refer to these variables as optional,

not because I do not mean for them to be provided by the user, but because I have

provided default definitions in case the user knows so little about the function that

they do not care to hazard a guess as to appropriate choices. My initial step length

is 1.0, and the default value for tolerance is approximately equal to the square root

of machine epsilon. The search is designed to run indefinitely if the user provides no

limit on the number of objective function calls and the search fails to halt on ∆. As I

will discuss in section 7, my test results support the practicality of halting the search

when ∆ falls below the value of tolerance; users may need (or wish) to experiment

with other variable values to obtain the accuracy they desire.

13

Indeed, the stopping mechanism plays a crucial role in implementing a convergent

pattern search, as is standard in nonlinear optimization. There are many possi-

ble and debated options for this key aspect of any pattern search. Choices include

testing the simplex gradient of the pattern trial points [3] or measuring the vari-

ance in the function values returned at those points [15] as well as tracking ∆. The

PatternSearch::Stop function’s declaration reads virtual so as to leave room for

varying interpretations in use, yet all of my class implementations halt based on the

size of ∆ as a reflection of the mesh resolution. Experimentation with some of the

alternative stopping criteria serve to justify this choice, as related in section 7.1.

4.2 CompassSearch

The CompassSearch implementation represents a simple form of coordinate search.

The storage of the pattern remains explicit throughout the search in that the pattern

pointer provided in the PatternSearch base class points to an array of 2n rml Vector

pointers. The private data member representative of ∆ plays a direct role as the

scaling factor of the pattern. The search adds the vectors in the pattern to the

current iterate in the order they are stored so that the components of the current

iterate are first shifted by ∆ and then by −∆ to obtain the trial points, as illustrated

in Figure 1, where the solid circle indicates the current iterate and the open circles

indicate the four possible moves (N,S,E, W) possible in R2.

If the search finds simple decrease at any trial point, the exploratory move relo-

cates the current iterate to that trial point and begins a new iteration. Otherwise, an

iteration finding no improvement after trying all 2n points in the pattern multiplies

14

∆ by a relatively conservative scaling factor of 0.5 (the scaling factor 1/2 is used in

all of my search implementations) and begins another iteration with this new trial

step length.

4.3 NLessSearch

The NLessSearch implementation seeks to take advantage of the insight provided by

the sufficient conditions for a positive basis [14]. These conditions determine that a

minimal positive basis may be formed with only n + 1 vectors (n − 1 less than that

of a CompassSearch). It would be easy to build a minimal positive basis by first

choosing the n unit coordinate vectors. The final vector in the pattern would then be

the vector (−1,−1, . . . ,−1)T . Because I feel that this approach would bias the search

in favor of optima lying in the positive coordinate directions relative to the current

iterate, I invest in the extra computational effort of building a minimal positive basis

where the angles between any two unique vectors are equal. For insight into creating

this type of pattern, I turn to the discussion on building a regular simplex in [9].

4.3.1 Constructing the NLess Pattern

A simplex is a set of n + 1 points in Rn (e.g. a triangle in R2, a tetrahedron in R3,

etc.). A regular simplex is a simplex with edges of equal length (e.g. an equilateral

triangle in R2). A method for creating a regular simplex starting from one initial

vertex as a base point is given in [9]. The difficulty from there lies in restructuring

the creation of the simplex so that it may be built relative to a given centroid that

represents the initial point of the search, rather than being constructed relative to

15

one of the vertices. The n + 1 pattern vectors from the centroid to each vertex of the

simplex must also have length ∆.

To construct a centroid-based pattern, I calculate the location of the base vertex

for the simplex algorithm in [9] given that each component of the centroid, x0, should

represent the average of the corresponding components of the simplex vectors. Having

shifted the base vertex of the simplex appropriately relative to my initial iterate x0,

I may then follow the algorithm in [9], subtracting the centroid from each vector to

create a pattern of vectors from the centroid to the vertices of the simplex. I then scale

the vectors to length ∆ as a separate subprocess. I have rendered a general notion of

the transition applied through this process in Figure 2, showing the transformation

from an algorithm for a regular simplex to one for a minimal basis pattern in two

dimensions. The C++ code to accomplish this task is given in section 10.3.4.

Vertex - Based Simplex

Centroid-Based Pattern

Figure 2: Building the NLessSearch Pattern from a Regular Simplex

The most striking feature of the NLessSearch is, of course, that it employs the

smallest possible number of function evaluations per standard iteration through the

pattern. I have attempted to respond to the open question of whether a pattern search

that requires fewer total function evaluations per iteration (in the worst case) might

prove more efficient than a pattern search with more trial points in the pattern. The

16

results of my tests comparing the numbers of function evaluations required amongst

various pattern search implementations will be presented in section 7. Whether an

NLessSearch might reveal benefits other than efficiency remains a topic for future

investigation.

4.4 The Hooke and Jeeves Pattern Search

The Hooke and Jeeves pattern search algorithm [8] represents the first search I imple-

mented that includes a sense of search history. This search augments its knowledge

of the objective function’s behavior by adapting the first trial step of an iteration in

response to successful trial steps in the previous iteration. That adapting step, which

I will refer to as the pattern extending step1, serves to imbed in the algorithm a sense

of iteration history.

When first playing with iterative direct search methods by hand, I applied the

description of the original pattern search method of Hooke and Jeeves found in [5]

with help from the explanations in [1]. The essence of the search is as follows. From a

starting base point b1 with function value f1, the search increases the first component

of the b1 vector by some step length ∆. If simple decrease in the function value is

found, this trial point becomes the current iterate and the search continues on the

next component of b1. If no decrease appears, then the next trial point is formed by

subtracting ∆ from that component of b1. Again, if improvement is found at the trial

point, the trial point becomes the current iterate of the search. Whether or not the

1Hooke and Jeeves simply call it the pattern step, but I want to avoid confusing it with a trial

step in the search pattern.

17

current iterate relocates for each b1 component, the process continues for all of the

dimensions of the search space.

Upon completion of the coordinate search on all of the dimensions, the current

iterate becomes the base point b2 with its value f2. If f2 < f1, a pattern extending

step relocates the current point to 2b1 − b2. This new point acts as a temporary

base point in the sense that it becomes the current iterate whether or not its value

is less than f2. The HJSearch carries out a coordinate search in all dimensions as

described above relative to the temporary base point, btemp. If, at the conclusion of

the coordinate search about btemp, the value of the current iterate is less than f2,

then the current iterate becomes b3 with value f3; and a pattern extending move is

made to 2b3 − b2, where the search continues. If, however, the current value at the

termination of the coordinate search about btemp fails to improve on f2, the extending

move is judged a failure, b2 becomes the current iterate, and the HJSearch conducts

a coordinate search about b2. If at any time a coordinate search about a permanent

base point yields no improvement, ∆ is reduced to apply another coordinate search

to the base point. The Hooke and Jeeves algorithm continues until some halting

criterion is met.

4.5 Optimism in Hooke and Jeeves – Birth of EdHJ Search

I consider the algorithm presented by Hooke and Jeeves to be a transformation of

the traditional coordinate search based on intuitive ideas about the behavior of many

functions. Achieving greater efficiency through a pattern extending step relies on the

premise that if one step in a particular direction produces function decrease, then

18

Unsuccessful Iteration Return to Failed Point

AA B

E

C F

D

GC

D

E

B

Figure 3: HJSearch Behavior At ∆ Reduction

another step in that direction might produce more still. The intuition that motivates

the Hooke and Jeeves pattern extending step is that if improvement is seen moving

from bk to bk+1, the step should be doubled to produce btemp. The search continues

on the assumption that the first improving direction it finds is golden even if the

move to btemp initially yields no decrease. The search discards the pattern extending

move to btemp only after a coordinate search about btemp fails to improve further upon

the value found at the base point bk+1. My results in section 7 make clear that these

intuitive notions provide valuable alterations to the search algorithm on the functions

I tested. The optimism inherent in the pattern extending step and the amorphous

pattern structure it introduces seem to steer sequential pattern searching in a healthy

direction.

One insight into the Hooke and Jeeves pattern search algorithm that first occurred

to me as I drew examples of the method on graph paper seems out of character

with the search’s intuitive foundation. As shown in Figure 3, after an unsuccessful

iteration, typically ∆ is reduced by a factor of 1/2. At the next iteration, the pattern

19

extending step may then return the search to a trial point whose lack-luster function

value has already been evaluated and discarded. In the example shown in Figure 3,

the search finds improvement at point G after contracting the step size from the

previous iteration. The search then takes a pattern extending step to point C, which

was already determined to be an unpromising step during the preceding iteration.

Intuitively, the search has already established that the coordinate directions about

the current iterate fail to show promise before the search contracts ∆. Thus it makes

little sense to focus on immediately moving away from the most promising point in

that smaller neighborhood, especially when the temporary base point reached by the

pattern extending step may have a larger function value than the current base point.

I have extended the original Hooke and Jeeves algorithm in an edited version,

EdHJSearch, that allows the search to learn from failed iterations as well as successful

ones. In their same spirit of optimism, I have applied the method’s fundamental

behavior to hoping that if we are reducing ∆, we are in the neighborhood of the

minimum and should focus out current search on that neighborhood. A move outside

of that immediate neighborhood is allowed only if the next iteration after a contraction

finds an improving trial step away. My edited version, EdHJSearch, thus omits the

pattern extending step directly after a reduction in ∆. This is instrumented via a flag

that tracks whether the previous iteration contracted ∆ (i.e. reduced ∆ by 1/2). The

results of EdHJSearch, as discussed further in section 7, have borne out my hopes for

improved search efficiency.

20

5 Test Functions

I have followed the suggestion of Dr. Michael Trosset of creating random convex

quadratics for my objective functions. While I would like to experiment with more

general functions at a future date, I have discovered that the numerous advantages

of quadratic functions far exceed my earlier expectations.

By creating my own random quadratic functions I am able to address issues of

accuracy as well as efficiency, which moves beyond the initial scope of my testing

plans. Bearing in mind the simple form of a quadratic

f(x) = xT Ax + bT x + c,

if I set b = 0 and record the value of c as one distinguishing characteristic for refer-

encing amongst tests, I am able to proceed with the knowledge that the real location

of the optimum x∗ is at the origin and that f(x∗) is equal to the value of c. With

this knowledge, I am able to compare the results produced by the different pattern

searches with the known answer and then compare the experimental accuracies among

searches. Comparing the true theoretical and experimentally returned function val-

ues becomes a matter of a single subtraction followed by a possible change of sign

to obtain the absolute difference. In retrospect, this process would have been one

floating point operation shorter had I set c to zero along with b. However, even as

such, the rounding error remains negligible. Since x∗ is at the origin, I can assess the

quality of the solutions returned by my experiments simply by taking the 2-norm of

the experimental result. The version of a 2-norm function found in my code comes

from an f2c conversion of the LAPACK function dnrm2.f. Through these means I

21

attempt to conserve as many significant digits of the experimental result as possible

while carefully measuring its accuracy.

6 Test and Implementation

I have constructed one main testing program, which I execute in ten separate trials

to measure the searches’ efficiency and accuracy. The dimensions of the search spaces

for testing range from two to five inclusive. Each of the ten trials generates ten

thousand sets of testing parameters per testing dimension, using a separate stream

of pseudo-random numbers for each of the three parameters. The testing parameters

include the quadratic objective function, the initial delta length ∆0, and the starting

point x0 for each repetition of the testing loop. Each of the ten trials uses the same

ten thousand sets of test parameters, and each parameter set remains constant for

testing each of the four pattern searches: CompassSearch, NLessSearch, HJSearch,

and EdHJSearch. The distinguishing characteristic between trials is the value of the

halting tolerance, decreased between trials as shown in Figure 4.

Figure 4: Halting tolerance Values

trial 0 3.12500000000000e − 02 trial 5 9.53674316406250e − 07

trial 1 3.90625000000000e − 03 trial 6 1.19209289550781e − 07

trial 2 4.88281250000000e − 05 trial 7 3.72529029846191e − 09

trial 3 6.10351562500000e − 05 trial 8 1.16415321826935e − 10

trial 4 7.62939453125000e − 06 trial 9 3.63797880709172e − 12

I track and store the number of function calls required by each search, the function

value returned as the minimum, and the point returned as the optimum. I record

22

the initial iterate of the search, whose components are randomly generated from a

normal distribution with a mean of zero and a standard deviation of one, and the

∆0 value, which is generated from an exponential distribution with a mean of one.

While the number of function evaluations alone can be used to compare relative

efficiency, measuring accuracy for the functions I create requires that I store the

constant term c, which represents f(x∗). Along with the H matrices, I also store

the initial seeds used to generate the matrices, initial points, and initial step lengths

from their respective random number streams. Because I then have easy access to

this information, I have been able to replicate individual runs from amongst the ten

thousand by simply reseeding the random number streams. This test structure proved

invaluable in tracking the numerical error I discuss in section 7.2.

The implementation of my test program relies on the use of streams of randomly

generated numbers from the pseudo-random number generator library rngs and the

random variate generator library rvgs I obtained from Steve Park [16, 17]. I gener-

ate new test parameters within both the objective function implementation and the

function for retrieving an initial point, as well as within the main body of the test

program. In my software, I rely on the presence of global variables to signal these

function implementations of the need to generate new testing parameters. Although

the use of global variables is discouraged in C++, I feel that the test structure must

communicate via global variables. As an example of PatternSearch use, my test

program should not require the restructuring of the arguments passed to the objec-

tive function and starting point returning function or the overloading of success flags

because I mean for the function calls here to demonstrate their actual use. Dynamic

23

user functions, while invaluable for systematic testing, fail to represent common usage

of pattern search methods.

6.1 Creating the Test Functions

When the evaluation of the aforementioned global variables within the call to my

dynamic objective function signals the creation of a new quadratic function, the

function fills an (n + 2) × n matrix, denoted H, with the random numbers returned

from calls to a Normal random variate with a mean of zero and standard deviation of

one. The positive constant term, c, is generated as an Exponential random variate

with a mean of one [16, 17]. Computing

f(x) = xT HT Hx + c,

upon subsequent calls to the function implements a positive semi-definite quadratic

function.

By filling the H matrix to create the matrix A where A = HT H, I avoid biasing

f(x) in favor of search patterns based solely on steps in the coordinate directions.

Therefore, simple searches such as CompassSearch and even the core patterns of more

complicated Hooke and Jeeves searches gain no unfair advantage over, for example,

NLessSearch. The intent of implementing a quadratic function in this manner is

to represent the behavior of the neighborhood of the solution of a general objective

function translated to the origin. In that sense, I hope that the results of experiments

on quadratic functions can add to the understanding of the local behavior of pattern

searches when applied to more general functions.

I have added CleanSlate member functions to each of the search classes. The

24

CleanSlate function erases all traces of a previous search and allows a new search

to begin without necessarily declaring a new search class object. The testing may

proceed on a search algorithm using a particular initial step length, starting point,

and objective function only to have all of those parameters replaced in the next

repetition of the test loop without losing track of dynamically allocated memory,

allowing time—rather than memory—to act as the only barrier on the number of test

trials.

7 Results

Much of the data I have obtained from these experiments2 is richly complex in form.

I can make a few simple analytic statements, but other factors require more exact

study of the trends revealed in the data.

I can say that for my test functions the EdHJSearch consistently requires the

smallest average number of function calls in all dimensions and with all choices of

tolerance, with the HJSearch running a close second. Halting on most restric-

tive choices of tolerance (on the order of 10−5 or less for these tests) leaves the

NLessSearch with the highest average total of function calls, but the less exacting

stopping criteria leave little distinction between the efficiency of NLess and Compass

searches. Asymptotically, the searches finish in terms of function calls in the order

EdHJSearch, HJSearch, CompassSearch, and NLessSearch. The median efficiency

behavior of the searches adds even more interest to the results as graphically displayed

2Experiments were run on a Pentium II-400 MHz with 384 MB RAM - SDRAM DIMMs and

a 512K L2-Cache with the Intel 440 BX Chipset, running Linux version 2.0.35 and compiling the

C++ programs with g++ version 2.7.2.3.

