Using Approximations to Accelerate Engineering Design
Optimization

Virginia Torczon* Michael W. Trosset!

June 9, 1998

Abstract

Optimization problems that arise in engineering design are often characterized by several
features that hinder the use of standard nonlinear optimization techniques. Foremost among
these features is that the functions used to define the engineering optimization problem usually
require the solution of differential equations, a process which is itself computationally intensive.
Within a standard nonlinear optimization algorithm, the solution of these differential equations
is required for each iteration of the algorithm. To mitigate such expense, an attractive alternative
is to replace the computationally intensive objective with a less expensive surrogate.

In conformance with engineering practice, we draw a crucial distinction between surrogate
models and surrogate approximations. Surrogate models are auxiliary simulations that are
less physically faithful, but also less computationally expensive, than the expensive simulation
that is regarded as “truth.” An instructive example is the use of an equivalent-plate analysis
method in lieu of a finite element analysis, e.g. to analyze a wing-box of a high-speed civil
transport. Surrogate models exist independently of the expensive simulation and can provide
new information about the physical phenomenon of interest without requiring additional runs
of the expensive simulation.

Surrogate approximations are algebraic summaries obtained from previous runs of the ex-
pensive simulation. Examples include the low-order polynomials favored in response surface
methodology (RSM) and the kriging estimates employed in the design and analysis of computer
experiments (DACE). Once the approximation has been constructed, it is typically inexpensive
to evaluate.

When surrogates are available, be they models or approximations, the optimizer hopes to
use them to facilitate the search for a solution to the engineering optimization problem. Our
ultimate goal is to design robust optimization algorithms, but we would like to do so in ways
that allow us to make effective use of the information that good surrogates can provide. Toward
this end, we adopt the perspective that the surrogate can be used to accelerate the optimization
technique by exploiting the trends that such surrogates tend to identify. We do not worry about
accuracy in the surrogate until it becomes clear either that the optimization technique is in
the neighborhood of a minimizer or that the surrogate is not doing a sufficiently good job of
identifying trends in the objective.

We consider a methodology that constructs a sequence of approximations to the objective.
We concentrate on approaches such as DACE, that krige known values of the objective, but
our general strategy is also amenable to other classes of approximations. We make use of
pattern search techniques to handle the optimization, though other approaches are possible.
We choose pattern search techniques because they can be easily amended to exploit surrogates,
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can handle functions that are nondifferentiable or for which sensitivities are difficult or too
expensive to attain, and can be easily adapted to either a parallel or distributed computing
environment. Pattern search methods also are less likely to be trapped by non-global minimizers
than are traditional nonlinear optimization algorithms. Furthermore, recent analysis extends
their applicability to optimization problems with general nonlinear constraints.

Our approach synthesizes recent ideas from both the numerical optimization and the com-
puter experiments literature. Given a limited budget of expensive function evaluations that are
to be used to solve an engineering optimization problem, we consider how to manage the trade-
off between the expense of approximation and the expense of optimization. We believe that
one should invest only a modest proportion of the original budget in constructing the initial
approximation and that one should use the optimization procedure to help decide when and
where further sampling should occur.

Our experience shows that managing approximations, which should be updated as optimiza-
tion progresses, engenders a somewhat different set of issues than managing models, each of
which remains static as optimization progresses. Earlier related work did not envision the se-
quential updating of a surrogate approximation, yet this sequential updating has proved to be
the defining characteristic of much of our current research. We now understand that the se-
quential updating of surrogate approximations may create difficulties that are not encountered
when either conventional optimization or the construction of the approximation are employed
separately. Furthermore, the introduction of general constraints (as opposed to the special
case of bound constraints), complicates not only the optimization, but also the construction of
approximations.

We will conclude by discussing some of the issues that remain to be addressed. Currently,
we advocate the introduction of merit functions that explicitly recognize the desirability of im-
proving the current approximation to the expensive simulation. We also include suggestions for
addressing the ill-conditioning that plagues kriging approximations constructed from sequential
designs generated by optimization algorithms. In addition, we propose methods for obtain-
ing space-filling designs for nonrectangular regions and propose pattern search algorithms for
such regions. Ultimately, we wish to develop techniques for handling problems in which the
constraints are implicitly defined by expensive simulations, but our investigation to date has
focussed on problems for which the constraints are defined by algebraic expressions.

Key words: Design optimization, computer simulation, pattern search, kriging, nonparametric
response surface methodology.
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1 Introduction

We begin by considering the problem of minimizing an objective f : ®? — R subject to bound
constraints, i.e.

minimize f(z) (1)
subject to  x € [a, b],
where a,z,b € R and we write x € [a, b] to denote a; < z; < b; for i = 1,...,p. We are concerned
with special cases of Problem (1) for which evaluation of the objective involves performing one (or
more) complicated, deterministic computer simulation(s). Many such problems arise as engineer-
ing design problems and are often distinguished by two characteristics that preclude solution by
traditional algorithms for bound-constrained optimization.