25

in section 9.2. I have also run the experiments with the crude time estimates provided

by Unix timing commands. While I hesitate to print these—at best—approximate

times, the time required by each of the searches maps to the required number of

function calls, which reinforces the point that the dominant computational cost for

a pattern search lies in the evaluation of the function. The enhanced performance

provided by my editing of the Hooke and Jeeves algorithm heartens me, and I would

like to examine further the possibilities of adjusting pattern models.

The notion that decreasing the total number of function calls required before

determining that the conditions for a decrease in ∆ have been met might decrease

the total number of function calls required by the algorithm proves false, on average,

for my tests. While the NLessSearch is most efficient for some quadratic functions

and starting points, these cases appear to be exceptional. Imagine, for example, a

case where the location of the optimum relative to the initial iterate lies nearly in

the direction of one of the pattern vectors. Then the NLessSearch may have an

advantage over a coordinate-based search in that it would hone in on the minimum

with each iteration while the coordinate search would need to stair step across and

back over multiple iterations. Indeed, the NLessSearch appears to fare better than

the CompassSearch in terms of the number of function calls when the choice of

tolerance remains relatively large for small numbers of dimensions. The difference

in the accuracies obtained by CompassSearch over NLessSearch in those trials may

help to shed some light on the true value of requiring less functions calls, though,

as shown in sections 9.3 and 9.4. Beyond the second trial (with tolerance = 10−4)

in any dimension, the CompassSearch gains in average efficiency with its 2n vectors

26

over the n + 1 vectors of the NLessSearch without compromising accuracy.

The results that come as the greatest surprise to me involve the accuracy of the

different searches. My original records of the returned function values and optima

arose as a method of verifying that I had implemented the searches correctly. As I

began to notice particular trends in that data, however, I decided to maintain more

extensive data sets. Because the interval estimates in sections 9.3 and 9.4 cannot

isolate a clear winner in terms of accuracy (owing largely to the variance in the

simplex pattern searches), I have computed Hotelling’s T 2 test statistics for the data

from trial 8 under the guidance of Michael Trosset, who has analyzed the statistics

for significance. First of all, the Hooke and Jeeves searches require not only the

least number of function calls but also produce the best average accuracy for small

tolerance to a highly significant extent. While Dr. Trosset cautions that statistical

significance does not equate to importance, I still find it fascinating that the Hooke

and Jeeves searches can return an order of magnitude improvement on the accuracy in

some cases, especially since they require the least total number of function evaluations.

I would caution the reader, however, that the Hooke and Jeeves searches only

show improved accuracy over the others with smaller tolerance values. Specific

to my tests, the distinction only becomes relevant beyond trial 3, where tolerance

= O(10−5). In section 9, I include extensive tables of the results to illustrate the

patterns created by the accuracy trends.

27

7.1 Halting Criteria

The halting criteria represent probably the least well-defined aspect of a pattern

search. My searches all halt based on the length of ∆ as a reflection of the re-

finement of the lattice. Finding ∆ incurs no additional computational cost to the

pattern searches and comparing it to some predefined halting tolerance proves to

be a reliable signal for termination.

Another common criterion for a direct search [15] involves calculating the variance

among the function values found at all of the trial steps in an iteration. I calculate

the variance

σ2 =

∑l
i=0(f(xi) − µ)2

l
,

where µ equals the average function value in the iteration and n + 1 ≤ l ≤ 2n is the

length of the core pattern, via Welford’s algorithm. The search then halts when this

variance falls beneath a predetermined threshold.

A third proposal, found in [3], involves halting on a sufficiently small simplex

gradient D(f : S) = V −T δ(f : S), where x1, . . . , xn+1 denote the n + 1 vertices of an

n-dimensional simplex S,

δ(f : S) =

f(x2) − f(x1)

f(x3) − f(x1)

...

f(xn+1) − f(x1)

and

V (S) = (x2 − x1, x3 − x1, . . . , xn+1 − x1)

28

= (v1, v2, . . . , vn).

S must be a nonsingular matrix with vertices {xj}
n
j=1 for the simplex gradient to be

well-defined. I have applied this idea to the simple CompassSearch pattern, with its

2n vectors, for comparison with the other two stopping criteria.

I include calculations of the variance and simplex gradient just before the point

in the code where ∆ will be reduced due to an absence of improvement at all trial

steps in the iteration. The convergence theory guides the choice of this placement

to the one point where theoretical results may be applied to the current iterate and

stopping criteria. In this manner, I may examine the behavior of the variance and

the simplex gradient relative to ∆ and the function value of the current iterate. It

should be noted that my searches still halt when ∆ has fallen below tolerance; the

other calculations were only made for comparison.

Two representative examples of the results in two dimensional CompassSearch

tests are shown in Tables 1 and 2. Table 1 presents the results for the objective

function with

H =

−1.2139420049718712 1.4996742225832957

−1.2143611698729968 −1.4711004206481226

−0.0592565088141217 −1.7023524789549154

0.1534197890377110 −0.2318145721980239

where the constant term c = 0.0297737224361487. The initial size of ∆ for the first

example is 2.5014767071524533, and the randomly generated initial iterate is

29

Table 1: Stopping Criteria vs Function Value (with correct digits in red)
variance simplex gradient ∆ function value

3.0780276899464747 2.8564077075567220 0.7379498442749530 2.4314866861505493
0.0840886692951946 0.4587722065355163 0.3689749221374765 1.5908180895957142
0.0034923677292313 0.0335358610519773 0.1844874610687383 1.4773040257429713
0.0009624353196831 0.3867907025135328 0.0922437305343691 1.4772932399797003
0.0000198901150653 0.0895411558448952 0.0461218652671846 1.4704383882086089
0.0000028553411229 0.0895411558448976 0.0230609326335923 1.4704383882086089
0.0000000607727084 0.0146150464379905 0.0115304663167961 1.4697557553897906
0.0000000069229129 0.0146150464379905 0.0057652331583981 1.4697557553897906
0.0000000003717269 0.0041164809137459 0.0028826165791990 1.4697238142244098
0.0000000000128574 0.0014031259841643 0.0014413082895995 1.4697199463307293
0.0000000000011952 0.0014031259840873 0.0007206541447998 1.4697199463307293
0.0000000000001726 0.0014031259839332 0.0003603270723999 1.4697199463307293
0.0000000000000044 0.0002324055244136 0.0001801635361999 1.4697198389374599
0.0000000000000003 0.0001125699065903 0.0000900817681000 1.4697198337782784
0.0000000000000000 0.0000599178070629 0.0000450408840500 1.4697198322913623
0.0000000000000000 0.0000263260460663 0.0000225204420250 1.4697198320181937
0.0000000000000000 0.0000167958854282 0.0000112602210125 1.4697198319006213
0.0000000000000000 0.0000047650704594 0.0000056301105062 1.4697198318958682
0.0000000000000000 0.0000060153976247 0.0000028150552531 1.4697198318823599
0.0000000000000000 0.0000060154370635 0.0000014075276266 1.4697198318823599
0.0000000000000000 0.0000014421967569 0.0000007037638133 1.4697198318803744
0.0000000000000000 0.0000000946530359 0.0000003518819066 1.4697198318802809
0.0000000000000000 0.0000007685826514 0.0000001759409533 1.4697198318802656
0.0000000000000000 0.0000001400864931 0.0000000879704767 1.4697198318802380
0.0000000000000000 0.0000001388244526 0.0000000439852383 1.4697198318802380
0.0000000000000000 0.0000000858187525 0.0000000219926192 1.4697198318802374
0.0000000000000000 0.0000000302889715 0.0000000109963096 1.4697198318802369
0.0000000000000000 0.0000000201926477 0.0000000054981548 1.4697198318802369
0.0000000000000000 0.0000000403852953 0.0000000027490774 1.4697198318802369
0.0000000000000000 0.0000000807705906 0.0000000013745387 1.4697198318802369
0.0000000000000000 0.0000001615411813 0.0000000006872693 1.4697198318802369
0.0000000000000000 0.0000003230823625 0.0000000003436347 1.4697198318802369
0.0000000000000000 0.0000006461647250 0.0000000001718173 1.4697198318802369
0.0000000000000000 0.0000012923294500 0.0000000000859087 1.4697198318802369
0.0000000000000000 0.0000025846589001 0.0000000000429543 1.4697198318802369
0.0000000000000000 0.0000000000000000 0.0000000000214772 1.4697198318802369
0.0000000000000000 0.0000000000000000 0.0000000000107386 1.4697198318802369

30

Table 2: Stopping Criteria vs Function Value (with correct digits in red)
std. deviation simplex gradient ∆ function value

22.9183504010289383 2.9743637607191737 2.5014767071524533 4.1464661873603124
8.6832469203393288 3.0525104362787010 1.2507383535762266 3.2386547175689682
0.9742534137216189 0.7079812916976593 0.6253691767881133 0.0913657370406688
0.3148834895917984 0.7079812916976596 0.3126845883940567 0.0913657370406688
0.1022307895726505 0.2223733058514898 0.1563422941970283 0.0534052037468748
0.0285932325107842 0.2272574730739602 0.0781711470985142 0.0393810907743447
0.0060453625492211 0.0077732599245623 0.0390855735492571 0.0309003117979746
0.0016903021570746 0.0065522181189447 0.0195427867746285 0.0301593652865318
0.0003390992412607 0.0071627390217534 0.0097713933873143 0.0298266368295058
0.0001309365647018 0.0068574785703491 0.0048856966936571 0.0298172006298319
0.0000181464864324 0.0070101087960513 0.0024428483468286 0.0297779686226221
0.0000036521102920 0.0002582864973020 0.0012214241734143 0.0297738452031370
0.0000011507666769 0.0002582864973006 0.0006107120867071 0.0297738452031370
0.0000004532412662 0.0002582864973063 0.0003053560433536 0.0297738452031370
0.0000000725351831 0.0002678258864045 0.0001526780216768 0.0297737336536433
0.0000000265700146 0.0001864488194325 0.0000763390108384 0.0297737305475209
0.0000000057042037 0.0000383036861745 0.0000381695054192 0.0297737235541039
0.0000000017720984 0.0000394961098672 0.0000190847527096 0.0297737229774112
0.0000000003126184 0.0000178844401704 0.0000095423763548 0.0297737224948635
0.0000000001197997 0.0000105077288229 0.0000047711881774 0.0297737224772656
0.0000000000157681 0.0000035393027747 0.0000023855940887 0.0297737224378923
0.0000000000057364 0.0000035393027747 0.0000011927970443 0.0297737224378923
0.0000000000019638 0.0000000275450570 0.0000005963985222 0.0297737224367684
0.0000000000001968 0.0000000089121494 0.0000002981992611 0.0297737224361492
0.0000000000000504 0.0000000089121494 0.0000001490996305 0.0297737224361492
0.0000000000000137 0.0000000089121494 0.0000000745498153 0.0297737224361492
0.0000000000000044 0.0000000088888801 0.0000000372749076 0.0297737224361492
0.0000000000000018 0.0000000089354187 0.0000000186374538 0.0297737224361492
0.0000000000000002 0.0000000094938824 0.0000000093187269 0.0297737224361487
0.0000000000000001 0.0000000096800369 0.0000000046593635 0.0297737224361487
0.0000000000000000 0.0000000044677094 0.0000000023296817 0.0297737224361487
0.0000000000000000 0.0000000044677094 0.0000000011648409 0.0297737224361487
0.0000000000000000 0.0000000059569458 0.0000000005824204 0.0297737224361487
0.0000000000000000 0.0000000059569458 0.0000000002912102 0.0297737224361487
0.0000000000000000 0.0000000119138916 0.0000000001456051 0.0297737224361487
0.0000000000000000 0.0000000238277832 0.0000000000728026 0.0297737224361487
0.0000000000000000 0.0000000476555665 0.0000000000364013 0.0297737224361487
0.0000000000000000 0.0000000953111330 0.0000000000182006 0.0297737224361487
0.0000000000000000 0.0000000000000000 0.0000000000091003 0.0297737224361487
0.0000000000000000 0.0000000000000000 0.0000000000045502 0.0297737224361487

31

x0 =

0.5069357602729747

−0.6767951222352641

.

The matrix used for the second test function is

H =

−2.0024276947358515 1.0800605002607353

−0.5864902477646186 0.3970139246658717

0.6689094408010875 −0.0235658431216256

0.6022562572585082 0.8245007702218383

where the constant term c = 1.4697198318802369. The initial size of ∆ for this

example is 0.7379498442749530, and the randomly generated initial iterate is

x0 =

−0.2160152988897405

0.6616820877821726

.

7.1.1 Variance vs ∆

One of the most noteworthy features of the results in Tables 1 and 2 can be seen

in the direct correlation between the variance and ∆. The variance decreases at a

faster rate, yet it always shows decrease with decrease in ∆. The variance has already

diminished to below machine epsilon, however, before the potential accuracy of the

search has been completely fulfilled. In order to compare more similar metrics, the

results in Table 2 replace the variance with the square root of the variance (i.e. the

standard deviation). Section 9.1 displays tables of the comparison with the HJSearch

and the NLessSearch in five variables. Even the standard deviation may fall well

below machine epsilon before the potential accuracy has been exploited as shown in

32

the tables in section 9.1. More to the point, though, finding the standard deviation

represents even more computation for the search while producing no readily apparent

benefit. Considering the fact that tracking ∆ requires no additional computation for

the pattern search, I would need a convincing argument in favor of computing the

variance or the standard deviation to employ as my halting criterion.

7.1.2 Simplex Gradient vs ∆

The behavior of the simplex gradient as I apply it is not as satisfactory as that of ∆

in that it fails to produce a monotonicly decreasing sequence. Perhaps I could forgive

the increase in the simplex gradient at the tail end of the search if only the decrease

were smooth before that point. Because this criterion does not behave cleanly in even

the simple quadratic case, I would be hesitant to use it without stronger arguments

in its favor, especially considering the amount of linear algebra involved to compute

the simplex gradient.

7.1.3 Summary

While the simplex gradient begins to misbehave in a basic coordinate search, compar-

ison of the variance and standard deviation with ∆ in my other searches on quadratics

with search spaces of dimensions two through five yields results similar to those in Ta-

bles 1 and 2 and in section 9.1. I examined the output for hundreds of trials without

seeing a case where the variance failed to decrease with ∆, and I would offer this as

evidence that the two measures are in fact closely related. Again, I see no compelling

reason to provide a default stopping criterion other than the size of ∆ in my base

33

class, and I feel that these results support that decision.

Further, the results from all of my trials also share the common feature that the

search has obtained the limit on the accuracy it can reach when ∆ is approximately

10−9. Referring to sections 9.3 and 9.4 of the results, the searches attain no greater

accuracy by decreasing tolerance between trial 8 and trial 9. Notably, searches such

as NLess do not obtain the same accuracy as the Hooke and Jeeves searches even with

smaller stopping length values. While none of the searches die when smaller stopping

values of ∆ are requested, even values below machine epsilon, I see no reason to

continue a search beyond a step length of about 10−9 for any of the quadratic functions

I have tested since it brings no further improvement.

7.2 Numerical Error in the HJ Search

I encountered difficulties with my first implementation of the algorithm by Hooke

and Jeeves and, as a consequence, rediscovered early observations of rounding error

reported in [2], in response to the algorithm in [11]. Through my familiarity with

pattern search theory, I was able to pinpoint the exact nature of the numerical error

and its relationship to the theory. Hopefully some of the discussion below will help

guide others in implementing pattern searches.

What I noticed as I began to test my implementation of the test program was

that the HJSearch would occasionally become trapped. By occasionally, I mean that

every few hundred trials it would halt based on the maximum number of function

evaluations allowed rather than because ∆ had dropped below tolerance. The al-

gorithm would become trapped so that the value of the current iterate was still not

34

particularly close to the real solution even at the conclusion of all that computational

effort in evaluating function calls. Moreover, the search would have decreased ∆ only

a few times or not at all. Because the other search methods that I had implemented

at that time all found the optimum at the origin with function value equal to c for

those trials, the test program appeared to be working correctly. With that in mind,

I began to review the HJSearch for implementation errors.

7.2.1 History

My investigation included first stepping through the execution of my implementation

to find the root of the problem. I traced the problem to floating point error caused

by certain pattern extending steps, as I explain below. I then searched to see if

anyone else had encountered this numerical error and was able to find an example

of another implementation of the Hooke and Jeeves algorithm with the following

intriguing comments [10]:

make sure that the differences between the new and the old [base] points

are due to actual displacements; beware of roundoff errors . . .

Curious, I followed the references in [10] to [2]. There I found the following remark:

The algorithm compiled and ran after these modifications had been made

but for a number of problems took a prodigious amount of computing

owing to a flaw in the algorithm caused by rounding error.

This statement was followed by a 1-dimensional example that illustrates the problem

I was seeing. The authors of [2] closed the discussion with a simple kludge to avoid

35

the error, one implemented in [10] and that I was able to incorporate into my imple-

mentation. Before I discuss the solution, I offer the following illustration of one of

the examples I tracked from my own experimentation.

7.2.2 Example

I have selected an example of the process that leads to search degradation in Fig-

ures 5 and 6 for illustration. The H matrix for the function is

H =

1.1250434984182105 2.9393523736291134

0.3018243999955224 0.7723233840336674

−0.7046745157561507 −0.0382939899828596

−0.7075833763502262 0.9484561354579317

where the constant term equals 0.0025602323710517 and the function value differs

from earlier description of the test structure in that it is divided by n + 2 = 4 before

adding the constant term, c. The initial size of ∆ for the example is 6.0, which just

happens to be the ∆0 I was using at this early stage in the implementation and testing

process, and the initial point, as generated, is

x =

0.1123135875305460

0.9266765162475219

.

The accompanying Figures 5 and 6 show an artistic rendition of the exploratory

moves for my first Hooke and Jeeves implementation. Clearly, the dots and their

relative positions are not exactly to scale, but the points as listed in the margins

supply the sixteen digits to the right of the decimal point required to demonstrate

the nature of the problem. The bug that eventually leads to degeneration in this

36

example actually appears in the first few moves. The pattern extending step to point

C and the improving exploratory move in the positive x coordinate direction creates

a situation where the new base point, D, is within rounding error of the previous base

point, B. Recall that only simple decrease acts as a required condition on accepting

a trial step. The pattern extending step to point E moves outside of the radius of the

rounding error created via the exploratory move additions. While I must accept some

slight shifting off of the lattice via numerical error, perpetuating and exacerbating

that error contributes nothing to the search. The Hooke and Jeeves search abandons

the lattice only momentarily at this point because the search then finds improvement

at point F and continues the search from there.

This sort of cycle appears many times in various tests when using my first Hooke

and Jeeves implementation, but this example is one of the relatively few that finds

itself in a cycle from which it cannot break free. From point Y until the search halts

on the maximum function calls, the pattern steps shift the current point in minute

steps until it has moved from point Y at

−0.075186412469451014

−0.010823483752478102

to

−0.075186412425045646

−0.010823483752478102

.

7.2.3 Explaining the Error

Because the pattern extending step moves to a point that is not necessarily im-

proving relative to the last base point, a particular pattern extending step may find

37

F
ig

u
re

5:
H

J
S
ea

rc
h

N
u
m

er
ic

al
E

rr
or

—
fi
rs

t
si

gn
s

of
tr

ou
b
le

HJ Search Numerical Error
initial point: A (value 2.3369848213768507)
(0.11231358753054604,

 0.9266765162475219)

good move to: B (value 1.4501926486662426)

(-1.38766864124694539,

 0.9266765162475219)

pattern extended step to: C (value

(-2.8876864124694537,

 0.9266765162475219)

good move to: D (value 1.4501926486662424)

(-1.38766864124694537,

 0.9266765162475219)

pattern extended step to: E (value 1.4501926486662426)

(-1.38766864124694535,

 0.9266765162475219)

good move to: F (value 0.85996306512627974)

(-1.38766864124694535,

 0.1766765162475219)

pattern extended step to: G (value 3.1208522724603247)

(-1.38766864124694532,

 -0.5733234837524781)

good move to: H (value 0.15785350974275647)

(-0.63768641246945323,

 0.1766765162475219)

(0.11231358753054699,

 0.1766765162475219)

pattern extended step to: I value 0.11782368075554148)

pattern extended step to: J (value 0.73987357816463484)

(0.86231358753054721,

 0.1766765162475219)

good move to: K (value 0.11782368075554157)

(0.11231358753054721,

 0.1766765162475219)

good move to: L (value 0.055078629449610443)

(-0.26268641246945279,

 0.1766765162475219)

pattern step to: M (value 0.15785350974275617)

(-0.63768641246945257,

 0.1766765162475219)

good move to: N (value 0.055078629449610429)

(-0.26268641246945257,

 0.1766765162475219)

pattern step to: O (value 0.055078629449610415)

(-0.26268641246945235,

 0.1766765162475219)

pattern step to: P (value 0.055078629449610408)

(-0.26268641246945212,

 0.1766765162475219)

pattern step to: Q (value 0.055078629449610388)

(-0.2626864124694519,

 0.1766765162475219)
pattern step to: R (value 0.055078629449610388)

(-0.26268641246945168,

 0.1766765162475219)

 A B C

 D

 E

 F

 G

 H I J

 L M

 K
 N

 O

 P

Q

 R

...first signs of trouble.

38

HJ Search Numerical Error

 R

 S

 T

 U V

 W

 X Y,Z,a,...

pattern step to: T (value 0.21828405035187581)
(-0.26268641246945146,
 -0.1983234837524781)

pattern step to: V (value 0.0085207066742778292)
(0.11231358753054876.
 -0.010823483752478102)

good move to: U (value 0.0073623007302194444)
(-0.075186412469451458,
 -0.010823483752478102)

good move to: W (value 0.0073623007302194201)
(-0.075186412469451236,
 -0.010823483752478102)

pattern step to: X (value 0.0073623007302193975)
(-0.075186412469451014,
 -0.010823483752478102)

pattern step to: Y (value 0.007362300730219375)
(-0.075186412469450792,
 -0.010823483752478102)

good move to: S (value 0.047583877685930392)
(-0.26268641246945168,
 -0.010823483752478102)

The pattern steps continue to move off of the lattice until
stopping due to the maximum function calls condition
 at 1000004 calls.

By then the current point has shifted to

(-0.075186412425045646,
 -0.010823483752478102).

...the final bog down.

Figure 6: HJSearch Numerical Error—the final bog down

39

improvement at a trial step located within floating point error of the last base point.

Particular pattern extending steps that may create this problem step a distance ∆

along a coordinate direction. Floating point error may then create an “echo” of the

last base point of the form bk + ǫei, where ǫ is a value very near machine epsilon. If

this echo of the last base point should happen to have a better function value than

the base point, the implementation finds the distance between the two to calculate

the next pattern extending step. The length of the next pattern extending step is

then on the order of machine epsilon, but still large enough for a well-conditioned

function to show improvement over the value at the base point. In that way, the

slight discrepancy created by rounding error becomes the basis for a degeneration of

the search into a virtually infinite series of small steps off of the rational lattice, which

in effect tricks the implementation into believing that the moves being conducted are

successful.

7.2.4 The Simple Fix

Again, I would point out that the symptoms and solution of this numerical error had

been noted previously in [2]. The relatively simple solution to the problem proposed

in [2] requires comparing the locations of the permanent base points to the current

iterate. If all of the components of the current iterate are within 0.5∆ of the last

permanent base point, the pattern extending step is deemed a failure and the last base

point becomes the location of the new current iterate, which amounts to a slight shift.

I also implement storage vectors to represent the current iterate at the start of each

iteration so as to reduce the effects of possible numerical error introduced by adding

40

and subtracting ∆. I would remark here that this last security measure is performed

automatically when the pattern is stored explicitly in a matrix so that any numerical

error introduced in my implementations of CompassSearch and NLessSearch is not

detrimental to the convergence. Refer to section 10 to view the code.

7.2.5 Regarding the Theory

Of course, nothing in the convergence theory would allow for the introduction of such

problems because the mathematical theory requires the search to remain on a rational

lattice. From [18], the hypothesis on exploratory moves begins by stating that the trial

step is sk ∈ ∆kPk where Pk is the pattern matrix. My first implementation fails to

ensure that the trial point is in fact located on that theoretical lattice by ignoring the

possibility of numerical error. The numerical shifting in a slightly improving direction

also effectively nullifies the algorithms ability to find iterations that “fail”, i.e. discover

no function decrease at any of the trial points. Failing to find improvement at any

trial point in the pattern represents a fundamental step toward convergence. Without

it, the search cannot reduce ∆ and thus cannot gain access to the trial points that

exist at a higher resolution of the lattice. The search then loses its guarantee that

there are a finite number of improving trial points and abandons the proof of its

convergence. The gap between theory and implementation yawns wide here, yet the

theory in its strictest sense may provide remedies for this sort of numerical error as

well.

41

7.2.6 Further Observations

Having experienced the possibility of floating point error in these relatively simple

optimization algorithms, I am curious whether a practical set of implementations

could be crafted to follow the convergence results explicitly in calculating trial points

by the formulae presented in [18]. Torczon defines a pattern matrix P through P =

BCk with a real basis matrix B ∈ Rn×n and a generating matrix Ck. The trial

step may then be calculated according to si
k = ∆kBci

k where ci
k represents a column

of Ck = [c1
k . . . cp

k]. The idea would be to store and update the integer matrix Ck

and compute each trial step as si
k = ∆kBkc

i
k as a way to at least minimize—if not

eliminate—the possibility of floating point error.

Whether a closer marriage of the theory and the implementation of

pattern searches might help prevent numerical error or whether such a connection

would encumber the algorithms inordinately is a question still to be answered.

8 Further Study

I have mentioned that my project has spawned more questions than answers about

the behavior of pattern searches. Particularly of interest to me are outcomes of

incorporating search history into pattern search algorithms (such as one sees with the

Hooke and Jeeves pattern search algorithm) and the possibility of finding better local

mimima on functions with multiple minima.

In searching for a simple explanation of the greatly improved efficiency found

in the Hooke and Jeeves searches, I had hoped to see that the pattern extending

42

step would begin to approximate the Newton direction but found no evidence of this.

Baffled, I then calculated the angles between the Newton step from the current iterate

and all of the other trial steps in the pattern. Again, I found nothing that implied

these angles were converging to zero. When I compared the smallest angles between

the Newton direction and a trial step or pattern extending step in the HJSearch with

the smallest angles between the Newton Step and a trial step in the CompassSearch,

I noted that the average minimum angle in the HJSearch actually exceeded that of

the CompassSearch pattern for a series of search iterations on the same objective

functions. Apparently the effects of incorporating a search history on the Hooke and

Jeeves method’s efficiency is more complex than would have been convenient.

Another issue of specific interest to my EdHJSearch implementation lies in the

efficiency of the searches when a factor other than 1/2 is used to reduce ∆ more

aggressively. I ran preliminary tests with my existing testing structure and discovered

that the EdHJSearch still gave somewhat improved efficiency over the HJSearch for

factors of 1/4 and 1/8, which alleviated my concern that the improved efficiency

for my tests relied solely on the fact that the HJSearch returned exactly to points

already visited. A more extensive test, including all of the search variants, remains

to be undertaken.

I feel strongly attracted to the idea of running tests on functions created via

kriging [19], a method of interpolation that can be applied to randomly generated

points, yielding a virtually unlimited supply of complicated test functions more closely

resembling the general functions for which the pattern search method would be most

applicable in practice. Particularly appealing is the notion of experimenting with test

43

functions with multiple minima in order to explore a pattern search’s ability to find

the best, rather than merely the closest, local optimum and the parameters that might

boost that ability. I would like to see whether the krigifier [19] could help to structure

a general testing environment that would allow more complicated objective functions

while maintaining some of the advantages that creating one’s own test functions has

to offer.

I even implemented a search class I call RandomSearch, which attempts to boost

the search’s ability to find the global optimum by adding randomly generated search

vectors to the end of an NLess pattern. Unlike the other searches I have implemented,

the RandomSearch tries every point in the pattern before selecting the best as the

current iterate of the next search. The lengths of the random vectors grow with the

distance the search has traveled from the initial iterate. Also, if a random vector

does find improvement, that vector is kept in the pattern when the other random

vectors are reinitialized to new values. Both of these characteristics are based on my

intuitive notions that a search that has traveled far from its origin may be optimizing a

function rife with local minima and that, like in a Hooke and Jeeves search, optimism

regarding improving directions may be rewarded. Work remains to ensure that the

RandomSearch fulfills the requirements of a pattern search. Specifically, the random

points should be shifted back onto the rational lattice, as suggested by Michael Trosset

and Virginia Torczon, to ensure that the number of potential improving trial points is

bounded. More thorough testing of such a heuristic search on complicated objective

functions is required before judging the success of something like a RandomSearch.

I would hope to see some of these questions resolved in the future. My project’s

44

testing phase offers an early attempt at addressing complex issues involved in studying

optimization methods. In the best case, future research by myself and others will

greatly improve on this model. I await with enthusiasm the publication of other

resolutions to the implementation issues with which I have struggled and the creation

of yet simpler sets of building blocks for pattern search implementations. Most of

all, I anticipate enjoying the creativity of the pattern search algorithms other minds

might yield. I hope that my work will offer other researchers an excuse to study

further the potential of these algorithms.

45

References

[1] M. Avriel, Nonlinear Programming: Analysis and Methods, Prentice-Hall, En-

glewood Cliffs, NJ, 1976.

[2] M. Bell and M. C. Pike, Remark on Agorithm 178 [E4] Direct Search, Com-

munications of the Association for Computing Machinery, 9 (1966).

[3] D. M. Bortz and C. T. Kelley, The simplex gradient and noisy opti-

mization problems, in Computational Methods for Optimal Design and Control,

J. Borggaard, J. Burns, E. Cliff, and S. Schreck, eds., Birkhauser, 1998.

[4] G. E. P. Box, Evolutionary operation: A method for increasing industrial pro-

ductivity, Applied Statistics, 6 (1957), pp. 81–101.

[5] M. Box, D. Davies, and W. Swann, NON-LINEAR OPTIMIZATION

TECHNIQUES, Oliver and Boyd Ltd, Edinburgh, 1969.

[6] J. Czyzyk, M. P. Mesnier, and J. J. Moré, The network-enabled opti-

mization system (NEOS) server, Tech. Rep. 97/02, Optimization Technology

Center, Mathematics and Computer Science Division, Argonne National Labo-

ratory, 9700 South Cass Avenue, Argonne, Illinois 60139, February 1997.

[7] J. Czyzyk, J. H. Owen, and S. J. Wright, NEOS: Optimization on the

internet, Tech. Rep. 97/04, Optimization Technology Center, Mathematics and

Computer Science Division, Argonne National Laboratory, 9700 South Cass Av-

enue, Argonne, Illinois 60139, June 1997.

46

[8] R. Hooke and T. A. Jeeves, Direct search solution of numerical and statis-

tical problems, Journal of the Association for Computing Machinery, 8 (1961),

pp. 212–229.

[9] S. Jocoby, J. Kowalik, and J. Pizzo, Iterative Methods for Nonlinear Op-

timization Problems, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1972.