First, the output of a complicated computer simulation is usually affected by a great many
approximation, rounding, and truncation errors. These errors are not stochastic—repeating the
simulation will reproduce them—but their accumulation introduces high-frequency, low-amplitude
distortions of the idealized objective that we would have liked to optimize. In consequence, opti-
mization algorithms that compute or approximate (by finite differencing) sensitivities of f often
fail to exploit general trends in the objective and become trapped in local minimizers created by
high-frequency oscillations. In order to develop effective algorithms for such applications, we re-
strict attention to methods that do not use sensitivities, i.e., zero-order methods for numerical
optimization.

Second, complicated computer simulations are often expensive to perform. Frank (1995) sug-
gested that one must address problems in which a typical function evaluation costs several hours
of supercomputer time. We formalize the notion that the objective is expensive to evaluate by
imposing an upper bound V' on the number of evaluations of f that we are allowed to perform.
The severity of this restriction will depend (in part) on the relation between V and p.

When attempting to minimize an objective f that is too expensive for standard numerical
optimization algorithms to succeed, it has long been a standard engineering practice, described by
Barthelemy and Haftka (1993), to replace f with an inexpensive surrogate f and minimize f instead.
(For example, one might evaluate f at V —1 carefully selected sites, construct f from the resulting
information, use a standard numerical optimization algorithm to minimize f , and evaluate f at the
candidate minimizer thus obtained.) This practice may also have the salutary effect of smoothing
high-frequency oscillations in f. The rapidly growing literature on computer experiments offers
new and potentially better ways of implementing this traditional practice. The prescription that
seems to be gaining recent currency was proposed by Welch and Sacks (1991); following current
convention, we refer to it as DACE (Design and Analysis of Computer Experiments). Frank (1995)
offered an optimizer’s perspective on this methodology, suggesting that the “minimalist approach”
of minimizing a single f is not likely to yield satisfactory results, and proposed several sequential
modeling strategies as alternatives. Booker (1996) studied several industrial applications of DACE
and two alternative approaches.

We regard DACE and traditional iterative methods for numerical optimization as occupying
opposing ends of a spectrum. When V is large relative to p, say p = 2 and V' = 500, then the expense
of function evaluation is not an issue and we are content to rely on traditional iterative methods.
When V is not large relative to p, say p =2 and V = 5, then the expense of function evaluation is
completely crippling and we are content to rely on DACE. (If V' < p, then the methodologies that
we consider are not appropriate.) In this report we are concerned with intermediate situations and
we borrow ideas from both the numerical optimization and the computer experiment literatures.

We describe a sequential modeling strategy in which approximations proposed for computer
experiments are used to guide a grid search for a minimizer. Our methods elaborate and extend



an important special case of the general “model management” strategy proposed by Dennis and
Torczon (1997) and developed by Serafini (1998) and Booker et al. (1998). These efforts are part
of a larger collaboration described by Booker et al. (1995) and Booker et al. (1996). The specific
methods described herein refine several features of the “Model-Assisted Grid Search” algorithm
discussed by Trosset and Torczon (1997).

2 Optimization by Pattern Search

We require a method of solving Problem (1) that does not require sensitivities. For unconstrained
optimization, one popular zero-order method is the simplex method proposed by Nelder and Mead
(1965). This method is sometimes adapted for constrained optimization by means of a simple ad
hoc device, viz. setting f(x) = co when x ¢ [a, b]. Unfortunately, the Nelder-Mead simplex method
is suspect even for unconstrained optimization. For example, McKinnon (1996) has constructed
a family of strictly convex, differentiable objectives on ®? for which there exist starting points
from which Nelder-Mead will fail to converge to a stationary point. Instead, we rely on a class of
methods for which a convergence theory exists, the pattern search methods. Torczon and Trosset
(1997) have provided an elementary introduction to pattern search methods; a convergence theory
was developed by Torczon (1997) for the case of unconstrained optimization and extended by Lewis
and Torczon (1996a, 1998a, 1998b) to the respective cases of optimization with bound, linear, and
general nonlinear constraints.

Pattern search methods are iterative algorithms for numerical optimization. Such algorithms
produce a sequence of points {x} from an initial point, z¢, provided by the user. To specify an
algorithm, one must specify how it progresses from the current iterate x. to the subsequent iterate,
4. One of the distinguishing features of pattern search methods is that they restrict their search
for 1 to a grid (more formally, a lattice) that contains x.. The grid is modified as optimization
progresses, according to rules that ensure convergence to a stationary point.

1. Specify the current grid contained in [a, b]. Select xy from the current grid. Let x. = z.

2. Do until convergence:

(a) Let T(+) = 0.
(b) Do while T'(+) = 0:
i. Search the current grid for a set of x; € [a,b] at which f is then evaluated. Let T'(+)
denote the set of grid points z; € [a,b] thus obtained for which f(x;) < f(x.).
ii. Update the grid.
(c) Choose x4 € T(+).
(d) Let z, = x4.

Figure 1: Pattern search methods for numerical optimization.