[10] M. G. Johnson, hooke.c. Found in Netlib at www.netlib.org/opt/hooke.c,

February 1994.

[11] A. F. Kaupe, Jr., Algorithm 178 Direct Search, Communications of the Asso-

ciation for Computing Machinery, 6 (1963).

[12] R. M. Lewis, vector.C, 1998. ICASE, Mail Stop 132C, NASA Langley Re-

search Center, Hampton, VA 23681-0001.

[13] R. M. Lewis, V. Torczon, and M. W. Trosset, Why pattern search works,

Optima, (1998), pp. 1–7. Also available as ICASE technical report 98-57.

[14] R. M. Lewis and V. J. Torczon, Rank ordering and positive bases in pattern

search algorithms, Tech. Rep. 96–71, Institute for Computer Applications in Sci-

ence and Engineering, Mail Stop 403, NASA Langley Research Center, Hampton,

Virginia 23681–2199, 1996. In revision for Mathematical Programming.

[15] J. A. Nelder and R. Mead, A simplex method for function minimization,

The Computer Journal, 7 (1965), pp. 308–313.

47

[16] S. Park and L. Leemis, Discrete-event simulation: A first course. College of

William and Mary. Class notes for a simulation course in the Computer Science

department.

[17] S. K. Park and K. W. Miller, Random number generators: Good ones are

hard to find, Communications of the ACM, 31 (1988).

[18] V. Torczon, On the convergence of pattern search algorithms, SIAM Journal

on Optimization, 7 (1997), pp. 1–25.

[19] M. W. Trosset, The krigifier: A procedure for generating pseudorandom non-

linear objective functions for computational experimentation, Tech. Rep. ICASE

Interim Report 35, Institute for Computer Applications in Science and Engi-

neering, Mail Stop 132C, NASA Langley Research Center, Hampton, Virginia

23681–2199, 1999.

48

9 Displays of Results

9.1 Halting Criteria

Stopping Criteria vs Returned Function Value and Distance
from the Optimum

(NLessSearch in 5 variables with correct digits in red)

std. deviation ∆ function value 2norm

6.5486433983619570 0.6962268138239019 2.4483717410566310 0.2777276094251399
0.8963664167841120 0.3481134069119510 1.7640603407930924 0.2176549125833814
0.0864294848558236 0.1740567034559755 1.6145138133840160 0.1084697941566830
0.0019435277139807 0.0870283517279877 1.4960316981463304 0.1159039741974479
0.0001572197295223 0.0435141758639939 1.4842980031542836 0.0704179184654578
0.0000095818143977 0.0217570879319969 1.4743470866911506 0.0405719037218861
0.0000002451147079 0.0108785439659985 1.4704546621276158 0.0347609196921366
0.0000000233681897 0.0054392719829992 1.4704546621276158 0.0347609196921366
0.0000000014623741 0.0027196359914996 1.4700532980495444 0.0248115028149709
0.0000000000553148 0.0013598179957498 1.4699489450489640 0.0218490362789150
0.0000000000164568 0.0006799089978749 1.4698667243929047 0.0175966242272939
0.0000000000017077 0.0003399544989375 1.4697677960311799 0.0100138238099774
0.0000000000000594 0.0001699772494687 1.4697270352791718 0.0038904854860887
0.0000000000000036 0.0000849886247344 1.4697216248598952 0.0019382378095814
0.0000000000000001 0.0000424943123672 1.4697201725880154 0.0008493561483688
0.0000000000000000 0.0000212471561836 1.4697199201379811 0.0004321719657023
0.0000000000000000 0.0000106235780918 1.4697198459928282 0.0001688909052103
0.0000000000000000 0.0000053117890459 1.4697198376569938 0.0001089433999276
0.0000000000000000 0.0000026558945229 1.4697198343587019 0.0000721440217908
0.0000000000000000 0.0000013279472615 1.4697198322765974 0.0000289467518772
0.0000000000000000 0.0000006639736307 1.4697198319422011 0.0000113059332085
0.0000000000000000 0.0000003319868154 1.4697198319057987 0.0000073254833814
0.0000000000000000 0.0000001659934077 1.4697198318911258 0.0000047849244202
0.0000000000000000 0.0000000829967038 1.4697198318815330 0.0000016498976358
0.0000000000000000 0.0000000414983519 1.4697198318805513 0.0000008062142814
0.0000000000000000 0.0000000207491760 1.4697198318803257 0.0000004305795219
0.0000000000000000 0.0000000103745880 1.4697198318802669 0.0000002459337107
0.0000000000000000 0.0000000051872940 1.4697198318802593 0.0000002175628883
0.0000000000000000 0.0000000025936470 1.4697198318802593 0.0000002175628883
0.0000000000000000 0.0000000012968235 1.4697198318802593 0.0000002175628883
0.0000000000000000 0.0000000006484117 1.4697198318802593 0.0000002175628883

49

Stopping Criteria vs Returned Function Value and Distance
from the Optimum

(HJSearch in 5 variables with correct digits in red)

std. deviation ∆ function value 2norm

9.3045897498347561 0.6962268138239019 5.4361106754128041 2.3963015589443808
0.4397293876738081 0.3481134069119510 1.9159086219448116 0.6983895923138458
0.0410391664545333 0.1740567034559755 1.6606319720281675 0.4503869030736324
0.0013106836834532 0.0870283517279877 1.4844950859730970 0.1539439700826097
0.0002155320262490 0.0435141758639939 1.4839329285424792 0.1193151775059503
0.0000103551097665 0.0217570879319969 1.4719532056197253 0.0340026098043645
0.0000004083040040 0.0108785439659985 1.4700097998460036 0.0157919106168492
0.0000000404631436 0.0054392719829992 1.4699006162510915 0.0146783468207784
0.0000000039524363 0.0027196359914996 1.4698655024813616 0.0165829903968097
0.0000000001053694 0.0013598179957498 1.4697300627272001 0.0037575966250456
0.0000000000099616 0.0006799089978749 1.4697241294437269 0.0026128528103905
0.0000000000004175 0.0003399544989375 1.4697203396318461 0.0008546098460838
0.0000000000000347 0.0001699772494687 1.4697203309184161 0.0009857505477117
0.0000000000000027 0.0000849886247344 1.4697198554491324 0.0000742441507744
0.0000000000000001 0.0000424943123672 1.4697198351311140 0.0000435103250214
0.0000000000000000 0.0000212471561836 1.4697198345462448 0.0000326892368369
0.0000000000000000 0.0000106235780918 1.4697198321413172 0.0000138786375838
0.0000000000000000 0.0000053117890459 1.4697198320338560 0.0000174583151828
0.0000000000000000 0.0000026558945229 1.4697198319056393 0.0000058036150574
0.0000000000000000 0.0000013279472615 1.4697198319056393 0.0000058036150574
0.0000000000000000 0.0000006639736307 1.4697198318827320 0.0000018108722900
0.0000000000000000 0.0000003319868154 1.4697198318803228 0.0000002150972866
0.0000000000000000 0.0000001659934077 1.4697198318802984 0.0000001662453937
0.0000000000000000 0.0000000829967038 1.4697198318802445 0.0000000439549373
0.0000000000000000 0.0000000414983519 1.4697198318802440 0.0000000712678851
0.0000000000000000 0.0000000207491760 1.4697198318802382 0.0000000444503609
0.0000000000000000 0.0000000103745880 1.4697198318802382 0.0000000444503609
0.0000000000000000 0.0000000051872940 1.4697198318802376 0.0000000391633863
0.0000000000000000 0.0000000025936470 1.4697198318802376 0.0000000391633863
0.0000000000000000 0.0000000012968235 1.4697198318802376 0.0000000391633863
0.0000000000000000 0.0000000006484117 1.4697198318802376 0.0000000391633863

50

9.2 Efficiency

The following bar charts offer a visual guide to the efficiency of the four searches

in terms of objective function evaluations required before convergence. Note that

convergence is defined by ∆ falling below tolerance; none of the searches were halted

based on the number of objective function evaluations. The horizontal lines within

the bars demarcate the minimum number of function calls required for ten, twenty-

five, fifty, seventy-five, and ninety percent of the ten thousand searches to converge

to the desired tolerance value for the trial. The extremity in the differences in the

number of function evaluations required by the four searches makes the lines for the

HJ and EdHJ searches difficult to distinguish in some of the later graphs. The actual

values are still quite distinguishable, with the values for EdHJSearch lower than those

for HJSearch.

51

Figure 7: Hooke and Jeeves Search and Edited Hooke and Jeeves Search. . .
trial 0 in two variables and trial 9 in five variables

0

10

20

30

40

50

60

70

HJ EdHJ

F
un

ct
io

n
C

al
ls 50%

50%

10% 10%

25%
25%

75%

75%

90%

90%

600

700

800

900

1000

1100

1200

1300

1400

HJ EdHJ

F
un

ct
io

n
C

al
ls

10%

10%

25%

25%

50%

50%

75%

75%

90%

90%

Figure 8: trial 0 and trial 1 in two variables

20

25

30

35

40

45

50

55

60

65

70

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

30

40

50

60

70

80

90

100

110

120

130

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

Figure 9: trial 2 and trial 3 in two variables

40

60

80

100

120

140

160

180

200

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

60

80

100

120

140

160

180

200

220

240

260

280

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

52

Figure 10: trial 4 and trial 5 in two variables

50

100

150

200

250

300

350

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

100

150

200

250

300

350

400

450

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

Figure 11: trial 6 and trial 7 in two variables

100

150

200

250

300

350

400

450

500

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

100

150

200

250

300

350

400

450

500

550

600

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

Figure 12: trial 8 and trial 9 in two variables

150

200

250

300

350

400

450

500

550

600

650

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

150

200

250

300

350

400

450

500

550

600

650

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

53

Figure 13: trial 0 and trial 1 in three variables

20

40

60

80

100

120

140

160

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

50

100

150

200

250

300

350

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

Figure 14: trial 2 and trial 3 in three variables

0

100

200

300

400

500

600

700

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

100

200

300

400

500

600

700

800

900

1000

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

Figure 15: trial 4 and trial 5 in three variables

0

200

400

600

800

1000

1200

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

0

200

400

600

800

1000

1200

1400

1600

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

54

Figure 16: trial 6 and trial 7 in three variables

200

400

600

800

1000

1200

1400

1600

1800

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

Figure 17: trial 8 and trial 9 in three variables

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

Figure 18: trial 0 and trial 1 in four variables

50

100

150

200

250

300

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

100

200

300

400

500

600

700

800

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

55

Figure 19: trial 2 and trial 3 in four variables

0

200

400

600

800

1000

1200

1400

1600

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

0

500

1000

1500

2000

2500

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

Figure 20: trial 4 and trial 5 in four variables

0

500

1000

1500

2000

2500

3000

3500

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

Figure 21: trial 6 and trial 7 in four variables

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

0

1000

2000

3000

4000

5000

6000

7000

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

56

Figure 22: trial 8 and trial 9 in four variables

0

1000

2000

3000

4000

5000

6000

7000

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

0

1000

2000

3000

4000

5000

6000

7000

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

Figure 23: trial 0 and trial 1 in five variables

50

100

150

200

250

300

350

400

450

500

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

0

200

400

600

800

1000

1200

1400

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

Figure 24: trial 2 and trial 3 in five variables

0

500

1000

1500

2000

2500

3000

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

57

Figure 25: trial 4 and trial 5 in five variables

0

1000

2000

3000

4000

5000

6000

7000

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

Figure 26: trial 6 and trial 7 in five variables

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

0

2000

4000

6000

8000

10000

12000

14000

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

Figure 27: trial 8 and trial 9 in five variables

0

2000

4000

6000

8000

10000

12000

14000

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

0

2000

4000

6000

8000

10000

12000

14000

Compass NLess HJ EdHJ

F
un

ct
io

n
C

al
ls

58

9.3 Function Value Accuracy

The following tables record the average difference between the function value returned

as the minimum by the search and the true f(x∗). Confidence intervals were taken

to show the range in the mean of the accuracy within which ninety-five percent

of accuracy averages for similar trials of ten thousand could be expected to fall.

While perhaps not as enlightening as the previous bar charts, the tables do exhibit

patterns. Note, in particular, the shift that occurs typically between trial 3 and trial

4 in the relative accuracies of the HJSearch and EdHJSearch to the NLessSearch and

CompassSearch.

59

Function Value Accuracy Estimates in Two Dimensions

trial 0 (mean)

Compass 0.0024429972779161 0.0026358312472298 0.0028286652165434

NLess 0.0075555956548713 0.0083266837920918 0.0090977719293123

HJ 0.1743257298389256 0.2147171469038104 0.2551085639686952

EdHJ 0.1743815591017040 0.2147728632123105 0.2551641673229170

trial 1 (mean)

Compass 0.0000485419562679 0.0000550182932928 0.0000614946303178

NLess 0.0002055073345572 0.0002313644946987 0.0002572216548403

HJ 0.0103406819042583 0.0262490871387065 0.0421574923731548

EdHJ 0.0103415184251897 0.0262499231336132 0.0421583278420367

trial 2 (mean)

Compass 0.0000008194177042 0.0000009388962398 0.0000010583747754

NLess 0.0000039357779546 0.0000044679466948 0.0000050001154350

HJ 0.0000461714632160 0.0039437589662255 0.0078413464692350

EdHJ 0.0000461800997175 0.0039437675993850 0.0078413550990526

trial 3 (mean)

Compass 0.0000000129399216 0.0000000148273879 0.0000000167148543

NLess 0.0000000692098901 0.0000000823115480 0.0000000954132060

HJ −0.0008593299999037 0.0008949620250239 0.0026492540499515

EdHJ −0.0008593298405541 0.0008949621843423 0.0026492542092387

trial 4 (mean)

Compass 0.0000000002044363 0.0000000002372084 0.0000000002699805

NLess 0.0000000011244400 0.0000000013378706 0.0000000015513011

HJ 0.0000000001003068 0.0000000001047632 0.0000000001092195

EdHJ 0.0000000001059643 0.0000000001108857 0.0000000001158072

60

Function Value Accuracy Estimates in Two Dimensions

trial 5 (mean)

Compass 0.0000000000032144 0.0000000000037146 0.0000000000042149

NLess 0.0000000000179233 0.0000000000211529 0.0000000000243825

HJ 0.0000000000015692 0.0000000000016352 0.0000000000017011

EdHJ 0.0000000000015986 0.0000000000016695 0.0000000000017405

trial 6 (mean)

Compass 0.0000000000000495 0.0000000000000572 0.0000000000000648

NLess 0.0000000000002790 0.0000000000003300 0.0000000000003811

HJ 0.0000000000000248 0.0000000000000263 0.0000000000000278

EdHJ 0.0000000000000245 0.0000000000000254 0.0000000000000263

trial 7 (mean)

Compass 0.0000000000000002 0.0000000000000003 0.0000000000000004

NLess 0.0000000000000009 0.0000000000000013 0.0000000000000017

HJ 0.0000000000000000 0.0000000000000000 0.0000000000000000

EdHJ 0.0000000000000000 0.0000000000000001 0.0000000000000001

trial 8 (mean)

Compass 0.0000000000000001 0.0000000000000002 0.0000000000000003

NLess 0.0000000000000008 0.0000000000000012 0.0000000000000016

HJ 0.0000000000000000 0.0000000000000000 0.0000000000000000

EdHJ 0.0000000000000000 0.0000000000000000 0.0000000000000001

trial 9 (mean)

Compass 0.0000000000000001 0.0000000000000002 0.0000000000000003

NLess 0.0000000000000008 0.0000000000000012 0.0000000000000016

HJ 0.0000000000000000 0.0000000000000000 0.0000000000000000

EdHJ 0.0000000000000000 0.0000000000000000 0.0000000000000001

61

Function Value Accuracy Estimates in Three Dimensions

trial 0 (mean)

Compass 0.0069701877951054 0.0073597651473794 0.0077493424996535

NLess 0.0241033436118908 0.0256655668254416 0.0272277900389924

HJ 0.3095767253516128 0.3785150504080378 0.4474533754644628

EdHJ 0.3099432027161219 0.3788808071761120 0.4478184116361021

trial 1 (mean)

Compass 0.0001611092596185 0.0001758506821707 0.0001905921047229

NLess 0.0008102046235363 0.0008971670727973 0.0009841295220582

HJ 0.0194396257220741 0.0364623407451212 0.0534850557681682

EdHJ 0.0194499253943019 0.0364726324946375 0.0534953395949730

trial 2 (mean)

Compass 0.0000027717696410 0.0000033573798107 0.0000039429899804

NLess 0.0000169592957031 0.0000197698970624 0.0000225804984217

HJ −0.0002240998798550 0.0029774605022160 0.0061790208842870

EdHJ −0.0002239923561625 0.0029775679876049 0.0061791283313723

trial 3 (mean)

Compass 0.0000000472629794 0.0000000585394245 0.0000000698158697

NLess 0.0000002812349339 0.0000003283218606 0.0000003754087873

HJ −0.0003750263787036 0.0003905991055643 0.0011562245898322

EdHJ −0.0003750243697439 0.0003906011141308 0.0011562265980055

trial 4 (mean)

Compass 0.0000000007376640 0.0000000009222864 0.0000000011069087

NLess 0.0000000045588320 0.0000000053383168 0.0000000061178016

HJ 0.0000000002069735 0.0000000002212090 0.0000000002354444

EdHJ 0.0000000002290546 0.0000000002583601 0.0000000002876656

62

Function Value Accuracy Estimates in Three Dimensions

trial 5 (mean)

Compass 0.0000000000113506 0.0000000000142635 0.0000000000171764

NLess 0.0000000000712437 0.0000000000829994 0.0000000000947551

HJ 0.0000000000032647 0.0000000000035507 0.0000000000038368

EdHJ 0.0000000000036479 0.0000000000038341 0.0000000000040202

trial 6 (mean)

Compass 0.0000000000001749 0.0000000000002178 0.0000000000002608

NLess 0.0000000000011362 0.0000000000013212 0.0000000000015063

HJ 0.0000000000000505 0.0000000000000533 0.0000000000000561

EdHJ 0.0000000000000586 0.0000000000000625 0.0000000000000664

trial 7 (mean)

Compass 0.0000000000000007 0.0000000000000011 0.0000000000000015

NLess 0.0000000000000041 0.0000000000000052 0.0000000000000063

HJ 0.0000000000000001 0.0000000000000001 0.0000000000000001

EdHJ 0.0000000000000001 0.0000000000000002 0.0000000000000003

trial 8 (mean)

Compass 0.0000000000000007 0.0000000000000010 0.0000000000000014

NLess 0.0000000000000039 0.0000000000000049 0.0000000000000060

HJ 0.0000000000000001 0.0000000000000001 0.0000000000000001

EdHJ 0.0000000000000001 0.0000000000000002 0.0000000000000003

trial 9 (mean)

Compass 0.0000000000000007 0.0000000000000010 0.0000000000000014

NLess 0.0000000000000039 0.0000000000000049 0.0000000000000060

HJ 0.0000000000000001 0.0000000000000001 0.0000000000000001

EdHJ 0.0000000000000001 0.0000000000000002 0.0000000000000003

63

Function Value Accuracy Estimates in Four Dimensions

trial 0 (mean)

Compass 0.0159201594769705 0.0167143403605377 0.0175085212441049

NLess 0.0566760424375808 0.0591344835853876 0.0615929247331945

HJ 0.6177154355790652 0.7338436976107635 0.8499719596424619

EdHJ 0.6187762421025244 0.7349021016528481 0.8510279612031718

trial 1 (mean)

Compass 0.0004221854162892 0.0004618232532246 0.0005014610901599

NLess 0.0022041585340743 0.0023988389508273 0.0025935193675804

HJ 0.0410471306786834 0.0921226323285811 0.1431981339784788

EdHJ 0.0410682501478229 0.0921437374289399 0.1432192247100569

trial 2 (mean)

Compass 0.0000078657855097 0.0000089433226894 0.0000100208598691

NLess 0.0000448131138199 0.0000494754790865 0.0000541378443531

Random −0.0093802942067721 0.0191885355207255 0.0477573652482231

EdHJ −0.0094350772227545 0.0191314385239991 0.0476979542707527

trial 3 (mean)

Compass 0.0000001298800056 0.0000001492661052 0.0000001686522049

NLess 0.0000007557448806 0.0000008503091859 0.0000009448734912

HJ −0.0008668449735012 0.0009028250036741 0.0026724949808494

EdHJ −0.0008668402408988 0.0009028297353493 0.0026724997115973

trial 4 (mean)

Compass 0.0000000020474356 0.0000000023343659 0.0000000026212963

NLess 0.0000000120400732 0.0000000137226687 0.0000000154052642

HJ 0.0000000003799867 0.0000000004029525 0.0000000004259183

EdHJ 0.0000000004485826 0.0000000004794656 0.0000000005103486

64

Function Value Accuracy Estimates in Four Dimensions

trial 5 (mean)

Compass 0.0000000000323386 0.0000000000369915 0.0000000000416444

NLess 0.0000000001910563 0.0000000002166582 0.0000000002422601

HJ 0.0000000000056847 0.0000000000059158 0.0000000000061469

EdHJ 0.0000000000068560 0.0000000000071913 0.0000000000075267

trial 6 (mean)

Compass 0.0000000000004937 0.0000000000005666 0.0000000000006394

NLess 0.0000000000030440 0.0000000000034493 0.0000000000038547

HJ 0.0000000000000884 0.0000000000000948 0.0000000000001012

EdHJ 0.0000000000001107 0.0000000000001167 0.0000000000001227

trial 7 (mean)

Compass 0.0000000000000018 0.0000000000000021 0.0000000000000025

NLess 0.0000000000000103 0.0000000000000119 0.0000000000000134

HJ 0.0000000000000002 0.0000000000000002 0.0000000000000002

EdHJ 0.0000000000000003 0.0000000000000003 0.0000000000000003

trial 8 (mean)

Compass 0.0000000000000017 0.0000000000000020 0.0000000000000023

NLess 0.0000000000000093 0.0000000000000109 0.0000000000000124

HJ 0.0000000000000002 0.0000000000000002 0.0000000000000002

EdHJ 0.0000000000000002 0.0000000000000002 0.0000000000000003

trial 9 (mean)

Compass 0.0000000000000017 0.0000000000000020 0.0000000000000023

NLess 0.0000000000000093 0.0000000000000109 0.0000000000000124

HJ 0.0000000000000002 0.0000000000000002 0.0000000000000002

EdHJ 0.0000000000000002 0.0000000000000002 0.0000000000000003

65

Function Value Accuracy Estimates in Five Dimensions

trial 0 (mean)

Compass 0.0274570867539054 0.0285950974737656 0.0297331081936259

NLess 0.0990485451476941 0.1027495921367188 0.1064506391257436

HJ 0.9003224209169278 1.0671631079235064 1.2340037949300851

EdHJ 0.9026040012195177 1.0694393896339436 1.2362747780483694

trial 1 (mean)

Compass 0.0007864066132930 0.0008359654073355 0.0008855242013781

NLess 0.0039716913994037 0.0041779169763865 0.0043841425533693

HJ 0.0712912375515785 0.1213936683423878 0.1714960991331972

EdHJ 0.0713303435492137 0.1214327396254077 0.1715351357016018

trial 2 (mean)

Compass 0.0000146447364491 0.0000161270082719 0.0000176092800946

NLess 0.0000865293910833 0.0000940617909494 0.0001015941908156

HJ 0.0007158605639889 0.0258243802644783 0.0509328999649678

EdHJ 0.0007163963178371 0.0258249158070007 0.0509334352961644

trial 3 (mean)

Compass 0.0000002450972453 0.0000002761302317 0.0000003071632181

NLess 0.0000014638865221 0.0000017260182329 0.0000019881499437

HJ −0.0055107009893715 0.0057391957444782 0.0169890924783278

EdHJ −0.0055106957090675 0.0057392010237465 0.0169890977565604

trial 4 (mean)

Compass 0.0000000036256379 0.0000000045795556 0.0000000055334734

NLess 0.0000000231914512 0.0000000272466341 0.0000000313018170

HJ 0.0000000005664018 0.0000000005912256 0.0000000006160494

EdHJ 0.0000000006982424 0.0000000007492825 0.0000000008003225

66

Function Value Accuracy Estimates in Five Dimensions

trial 5 (mean)

Compass 0.0000000000605032 0.0000000000769118 0.0000000000933203

NLess 0.0000000003589325 0.0000000004235556 0.0000000004881788

HJ 0.0000000000091625 0.0000000000100741 0.0000000000109857

EdHJ 0.0000000000109840 0.0000000000115559 0.0000000000121279

trial 6 (mean)

Compass −0.0000000000029672 0.0000000000054022 0.0000000000137715

NLess 0.0000000000018992 0.0000000000107494 0.0000000000195996

HJ 0.0000000000001423 0.0000000000001489 0.0000000000001555

EdHJ 0.0000000000001765 0.0000000000001880 0.0000000000001995

trial 7 (mean)

Compass −0.0000000000040937 0.0000000000042722 0.0000000000126381

NLess −0.0000000000041903 0.0000000000046433 0.0000000000134770

HJ 0.0000000000000003 0.0000000000000004 0.0000000000000004

EdHJ 0.0000000000000004 0.0000000000000005 0.0000000000000006

trial 8 (mean)

Compass −0.0000000000040940 0.0000000000042719 0.0000000000126378

NLess −0.0000000000041921 0.0000000000046415 0.0000000000134752

HJ 0.0000000000000003 0.0000000000000003 0.0000000000000003

EdHJ 0.0000000000000003 0.0000000000000004 0.0000000000000005

trial 9 (mean)

Compass −0.0000000000040940 0.0000000000042719 0.0000000000126378

NLess −0.0000000000041921 0.0000000000046415 0.0000000000134752

HJ 0.0000000000000003 0.0000000000000003 0.0000000000000003

EdHJ 0.0000000000000003 0.0000000000000004 0.0000000000000005

67

9.4 Distance From the Optimum

The following tables record the average distance between the point returned as the

minimum by the search and the true x∗. If I were to run another similar trial with ten

thousand tests, its average would fall within the ranges given with ninety-five percent

confidence. Note again that the relative accuracies of the HJSearch and EdHJSearch

begin to improve noticably over those of the NLessSearch and CompassSearch after

trial 3. Particularly of interest in comparing these tables with the previous tables is

to notice that the accuracies of the HJSearch and EdHJSearch in terms of locating

the minimum are not particularly poor before trial 3.

68

Optimal Point Accuracy Estimates in Two Dimensions

trial 0 (mean)

Compass 0.0385279511719603 0.0410500566401427 0.0435721621083250

NLess 0.0683579604348376 0.0723663207187724 0.0763746810027071

HJ 0.0577232843295159 0.0622275679510949 0.0667318515726740

EdHJ 0.0590211821177044 0.0635331127626647 0.0680450434076251

trial 1 (mean)

Compass 0.0056092358570495 0.0061587985417031 0.0067083612263568

NLess 0.0121277629833288 0.0132287218505115 0.0143296807176942

HJ 0.0060858112575836 0.0075375104933280 0.0089892097290725

EdHJ 0.0062486716615709 0.0077015105665452 0.0091543494715196

trial 2 (mean)

Compass 0.0007336904853225 0.0008091192100996 0.0008845479348767

NLess 0.0017427083005539 0.0019184944799659 0.0020942806593779

HJ 0.0005539914843042 0.0011881449490278 0.0018222984137514

EdHJ 0.0005699320964900 0.0012041557430172 0.0018383793895444

trial 3 (mean)

Compass 0.0000916043557912 0.0001010706481809 0.0001105369405706

NLess 0.0002323826387481 0.0002637993415911 0.0002952160444341

HJ −0.0001240652846731 0.0002465583027102 0.0006171818900934

EdHJ −0.0001209316141433 0.0002496987095321 0.0006203290332075

trial 4 (mean)

Compass 0.0000115092683997 0.0000127361307792 0.0000139629931587

NLess 0.0000296709825200 0.0000336666645594 0.0000376623465988

HJ 0.0000066652277411 0.0000070258205599 0.0000073864133787

EdHJ 0.0000071874378134 0.0000075630364406 0.0000079386350679

69

Optimal Point Accuracy Estimates in Two Dimensions

trial 5 (mean)

Compass 0.0000014431887205 0.0000016043726175 0.0000017655565144

NLess 0.0000037650103370 0.0000042633753581 0.0000047617403792

HJ 0.0000008400094443 0.0000008734748677 0.0000009069402912

EdHJ 0.0000008665772821 0.0000009099442199 0.0000009533111577

trial 6 (mean)

Compass 0.0000001798938824 0.0000002000664323 0.0000002202389822

NLess 0.0000004720895414 0.0000005342406479 0.0000005963917543

HJ 0.0000001062128827 0.0000001107493630 0.0000001152858433

EdHJ 0.0000001065542916 0.0000001102146985 0.0000001138751055

trial 7 (mean)

Compass 0.0000000124407547 0.0000000146087018 0.0000000167766490

NLess 0.0000000305286407 0.0000000350566682 0.0000000395846957

HJ 0.0000000060979101 0.0000000063853126 0.0000000066727151

EdHJ 0.0000000066714581 0.0000000073213483 0.0000000079712386

trial 8 (mean)

Compass 0.0000000117646541 0.0000000139274847 0.0000000160903152

NLess 0.0000000283779662 0.0000000327341601 0.0000000370903539

HJ 0.0000000056605309 0.0000000059467027 0.0000000062328745

EdHJ 0.0000000062188606 0.0000000068684281 0.0000000075179956

trial 9 (mean)

Compass 0.0000000117646368 0.0000000139274674 0.0000000160902980

NLess 0.0000000283778612 0.0000000327340553 0.0000000370902495

HJ 0.0000000056605188 0.0000000059466907 0.0000000062328626

EdHJ 0.0000000062188485 0.0000000068684160 0.0000000075179836

70

Optimal Point Accuracy Estimates in Three Dimensions

trial 0 (mean)

Compass 0.0829733865784636 0.0869186671636808 0.0908639477488979

NLess 0.1564860320751748 0.1628158316972420 0.1691456313193092

HJ 0.0875096704533737 0.0932838025452382 0.0990579346371027

EdHJ 0.0920273826374173 0.0978863407125467 0.1037452987876761

trial 1 (mean)

Compass 0.0135291918374614 0.0145883606746941 0.0156475295119269

NLess 0.0321585637898069 0.0343408436182048 0.0365231234466026

HJ 0.0093300075497522 0.0111812405933575 0.0130324736369627

EdHJ 0.0102641828361188 0.0121579186751758 0.0140516545142327

trial 2 (mean)

Compass 0.0018104068122112 0.0020685725681360 0.0023267383240609

NLess 0.0047420920630823 0.0052620404731615 0.0057819888832408

HJ 0.0009123568128967 0.0014416970833654 0.0019710373538341

EdHJ 0.0009913557122403 0.0015211190921268 0.0020508824720134

trial 3 (mean)

Compass 0.0002343580810911 0.0002735482850942 0.0003127384890973

NLess 0.0006144726615291 0.0006918649163296 0.0007692571711301

HJ 0.0000211545319989 0.0001774472772456 0.0003337400224924

EdHJ 0.0000320375130973 0.0001884025504871 0.0003447675878770

trial 4 (mean)

Compass 0.0000291798457196 0.0000341329750389 0.0000390861043581

NLess 0.0000785661505143 0.0000885129103370 0.0000984596701597

HJ 0.0000112873484380 0.0000126301034213 0.0000139728584046

EdHJ 0.0000124500644640 0.0000144073792154 0.0000163646939667

71

Optimal Point Accuracy Estimates in Three Dimensions

trial 5 (mean)

Compass 0.0000036473593584 0.0000042628688985 0.0000048783784387

NLess 0.0000099000325279 0.0000111313204696 0.0000123626084113

HJ 0.0000014601454640 0.0000015647628314 0.0000016693801988

EdHJ 0.0000015972573041 0.0000016770644604 0.0000017568716166

trial 6 (mean)

Compass 0.0000004522493837 0.0000005281146680 0.0000006039799522

NLess 0.0000012516886533 0.0000014077956604 0.0000015639026675

HJ 0.0000001798586779 0.0000001916558495 0.0000002034530210

EdHJ 0.0000002022017297 0.0000002150812050 0.0000002279606804

trial 7 (mean)

Compass 0.0000000307396116 0.0000000383076550 0.0000000458756983

NLess 0.0000000777354139 0.0000000903227726 0.0000001029101312

HJ 0.0000000099967064 0.0000000105922831 0.0000000111878598

EdHJ 0.0000000110607634 0.0000000143878492 0.0000000177149350

trial 8 (mean)

Compass 0.0000000291053323 0.0000000366653076 0.0000000442252829

NLess 0.0000000729891755 0.0000000855411431 0.0000000980931107

HJ 0.0000000090804080 0.0000000096662634 0.0000000102521187

EdHJ 0.0000000101815523 0.0000000135079900 0.0000000168344277

trial 9 (mean)

Compass 0.0000000291052327 0.0000000366652082 0.0000000442251837

NLess 0.0000000729890121 0.0000000855409801 0.0000000980929481

HJ 0.0000000090803669 0.0000000096662225 0.0000000102520781

EdHJ 0.0000000101815011 0.0000000135079389 0.0000000168343767

72

Optimal Point Accuracy Estimates in Four Dimensions

trial 0 (mean)

Compass 0.1501406284088255 0.1562820974602762 0.1624235665117269

NLess 0.2796997444325927 0.2886681319780744 0.2976365195235562

HJ 0.1233099655423388 0.1304298599453771 0.1375497543484154

EdHJ 0.1319907079514115 0.1392123780405315 0.1464340481296515

trial 1 (mean)

Compass 0.0269061551752484 0.0288018839474231 0.0306976127195978

NLess 0.0633972230338815 0.0670520426813438 0.0707068623288061

HJ 0.0141759695858268 0.0165128301264647 0.0188496906671027

EdHJ 0.0156147306755179 0.0179845467361783 0.0203543627968386

trial 2 (mean)

Compass 0.0038126145520266 0.0042311556431662 0.0046496967343057

NLess 0.0094905084690905 0.0103137131720150 0.0111369178749395

HJ 0.0012882093676841 0.0023345849113634 0.0033809604550427

EdHJ 0.0015545521316188 0.0026066528612341 0.0036587535908493

trial 3 (mean)

Compass 0.0004914438196435 0.0005486564461442 0.0006058690726449

NLess 0.0012512817386852 0.0013738870129007 0.0014964922871162

HJ −0.0000584475442264 0.0003774453425243 0.0008133382292750

EdHJ −0.0000393865714460 0.0003965275569212 0.0008324416852883

trial 4 (mean)

Compass 0.0000620078822107 0.0000691266936339 0.0000762455050571

NLess 0.0001586308375257 0.0001750884711321 0.0001915461047385

HJ 0.0000183763839519 0.0000195000863056 0.0000206237886594

EdHJ 0.0000210946993157 0.0000227291392644 0.0000243635792131

73

Optimal Point Accuracy Estimates in Four Dimensions

trial 5 (mean)

Compass 0.0000077746986467 0.0000086689013112 0.0000095631039757

NLess 0.0000199827513813 0.0000220085827092 0.0000240344140371

HJ 0.0000022615009878 0.0000023870860493 0.0000025126711108

EdHJ 0.0000025355611081 0.0000026703847844 0.0000028052084607

trial 6 (mean)

Compass 0.0000009599118544 0.0000010727004397 0.0000011854890249

NLess 0.0000025244371924 0.0000027810714627 0.0000030377057329

HJ 0.0000002764777721 0.0000002943084439 0.0000003121391156

EdHJ 0.0000003305704688 0.0000003521834736 0.0000003737964785

trial 7 (mean)

Compass 0.0000000594762388 0.0000000668889089 0.0000000743015789

NLess 0.0000001473482363 0.0000001628301260 0.0000001783120157

HJ 0.0000000155261236 0.0000000168078289 0.0000000180895343

EdHJ 0.0000000183154285 0.0000000193955881 0.0000000204757477

trial 8 (mean)

Compass 0.0000000552397724 0.0000000624503790 0.0000000696609855

NLess 0.0000001353518694 0.0000001502532035 0.0000001651545376

HJ 0.0000000138096768 0.0000000150346109 0.0000000162595449

EdHJ 0.0000000167210813 0.0000000177772019 0.0000000188333224

trial 9 (mean)

Compass 0.0000000552397527 0.0000000624503594 0.0000000696609660

NLess 0.0000001353517009 0.0000001502530356 0.0000001651543703

HJ 0.0000000138096509 0.0000000150345851 0.0000000162595193

EdHJ 0.0000000167210644 0.0000000177771850 0.0000000188333057

74

Optimal Point Accuracy Estimates in Five Dimensions

trial 0 (mean)

Compass 0.2178632617593219 0.2251811675124386 0.2324990732655554

NLess 0.3968574111604345 0.4071009065284119 0.4173444018963893

HJ 0.1556223350732633 0.1635135894605061 0.1714048438477490

EdHJ 0.1706465816232003 0.1786822842839827 0.1867179869447650

trial 1 (mean)

Compass 0.0417222167910058 0.0440453326307046 0.0463684484704034

NLess 0.0942831861589735 0.0983896333895409 0.1024960806201083

HJ 0.0186107628363263 0.0215597385900391 0.0245087143437520

EdHJ 0.0207241841447710 0.0237435471102113 0.0267629100756516

trial 2 (mean)

Compass 0.0059085807187189 0.0064323829964016 0.0069561852740844

NLess 0.0148626440115780 0.0160426448081967 0.0172226456048154

HJ 0.0020401198186421 0.0033997696581853 0.0047594194977285

EdHJ 0.0022688531266929 0.0036319512712130 0.0049950494157331

trial 3 (mean)

Compass 0.0007661064419559 0.0008562340249422 0.0009463616079285

NLess 0.0019476489169702 0.0022074221092738 0.0024671953015774

HJ −0.0001948888179214 0.0006601996851754 0.0015152881882723

EdHJ −0.0001780878726949 0.0006767724870687 0.0015316328468323

trial 4 (mean)

Compass 0.0000945577605347 0.0001099112131959 0.0001252646658571

NLess 0.0002454535885927 0.0002779677769697 0.0003104819653466

HJ 0.0000243570655416 0.0000256536797467 0.0000269502939518

EdHJ 0.0000281463832350 0.0000296518671403 0.0000311573510456

75

Optimal Point Accuracy Estimates in Five Dimensions

trial 5 (mean)

Compass 0.0000119460438834 0.0000138301937755 0.0000157143436676

NLess 0.0000306689450679 0.0000347646248946 0.0000388603047213

HJ 0.0000032154761534 0.0000035476556082 0.0000038798350631

EdHJ 0.0000035702048543 0.0000038072100469 0.0000040442152395

trial 6 (mean)

Compass 0.0000015046678201 0.0000017583383955 0.0000020120089708

NLess 0.0000034970358261 0.0000048006876900 0.0000061043395539

HJ 0.0000003879518630 0.0000004044137155 0.0000004208755680

EdHJ 0.0000004498452703 0.0000004831076701 0.0000005163700700

trial 7 (mean)

Compass 0.0000000737196654 0.0000001367306848 0.0000001997417042

NLess −0.0000003052778287 0.0000009647934464 0.0000022348647215

HJ 0.0000000202640331 0.0000000226205691 0.0000000249771051

EdHJ 0.0000000245434403 0.0000000277228291 0.0000000309022179

trial 8 (mean)

Compass 0.0000000669525485 0.0000001299486707 0.0000001929447929

NLess −0.0000003248254630 0.0000009452445159 0.0000022153144948

HJ 0.0000000181001062 0.0000000204491824 0.0000000227982587

EdHJ 0.0000000221218774 0.0000000252822759 0.0000000284426744

trial 9 (mean)

Compass 0.0000000669525253 0.0000001299486475 0.0000001929447697

NLess −0.0000003248255413 0.0000009452444376 0.0000022153144166

HJ 0.0000000181000924 0.0000000204491688 0.0000000227982451

EdHJ 0.0000000221218523 0.0000000252822508 0.0000000284426494

76

10 Source Code

10.1 Source Code for Generating Test Parameters

10.1.1 objective.h

/* objective.h declares the necessary objective functions
and provides a forum for defining reasonable initialStepLength,
stoppingStepLength, and maxCalls values.
Default values are defined at the top of PatternSearch.h for
reference. Note that specific definitions are highly recommended.
Liz Dolan

*/

#if !defined _userfile_
#define _userfile_

#include <malloc.h>
#include "rngs.h"
#include "rvgs.h"
#include <iostream.h>
#include <math.h>
#include <stdio.h>

void fcn(int , double *, double & , int &);
void initpt(int , double *&);
double initLength();
extern bool newFunction;
extern bool newInitialPoint;
extern int n;
extern double tolerance;

#define initialStepLength initLength()
#define stoppingStepLength tolerance
#define maxCalls 1000000
#endif

10.1.2 objective.cc

/* objective.cc implements the minimal required information from the user:
the dimension of the search, n;
the objective function, fcn, which returns a flag of success and the double

objective function value at x;
and the initial point at which the search should start
Liz Dolan

*/

#include "objective.h"

int n = 5;
double tolerance = sqrt(fabs(3.0 * (4.0/3.0 -1.0) -1.0));
bool newFunction;
bool newInitialPoint;

double initLength()
{
static double length;
if(newInitialPoint)

77

{
length = Exponential(1.0);
if (length < 0)
length *=-1.0;

}
return length;

}

void fcn(int vars, double *x, double & f, int & flag)
/*

fcn evaluates a convex unimodal quadratic, creating
a new random quadratic whenever newFunction is true
upon a call to fcn. Specify a seed to the random
number generator via a call to PlantSeeds(long int)
before calling fcn with newFunction true; to regenerate
an earlier function, simply plan the earlier seed and
recall fcn. Alternatively, one may vary the function
using the SelectStream(int i: 0<=i<=256) call

The convext quadratic is built using the following
formula:
f() = x_transpose H_transpose H x + C,
where H is an n+2 by n matrix of normally distributed
values with a mean of zero and a std dev of one.

fcn returns a function value of f and signifies a successful
call by setting flag to one.

*/

{
static double C; //C is the constant term
f = 0; //initialize the return value
double xtAx = 0;
static double (**H) = NULL; //the H matrix

if(newFunction)
{
/*apply this code only once to save disk space & time
FILE * MATRIX;
FILE * FUNCTION;
char matrix[252];
sprintf (matrix, "/home/scratch4/eddola/data4/dir%d/matrix%d",n,n);
MATRIX = fopen(matrix, "a+");
sprintf (matrix, "/home/scratch4/eddola/data4/dir%d/func_opt%d", n, n);
FUNCTION = fopen(matrix, "a+");
*/
if (H!=NULL)
{
for (int i = 0; i < n+2; i++)

{
delete (H)[i];

}
delete H;

}

H = new (double*)[n+2];
if(H!=NULL)
{
for (int i = 0; i < n+2; i++)

{
(H)[i] = new double[n];

}

78

for (int i = 0; i < n+2; i++)
{
for (int j = 0; j < n; j++)
{

(H[i])[j] = Normal(0.0, 1.0);
//fprintf(MATRIX, "%20.16f\n", (H[i])[j]);

}
}

C = Exponential(1.0);
flag = 1;

}
else
flag = 0;

//fprintf(MATRIX, "%19.16f\n\n",C);
//fprintf(FUNCTION, "%20.16f\n",C);
//fclose(MATRIX);
//fclose(FUNCTION);

}//if we need to allocate the array
else if(H!= NULL)
{
for(int i = 0; i < n+2; i++)

{
for (int j = 0; j < n; j++)
{
xtAx += ((H[i])[j] * x[j]); // while not going in the usual direction,
// this should work because of the commutative property of addition

}
f += xtAx * xtAx;
xtAx = 0;

}
f += C;
flag = 1;

}
else
flag = 0;
return;

}

void initpt(int vars, double *&x)
/* initpt creates a somewhat random point whose components

are normally distributed about the origin
I’ve chosen to reserve stream 0 of the random number
streams for this purpose

*/
{
static double * initialPoint = NULL;
if(newInitialPoint)

{
if(initialPoint!=NULL)
delete initialPoint;

initialPoint = new double[vars];
for (int i = 0; i < vars; i++)
{
initialPoint[i] = Normal(0.0, 1.0);

}
}

x = new double[vars];
for (int i = 0; i < vars; i++)

x[i] = initialPoint[i];
}

79

10.2 Source Code for Pattern Search Base Class

10.2.1 PatternSearch.h

/* PatternSearch.h
* declarations of the PatternSearch base class member
* functions and data
Liz Dolan

*/

#ifndef _PatternSearch_
#define _PatternSearch_

#include <iostream.h>
#include <fstream.h>
#include <malloc.h>
#include <stdlib.h>
#include "f2c.h"
#include "vector.h"
#include "objective.h"

//default definitions
//should be defined by user in objective.h
#ifndef maxCalls
#define maxCalls -1
#endif
#ifndef initialStepLength
#define initialStepLength 1.0
#endif
#ifndef stoppingStepLength
#define stoppingStepLength tolerance //the square root of machine epsilon
#endif

extern int dgetrs_(char *trans, integer *n, integer *nrhs,
doublereal *a, integer *lda, integer *ipiv, doublereal *b,
integer * ldb, integer *info);

extern int dgetrf_(integer *m, integer *n, doublereal *a, integer *
lda, integer *ipiv, integer *info);

extern doublereal dnrm2_(integer *d, doublereal *x, integer *incx);

typedef char file[32];

class PatternSearch
{

public:

PatternSearch(int dimensions);
~PatternSearch();
virtual void ExploratoryMoves() = 0;
virtual bool Stop();
//gives default stopping criteria based on maxCalls and stoppingStepLength
virtual bool SimpGradient(long int cols, rml_Vector ** pat, FLOP * func_vals);
//cols==length of the search pattern
//pat==an array of the pattern with x2-x1, x3-x1,...,xcols-x1
//func_vals==the values of the objective function as found
//by f(x2)-f(x1), f(x3)-f(x1),...,f(xcols)-f(x1)
//finds the simplex gradient per T. Kelley of the pattern matrix
//and corresponding function values

80

int GetVarNo(); //returns the number of dimensions
int GetFunctionCalls() { return functionCalls;};
void GetMinPoint(rml_Vector & minimum);
//requires and rml_Vector of the correct size
void GetMinVal(FLOP & value); //best objective function value found thus far
void GetPattern(rml_Vector ** &pat); //deep copy of the pattern
void GetPatternLength(int & pattern);
//returns the number of "columns" of the pattern "matrix"
virtual FLOP GetStepLength() {return latticeStepLength;};
virtual void ReplaceMinimum(const rml_Vector & newPoint, FLOP newValue);
//replaces the minimizer & the minimum objective function value
virtual void NextPoint(int index, const rml_Vector &
currentPoint, rml_Vector & nextPoint);

//calculates the next prospect point by adding the pattern vector at
//index to the current vector
//returns the prospect in nextPoint
void ReadPatternStandard();
//input first the pattern length and then the values of each vector
void ReadPatternFile(ifstream fp, file FILENAME);
//input first the pattern length and then the values of each vector
void InitializePattern(int patternSize, rml_Vector * pat[]);
//deletes any existing pattern and replaces it with the one pointed to by pat
virtual void ScalePattern(FLOP scalar);
//scale each pattern vector by scalar
virtual void fcnCall(int n, double *x, double & f, int & flag);
//indirection of function call for purposes of keeping an accurate
//tally of the number of function calls
void CleanSlate(int dimensions);
//reinitialize all values

private:

rml_Vector ** pattern;
//a pointer to an array of pointers to vector class objects
int variables; //dimension of the problem
rml_Vector * minPoint;
//the minimizer, should be a pointer to a vector class object
int patternLength; //number of "columns" in pattern "matrix"
FLOP minValue;
//best objective function value calculated thus far
FLOP latticeStepLength; //density of underlying lattice
long functionCalls; //tally of the number of function calls
};

#endif

10.2.2 PatternSearch.cc

/* PatternSearch.cc
Liz Dolan

*/

#include "PatternSearch.h"

PatternSearch::PatternSearch(int dimensions)
{
variables = dimensions;
patternLength = 0;
functionCalls = 0;
pattern = NULL;
//need to initialize pattern and evaluationOrder

81

FLOP * startPoint = NULL;
initpt(variables, startPoint);
minPoint = new rml_Vector(startPoint, variables);
int flag = 1;
latticeStepLength = initialStepLength;
fcn(variables, startPoint, minValue, flag);

}//constructor

PatternSearch::~PatternSearch()
{
for(int j = 0; j < patternLength; j++)

{
delete pattern[j];

}//for
delete pattern;
pattern = NULL;
delete minPoint;
minPoint = NULL;

}//destructor

void PatternSearch::CleanSlate(int dimensions)
//reinitialize all values
{
variables = dimensions;
functionCalls = 0;
for (int j=0; j<patternLength; j++)

delete pattern[j];
delete pattern;
patternLength = 0;
delete minPoint;
pattern = NULL;
minPoint = NULL;
//need to initialize pattern and evaluationOrder
FLOP * startPoint = NULL;
initpt(variables, startPoint);
minPoint = new rml_Vector(startPoint, variables);
int flag = 1;
latticeStepLength = initialStepLength;
fcn(variables, startPoint, minValue, flag);

}

bool PatternSearch::Stop()
{
if(maxCalls>-1)

if(functionCalls >= maxCalls)
return true;

if(patternLength > 0)
{
if (latticeStepLength <= stoppingStepLength)
return true;

else
{
return false;

}
}//

return true;
//as a default, if there is no pattern, stop

}//Stop

bool PatternSearch::SimpGradient(long int cols, rml_Vector* simpat[],
FLOP * func_vals)

82

/* SimpGradient finds the simplex gradient a la T. Kelley
for comparison as a stopping criterion with the function
variance (as is used in classic Nelder-Mead) and the
lattice step length. Gradient information is in no
way neccessary to the Pattern Search; this function
exists in this version for testing purposes only.

The simplex gradient as proposed by T. Kelley:
D(f:S) = V^-T d(f:S),
where d(f:S) =
(f(x_2) - f(x_1) ; f(x_3) - f(x_1) ;...; f(x_N+1) - f(x_1))
where x_1,...x_N+1 denote the N+1 vertices of a
N-dimensional simplex S and
V(S)= (x_2-x_1, x_3-x_1, ..., x_N+1-x_1).

Source: D.M. Bortz and C.T. Kelley. "The Simplex
Gradient and Noisy Optimization Problems."
Computational Methods for Optimal Design and
Control. Borggaard, Burns, Cliff, and Schreck.
Birkhaeuser, Boston. 1998.

I keep the term simplex gradient here even though I use the
function for pattern of more than N+1 points.

*/
{
long int M = n; //dimensions of the search space
long int LDA = M;
long int * Mpoint = &M;
long int * Npoint = &cols;
long int * LDApoint = &LDA;
long int ipiv[n]; //will return the pivot indices
long int flag ; //returned 0 for success, -i for an illegal ith arg
int nice = -1; //value returned by clapack calls
char tran[1]; //value is N for no transpose, T for transpose, or

//C for conjugate transpose
tran[0] = ’T’;
long int oneholder = 1;
long int * one = &oneholder;
FLOP * sneaky;
FLOP * pat;
pat = new FLOP[M*cols];

/*note that the matrix should be passed by column and
not by row as is the standard in C++ because the
functions dgetrf and dgetrs are converted from
FORTRAN, specifically from functions to find the
LU factorization of a matrix and solve Ax=b for x
from LAPACK

*/
for(int count =0; count < cols; count++)

{
sneaky = (*simpat[count]).passPointer();
for (int countess = 0; countess < M; countess++)
{
pat[(count*M)+countess] = sneaky[countess];

}
}

nice = dgetrf_(Mpoint, Npoint, pat, LDApoint, ipiv, &flag);
if((flag)==0)

{
nice = dgetrs_(tran, Mpoint, one, pat, LDApoint,

ipiv, func_vals, Mpoint, &flag);

83

}
delete pat;
pat = NULL;
bool success;
if ((flag)==0)

success = true;
else

success = false;
return true;

}//SimpGradient

int PatternSearch::GetVarNo()
{
return variables;

}//GetVarNo

void PatternSearch::GetMinPoint(rml_Vector & minimum)
{
minimum.copy(*minPoint);

}//GetMinPoint

void PatternSearch::GetMinVal(FLOP & value)
{
value = minValue;

}//GetMinVal

void PatternSearch::GetPattern(rml_Vector ** &pat)
//user should be able to pass just a pointer

{
pat = new (rml_Vector*)[patternLength];
for(int i = 0; i < patternLength && pattern[i]!=NULL ; i++)

{
pat[i] = new rml_Vector(variables);
(*pat[i]).copy ((*pattern[i]));

}//for

}//GetPattern

void PatternSearch::GetPatternLength(int & pattern)
{
pattern = patternLength;

}//GetPatternLength

void PatternSearch::ReplaceMinimum(const rml_Vector & newPoint, FLOP newValue)
{
(*minPoint).copy(newPoint);
minValue = newValue;

}//UpdateMinPoint

void PatternSearch::NextPoint(int index, const rml_Vector &
currentPoint, rml_Vector & nextPoint)
{
//To get the next point I add the currentPoint to the pattern vector at index
if (pattern != NULL && patternLength > index)

sum(nextPoint,currentPoint, *pattern[index]);
}

void PatternSearch::ReadPatternStandard()
{
FLOP * buffer;
if(patternLength != 0)

{

84

for(int j = 0; j < patternLength; j++)
{
delete pattern[j];

}//for
delete [] pattern;
pattern = NULL;

}//if

cin >> patternLength;
typedef rml_Vector* pointer;
pattern = new pointer[patternLength];

for(int i = 0; i < patternLength; i++)
{
buffer = new FLOP[variables];
for(int j = 0; j < variables; j++)
{
cin >> buffer[j];

}//inner for
pattern[i] = new rml_Vector(buffer, variables);

}//outer for
}//ReadPatternStandard

void PatternSearch::ReadPatternFile(ifstream fp, file FILENAME)
{
if(patternLength != 0)

{
for(int j = 0; j < patternLength; j++)
{
delete pattern[j];

}//for
delete [] pattern;
pattern = NULL;

}//if
if (fp==NULL) return;
FLOP * buffer;
fp >> patternLength; //the length of the pattern must precede the pattern
typedef rml_Vector* pointer;
pattern = new pointer[patternLength];
for(int i = 0; i < patternLength; i++)

{
buffer = new FLOP[variables];
for(int j = 0; j < variables; j++)
{
fp >> buffer[j];

}//inner for
pattern[i] = new rml_Vector(buffer, variables);

}//outer for
}//ReadPatternFile

void PatternSearch::InitializePattern(int patternSize, rml_Vector *pat[])
{
if(patternLength != 0)

{
for(int j = 0; j < patternLength; j++)
{
delete pattern[j];

}//for
delete [] pattern;
pattern = NULL;

}//if
typedef rml_Vector* pointer;

85

pattern = new pointer[patternSize];
patternLength = patternSize;
for(int j = 0; j < patternLength; j++)

{
pattern[j] = new rml_Vector(variables);
(*(pattern[j])).copy(*(pat[j]));

}//for
}//InitializePattern

void PatternSearch::ScalePattern(FLOP scalar)
{
if(pattern != NULL)

{
for(int i = 0; i < patternLength && pattern[i]!=NULL; i++)
{
(*pattern[i]) *= scalar;

}//for
latticeStepLength *= scalar;

}//if
}//ScalePattern

void PatternSearch::fcnCall(int n, double *x, double & f,
int & flag)
{
fcn(n, x,f, flag);
functionCalls++;

}

10.3 Source Code for Derived Classes

10.3.1 CompassSearch.h

/*CompassSearch.h
header file for a search based on the class PatternSearch
Liz Dolan

*/
#ifndef _CompassSearch_
#define _CompassSearch_
#include "PatternSearch.h"
#include "vector.h"
class CompassSearch: public PatternSearch
{
public :
CompassSearch(int numberOfVariables);
//the dimensions of the search space are required for the constructor
~CompassSearch();
void ExploratoryMoves();
//searches in compass directions for a better solution to the objective function

private:
void CreatePattern(FLOP);
//initializes the pattern to one that contains one positive
//and one negative element in each of the compass directions
void UpdatePattern();
//scales the pattern to search half as far in each direction

};//class CompassSearch

#endif

86

10.3.2 CompassSearch.cc

/* CompassSearch.cc
implementation of the CompassSearch class to find a minimal objective function
solution.
Liz Dolan

*/
#include "CompassSearch.h"
CompassSearch::CompassSearch(int numberOfVariables):
PatternSearch(numberOfVariables)
{
}

CompassSearch::~CompassSearch()
{
}

void CompassSearch::ExploratoryMoves()
{
FILE * gradient;
char gradfile[252];
sprintf (gradfile, "/scratch/eddola/dir%d/gradient%d",n,n);
gradient = fopen(gradfile, "a+");
FILE * VARIANCE;
sprintf (gradfile, "/scratch/eddola/dir%d/variance%d",n,n);
// this file will become ungainly very quickly, I recommend writing to
// it only for small numbers of trials i.e. 100-
// VARIANCE = fopen(gradfile, "a+");

FLOP pace = 0.0;
pace = GetStepLength();
CreatePattern(pace);
rml_Vector currentPoint(GetVarNo());
rml_Vector nextPoint(GetVarNo());
FLOP value;
FLOP nextValue;
int length;
int success = 0;
GetMinPoint(currentPoint);
GetMinVal(value);
GetPatternLength(length);
FLOP * knowns;
FLOP * sendknowns;
rml_Vector ** getpat;
rml_Vector ** simple;
FLOP simplexGradient = -1.0;
FLOP minSimGrad = -1.0;
FLOP minVariance = -1.0;
knowns = new FLOP[length];
sendknowns = new FLOP[length-1];
long int incat = 1;
long int * inc = &incat;
long int simDimens = GetVarNo() - 1;
double diff, mean, summer, variance;
//used in calculating variance
FLOP curDelta = -1; //lattice size
do

{
for(int i = 0; i < length; i++)
{
NextPoint(i, currentPoint, nextPoint);
FLOP * tried;

87

tried = nextPoint.passPointer();

fcnCall(GetVarNo(), tried, nextValue, success);
knowns[i] = nextValue;
if(success==1)

{
if(nextValue < value)
{

ReplaceMinimum(nextPoint, nextValue);
value = nextValue;
currentPoint.copy(nextPoint);
i = -1; //start the compass search over at the new point

}//if there is improvement

}//if able to get a function value
}//for now we know that there aren’t better points around this one

UpdatePattern();
GetPattern(getpat);
for(int simp = 0; simp < length; simp++)
{
sum((*(getpat[simp])), (*(getpat[simp])), currentPoint);

}

mean = 0.0;
summer = 0.0;
for (int simp = 0; simp < length; simp++) {
/* Welford’s one-pass method */
/* to calculate the sample mean */
/* and variance */

diff = knowns[simp] - mean;
summer += diff * diff * (simp) / (simp + 1.0);
mean += diff / (simp + 1.0);

}
variance = (summer / length);

if(minVariance < 0)
minVariance = variance;

if(variance < minVariance)
minVariance = variance;

curDelta = GetStepLength();
for(int simp = 1; simp < length; simp++)
{
sum((*(getpat[simp])), 1.00, (*(getpat[simp])), -1.00, (*(getpat[0])));
sendknowns[simp-1] = knowns[simp] - knowns[0];

}
simple = (&(getpat[1]));
if(SimpGradient(length-1, simple, sendknowns))
{
if(minSimGrad == -1)

minSimGrad = dnrm2_(&simDimens, sendknowns, inc);
simplexGradient = dnrm2_(&simDimens, sendknowns, inc);
if(simplexGradient < minSimGrad)

minSimGrad = simplexGradient;
}

simple = NULL;
for(int simp = 0; simp < length; simp++)
{
delete getpat[simp];

}
delete getpat;
getpat = NULL;

88

}while(!Stop());//while we haven’t stopped()

delete knowns;
delete sendknowns;
fprintf(gradient, "%20.16f %20.16f %20.16f\n", minSimGrad,

simplexGradient, (1.0+minSimGrad) - (1.0 + simplexGradient));
fclose(gradient);

}//ExploratoryMoves

void CompassSearch::CreatePattern(FLOP initialStepSize)
{
typedef rml_Vector * pointer;
int vars = GetVarNo();
rml_Vector ** compassPattern;
compassPattern = new pointer[2*vars];
FLOP * temp;
if(vars > 0)

{
for(int j = 0; j < vars; j++)
{
temp = new FLOP[vars];
for(int i = 0; i < vars; i++)

{
temp[i] = 0;

}//1st inner for
temp[j] = initialStepSize;
compassPattern[2*j] = new rml_Vector(temp, vars);
temp = new FLOP[vars];
for(int i = 0; i < vars; i++)

{
temp[i] = 0;

}//2nd inner for
temp[j] = -initialStepSize;
compassPattern[2*j+1] = new rml_Vector(temp, vars);

}//for
InitializePattern(2*vars, compassPattern);
for(int j=0; j<2*vars; j++)
delete compassPattern[j];

delete compassPattern;
}//if there’s anything to allocate

}//CreatePattern

void CompassSearch::UpdatePattern()
{
ScalePattern(0.5);

}//UpdatePattern

10.3.3 NLessSearch.h

/*NLessSearch.h
header file for a regular simplex search based on
the PatternSearch class
by: Liz Dolan

*/
#ifndef _NLessSearch_
#define _NLessSearch_
#include "PatternSearch.h"
#include "vector.h"
class NLessSearch: public PatternSearch
{
public :

89

NLessSearch(int numberOfVariables);
//constructor requires only the dimensionality of the search space
~NLessSearch();
void ExploratoryMoves();

private:
void CreatePattern(FLOP);
void UpdatePattern();
void SizePattern(int dimens, rml_Vector *pat[], FLOP size);

};//class NLessSearch
#endif

10.3.4 NLessSearch.cc

/* NLessSearch.cc
implementations of the derived class NLessSearch functions
Liz Dolan

*/
#include "NLessSearch.h"

NLessSearch::NLessSearch(int numberOfVariables): PatternSearch(numberOfVariables)
{
}

NLessSearch::~NLessSearch()
{
}

void NLessSearch::ExploratoryMoves()
{
FLOP pace = 0.0;
pace = GetStepLength(); //as given by the user or default
CreatePattern(pace); //creates a regular simplex
rml_Vector currentPoint(GetVarNo());
rml_Vector nextPoint(GetVarNo());
FLOP value;
FLOP nextValue;
int length;
int success = 0;
FLOP * vectorArray;
//vectorArray points to the array of values
//in the rml_Vector class object
GetMinPoint(currentPoint); //initialize min point
GetMinVal(value); //and obj. func. value
GetPatternLength(length);
//search the pattern in each direction until improvement is found,
//then stop and begin a new iteration at the better point
do

{

for(int i = 0; i < length; i++)
{
NextPoint(i, currentPoint, nextPoint);
vectorArray = nextPoint.passPointer();
// cout << vectorArray[0] << " " << vectorArray[1] << endl;
fcnCall(GetVarNo(), vectorArray, nextValue, success);
if(success==1)

{
if(nextValue < value)
{

ReplaceMinimum(nextPoint, nextValue);

90

value = nextValue;
currentPoint.copy(nextPoint);
i = -1; //start the search over at the new point

}//if there is improvement
}//if able to get a function value

}//for now we know that there aren’t better points around this one
UpdatePattern();

}while(!Stop());//while we haven’t stopped()
}//ExploratoryMoves

void NLessSearch::CreatePattern(FLOP initialStepSize)
/*
For information on how to build a regular
simplex, see pages 79-81 S.L.S. Jacoby, J.S. Kowalik
and J.T. Pizzo.
Iterative Methods for Nonlinear Optimization Problems.
Prentice Hall, Inc., Englewood Cliffs, NJ. 1972.

*/
{
typedef rml_Vector * pointer;
int vars = GetVarNo();
FLOP * min;
//refer to book for p and q
FLOP p = (sqrt(vars+1) -1 + vars)*initialStepSize/(vars*sqrt(2));
FLOP q = (sqrt(vars+1) -1)*initialStepSize/(vars*sqrt(2));
rml_Vector ** nlessPattern; //pointer to the pattern being made
nlessPattern = new pointer[vars+1]; //# of vectors in pattern
FLOP * temp;
FLOP * basis;
//basis is the first point used to create a simplex according to the algorithm
rml_Vector center(vars);
//initialize temp’s array and build a rml_Vector about it
if(vars > 0)

{
basis = new FLOP[vars];
temp = new FLOP[vars];
GetMinPoint(center); //will be the initial point given by user
min = center.passPointer(); //array of values
//calculate the location of the basis according to the
//given value of the centroid
//temp is the direction of the vertex created from min
for(int j = 0; j < vars; j++)
{
basis[j] = (min[j] - (p/(vars+1)) - ((vars-1)*q/(vars+1)));
temp[j] = basis[j] - min[j];

}
nlessPattern[0] = new rml_Vector(temp, vars);
temp = new FLOP[vars];
for(int i = 1; i < vars + 1; i++)
{
for(int k = 0; k < vars; k++)

{
temp[k] = basis[k] + q - center[k];

}
temp[i-1] = basis[i-1] + p - center[i-1];
nlessPattern[i] = new rml_Vector(temp, vars);
temp = new FLOP[vars];

}//outer for
delete basis;
delete temp;
temp = NULL;
basis = NULL;

91

//make sure that the vectors of the pattern not only point
//in the right direction, but are also of desired length
SizePattern(vars, nlessPattern, initialStepSize);
InitializePattern(vars + 1, nlessPattern);
for(int j=0; j<vars+1; j++)
delete nlessPattern[j];

delete nlessPattern;
}//if there’s anything to allocate

}//CreatePattern

void NLessSearch::UpdatePattern()
{
ScalePattern(0.5);

}//UpdatePattern

void NLessSearch::SizePattern(int dimens, rml_Vector *pat[], FLOP size)
{
FLOP squares[dimens];
//used to find the squares of the distances in each dimension
rml_Vector * compare;
rml_Vector * compareTo;
FLOP *compareArray;
FLOP *compareToArray;
double compDist; //distance from the centroid
int length = dimens+1; //length of the pattern
compareTo = new rml_Vector(dimens);
(*compareTo).copy(*(pat[0])); //initialize for testing
compareToArray = (*compareTo).passPointer();
for(int i = 0;i < length;i++)

{
compare = new rml_Vector(dimens);
(*compare).copy(*(pat[i]));
compareArray = (*compare).passPointer();
compDist = 0;
//sum the squares and take square root to find the distance
for(int find = 0; find < dimens; find++)
{
squares[find] = (compareArray[find]*compareArray[find]);
compDist += squares[find];

}
compDist = pow(compDist, 0.5);
/*
calculate the angles and assure that they are equal
between compareTo and compare for each compare n.e.
compareTo
see page 106 of Gilbert Strang, Linear Algebra and its
Applications

double angle = 0;
for(int calc = 0;calc<dimens;calc++)
{
angle += (compareArray[calc] * compareToArray[calc]);

}
angle = angle/(compDist*compDist);
angle = acos(angle);
*/
//resize to desired length, based on knowledge of
//relationships in the ratios of similar triangles
for(int j = 0;j<dimens;j++)
{
compareArray[j] = size*compareArray[j]/compDist;

}

92

compDist = 0;

delete pat[i];
pat[i] = compare;

}//for
delete compareTo;
}

10.3.5 HJSearch.h

/* HJSearch.h
header file for a Hooke and Jeeves search based

on the class PatternSearch
For a good description of the Hooke and Jeeves search algorithm
I recommend Non-Linear Optimization Techniques by Box, Davies,
and Swann, 1969.
Liz Dolan

*/
#ifndef _HJSearch_
#define _HJSearch_
#include "PatternSearch.h"
#include "vector.h"

class HJSearch: public PatternSearch
{
public :
HJSearch(int numberOfVariables);
//the dimensions of the search space are required for the constructor
~HJSearch();
void ExploratoryMoves();
//searches in Hooke and Jeeves pattern for best objective function solution
bool Stop(FLOP pace);
//makes certain search has not exceeded maxCalls or
//is stepping at less than stoppingStepLength
FLOP GetStepLength();
//overrides the PatternSearch version with an acurate length
void CleanSlate(int dimensions);
//reinitialize all values

private:
FLOP step;

};//class HJSearch
#endif

10.3.6 HJSearch.cc

/* HJSearch.cc
implementation of the HJSearch class to find a minimal objective function
solution.
For a good description of the Hooke and Jeeves search algorithm
I recommend Non-Linear Optimization Techniques by Box, Davies,
and Swann, 1969.
Liz Dolan

*/
#include "HJSearch.h"

HJSearch::HJSearch(int numberOfVariables): PatternSearch(numberOfVariables)
{

93

step = initialStepLength; //as provided by the user or default
}

HJSearch::~HJSearch()
{
}

void HJSearch::CleanSlate(int dimensions)
//reinitialize all values
{
PatternSearch::CleanSlate(dimensions);
step = initialStepLength;

}

void HJSearch::ExploratoryMoves()
{
int dimens = GetVarNo();
rml_Vector currentPoint(dimens);
rml_Vector lastImprovingPoint(dimens); //last base point
rml_Vector storage(dimens);
//for intermediate storage to reduce rounding error
rml_Vector direction(dimens); //direction of pattern extended step
FLOP value; //objective function value
FLOP positiveValue; //obj.fun. value in the positive step
FLOP negativeValue; //" for the negative step
FLOP lastImprovingValue; //obj.fun.value of last base point
FLOP *vectorArray = currentPoint.passPointer();
//vectorArray is a pointer to the array of values inside the
//currentPoint rml_Vector class object
int success = 0;
GetMinPoint(currentPoint); //initialize to the user initial point
GetMinPoint(lastImprovingPoint);
GetMinPoint(storage);
GetMinVal(value);
GetMinVal(lastImprovingValue);
bool foundImprove = false;
diff(direction, currentPoint, currentPoint);
//initialize directions to a vector of zeros (or within rounding error of zero)
do

{
for(int iteration=0;iteration < dimens;iteration++)
{
vectorArray[iteration] += step;
fcnCall(GetVarNo(), vectorArray, positiveValue, success);
if(success!=1)

{
positiveValue = value + 1.0;
//if the call returned unsuccessfully, set positiveValue
//to a value that will not be improving

}
if(positiveValue < value)

{
value = positiveValue;
foundImprove = true;
//continue search in other dimensions from here

}//if positive is better
if(!foundImprove)

{
currentPoint.copy(storage);
vectorArray[iteration] -= (step);
fcnCall(GetVarNo(), vectorArray, negativeValue, success);
if(success!=1)

94

{
negativeValue = value + 1.0;
//same kludge as in positive case

}
if(negativeValue < value)
{

value = negativeValue;
foundImprove = true;
//continue search in other dimensions from here

}//if negative direction is better
}//if we need to check the negative

if(!foundImprove)
{//reset to original position
currentPoint.copy(storage);

}//if neither direction gave improvement
else

{
storage.copy(currentPoint);

}
foundImprove = false; //reset for next iteration

}//for
diff(direction, currentPoint,lastImprovingPoint);
//direction now holds the extended pattern step vector
if(value < lastImprovingValue)
{
//check whether the "new" point is within .5*step of the old
if(lastImprovingPoint.isNear(currentPoint, step))

{
currentPoint.copy(lastImprovingPoint);
storage.copy(currentPoint);
fcnCall(dimens, vectorArray, value, success);

}
else //some step yielded improvement

{
lastImprovingValue = value;
ReplaceMinimum(currentPoint, value);
lastImprovingPoint.copy(currentPoint);
//take the pattern extending step and find its value
sum(currentPoint,direction,currentPoint);
storage.copy(currentPoint);
fcnCall(dimens, vectorArray, value, success);

}
}

else
{
if(currentPoint.isNear(lastImprovingPoint, step))

{
step = step / 2.0;

}
else

{
//this case can only occur after an unsuccessful
//search about a pattern-step-located point
//move back to the point that was improving from the
//search about the last base point
GetMinPoint(currentPoint);
storage.copy(currentPoint);
fcnCall(GetVarNo(), vectorArray, value, success);

}
}

} while(!Stop(step));//while we haven’t stopped()
}//ExploratoryMoves

95

bool HJSearch::Stop(FLOP pace)
//makes certain search has not exceeded maxCalls or
//is stepping at less than stoppingStepLength
{
if(maxCalls > -1)

if(GetFunctionCalls() > maxCalls)
return true;

if(pace < stoppingStepLength)
return true;

return false;
}//Stop

FLOP HJSearch::GetStepLength()
{
return step;

}

10.3.7 EdHJSearch.h

/* EdHJSearch.h
header file for a variation on the Hooke and Jeeves search based

on the class PatternSearch
For a good description of the Hooke and Jeeves search algorithm
I recommend Non-Linear Optimization Techniques by Box, Davies,
and Swann, 1969.
Liz Dolan

*/
#ifndef _EdHJSearch_
#define _EdHJSearch_
#include "PatternSearch.h"
#include "vector.h"

class EdHJSearch: public PatternSearch
{
public :
EdHJSearch(int numberOfVariables);
//the dimensions of the search space are required for the constructor
~EdHJSearch();
void ExploratoryMoves();
//searches in Hooke and Jeeves pattern for best objective function solution
bool Stop(FLOP pace);
//makes certain search has not exceeded maxCalls or
//is stepping at less than stoppingStepLength
FLOP GetStepLength();
//overrides the PatternSearch version with an acurate length
void CleanSlate(int dimensions);
//reinitialize all values

private:
FLOP step;

};//class EdHJSearch
#endif

10.3.8 EdHJSearch.cc

/* EdHJSearch.cc
implementation of the HJSearch class to find a minimal objective function
solution.

96

Includes a minor modification to the basic Hooke and Jeeves strategy to
avoid making pattern steps directly after contractions (which mostly cover
the same ground that was already covered in the search step preceding
the contraction.
Liz Dolan

*/
#include "EdHJSearch.h"

EdHJSearch::EdHJSearch(int numberOfVariables): PatternSearch(numberOfVariables)
{
step = initialStepLength;

}

EdHJSearch::~EdHJSearch()
{
}

void EdHJSearch::CleanSlate(int dimensions)
//reinitialize all values
{
PatternSearch::CleanSlate(dimensions);
step = initialStepLength;

}

void EdHJSearch::ExploratoryMoves()
{
int dimens = GetVarNo();
rml_Vector currentPoint(dimens);
rml_Vector lastImprovingPoint(dimens); //last base point
rml_Vector storage(dimens);
//for intermediate storage to reduce rounding error
rml_Vector direction(dimens); //direction of pattern extended step
FLOP value; //objective function value
FLOP positiveValue; //obj.fun. value in the positive step
FLOP negativeValue; //" for the negative step
FLOP lastImprovingValue; //obj.fun.value of last base point
FLOP *vectorArray = currentPoint.passPointer();
//vectorArray is a pointer to the array of values inside the
//currentPoint rml_Vector class object
int success = 0;
GetMinPoint(currentPoint); //initialize to the user initial point
GetMinPoint(lastImprovingPoint);
GetMinPoint(storage);
GetMinVal(value);
GetMinVal(lastImprovingValue);
bool foundImprove = false;
bool contracted = false;
diff(direction, currentPoint, currentPoint);
//initialize to a vector of zeros (or within rounding error of zero)
do

{
for(int iteration=0;iteration < dimens; iteration++)
{
vectorArray[iteration] += step;
fcnCall(GetVarNo(), vectorArray, positiveValue, success);

if(success!=1)
{
positiveValue = value + 1.0;
//if the call returned unsuccessfully, set positiveValue
//to a value that will not be improving

}

97

if(positiveValue < value)
{
value = positiveValue;
foundImprove = true;
//continue search in other dimensions from here

}//if positive is better
if(!foundImprove)

{
currentPoint.copy(storage);
vectorArray[iteration] -= (step);
fcnCall(GetVarNo(), vectorArray, negativeValue, success);
if(success!=1)
{

negativeValue = value + 1.0;
//same kludge as in positive case

}
if(negativeValue < value)
{

value = negativeValue;
foundImprove = true;
//continue search in other dimensions from here

}//if negative direction is better
}//if we need to check the negative

if(!foundImprove)
{//reset to original position
currentPoint.copy(storage);

}//if neither direction gave improvement
else

{
storage.copy(currentPoint);

}
foundImprove = false; //reset for next iteration

}//for
diff(direction, currentPoint,lastImprovingPoint);
//direction now holds the extended pattern step vector
if(value < lastImprovingValue)
{
//check whether the "new" point is within .5*step of the old
if(lastImprovingPoint.isNear(currentPoint, step))

{
currentPoint.copy(lastImprovingPoint);
storage.copy(currentPoint);
fcnCall(dimens, vectorArray, value, success);

}
else

{
lastImprovingValue = value;
ReplaceMinimum(currentPoint, value);
lastImprovingPoint.copy(currentPoint);
if(!contracted) //my personal modification to the algorithm
{

//take the pattern extending step and find its value
sum(currentPoint,direction,currentPoint);
storage.copy(currentPoint);
fcnCall(dimens, vectorArray, value, success);

}
}

contracted = false;
}

else
{
if(currentPoint.isNear(lastImprovingPoint, step))

98

{
step = step / 2.0;
contracted = true;

}
else

{
//this case can only occur after an unsuccessful
//search about a pattern-step-located point
//move back to the point that was improving from the
//search about the last base point
GetMinPoint(currentPoint);
storage.copy(currentPoint);
fcnCall(GetVarNo(), vectorArray, value, success);
contracted = false;

}
}

}while(!Stop(step));//while we haven’t stopped()
}//ExploratoryMoves

bool EdHJSearch::Stop(FLOP pace)
//makes certain search has not exceeded maxCalls or
//is stepping at less than stoppingStepLength
{
if(maxCalls > -1)

if(GetFunctionCalls() > maxCalls)
return true;

if(pace < stoppingStepLength)
return true;

return false;
}//Stop

FLOP EdHJSearch::GetStepLength()
{
return step;

}

99