The essential logic of a pattern search is summarized in Figure 1. Note that pattern search
methods for problems with bound constraints are feasible point methods: we only consider points
that are feasible with respect to the condition = € [a,b]. This is often critical for engineering design
optimization problems since the simulation(s) that characterize the problem may not be defined



outside the feasible region. It has been our experience that even when we restrict our attention to
points that satisfy the explicit algebraic constraints, it may be the case that some simulations still
fail to converge (Booker et al., 1996; Booker et al., 1998).

The reader is advised that this description of pattern search methods differs from the presen-
tation in Torczon (1997) and Lewis and Torczon (1996a, 1996b, 1998a, 1998b). For example, the
choice of a starting point is usually not restricted and the initial grid is constructed so that it
contains the starting point. More significantly, pattern search methods are usually specified by
rules that prescribe where the algorithm is to search for the subsequent iterate and the notion of
an underlying grid is implicit in these rules. In this report, the grid is explicit and the search for
a subsequent iterate is not restricted to a specific pattern of points. What should be appreciated
is that the present description preserves all of the elements of pattern search methods required by
their convergence theory.

The crucial elements of a pattern search algorithm are contained in the specification of 2(b) in
Figure 1. The fundamental idea is to try to find a point on the current grid that strictly decreases
the current value of the objective. Any such point can be taken to be the subsequent iterate. If
one fails to find such a point, then one replaces the current grid with a finer one and tries again.

Torczon (1997) described the search in 2(b)(i) as an ezploratory moves algorithm. Here we
distinguish two components of an exploratory moves algorithm: an oracle that produces a set of
trial points on the current grid, and a core pattern of trial points on the grid at which the objective
must be evaluated before the algorithm is permitted to refine the grid. The convergence theory
requires that the core pattern satisfy certain hypotheses; no hypotheses are placed on the oracle.

Because the methods proposed in this report critically depend on the arbitrary nature of the
oracle, we emphasize that any method whatsoever can be employed to produce points that poten-
tially decrease the current value of the objective. We might perform an exhaustive search of the
current grid or we might specify a complicated pattern of points at which to search. We might
appeal to our prior knowledge of or our intuition about the objective. It does not matter—the
convergence theory for pattern search methods encompasses all such possibilities.

For the sake of clarity, we describe more fully a specific pattern search algorithm. First, we
construct the grids on which the searches will be conducted. For n = 0,1,2,..., we define vector
lattices I'(n) restricted to the feasible set [a, b] as follows: = € I'(n) if and only if foreachi =1,...,p
there exists j; € {0,1,...,2"} such that

xi:ai—i-g—;(bi—ai).
Thus, I'(0) comprises the vertices of [a, b] and I'(n+1) is obtained from I'(n) by halving the distance
between adjacent grid points (see below). When we update the current grid, say I'(n), in 2(b)(ii),
we either retain I'(n) or replace I'(n) with I'(n + 1).
Next we specify a core pattern. Given z. € [a, b], we say that z; € [a, b] is adjacent to z. if and
only if there exists k € {1,...,p} such that

Ty = Tep 2% (b — ag)
and xy; = wy for ¢ # k. We take as the core pattern the set of grid points adjacent to the
current iterate. (For example, if the current grid is the integer lattice on R? restricted to [a =
(0,0)',b = (8,8)'], then the core pattern of (2,0)" comprises (3,0)’, (2,1)’, and (1,0)’, as can be
seen in Figure 2.) We refine the grid, i.e. we replace I'(n) with I'(n + 1), if and only if we have
evaluated f at each grid point z; adjacent to x. and failed to find f(z;) < f(z.).
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Figure 2: One possible core pattern centered at the current iterate z. = (2,0)’.

If f is continuously differentiable, then the theory developed by Lewis and Torczon (1996a)
guarantees that the specified algorithm will produce a sequence {x} that converges to a Karush-
Kuhn-Tucker point of Problem (1). In practice, of course, the algorithm must terminate in a
finite number of steps. Termination criteria for pattern search methods—indeed, for direct search
methods in general—have not been studied extensively, but that does not concern us here. By
definition, the assumption that Problem (1) is expensive means that we cannot afford enough
evaluations of the objective to terminate by the traditional criteria of numerical optimization.
For the problems that we consider, the relevant termination criterion is whether or not we have
exhausted the permitted number (V') of function evaluations.

Zero-order methods for numerical optimization can be quite profligate with respect to the
number of function evaluations that they require. Because the number of function evaluations
available to us is severely limited, we want to use these evaluations as efficiently as possible. On
the bright side, the convergence theory for pattern search methods allows us to replace x. with any
xy for which f(xy) < f(z.). Hence, no matter how comprehensive a search for trial points we may
have envisioned, we can abort it as soon as we find a single trial point that satisfies. On the dark
side, the oracle may require a great many function evaluations to produce even one x; for which
f(z) < f(z.). Furthermore, if the oracle is unsuccessful, then we can not refine the current grid
until after f has been evaluated at each grid point adjacent to x.—a process that may require as
many as 2p additional function evaluations if z. is an interior grid point and f has not yet been
evaluated at any of the grid points adjacent to x..

Pattern search algorithms may intentionally use large numbers of function evaluations. For
example, the oracle employed by Dennis’s and Torczon’s (1991) parallel direct search (PDS) inten-
tionally casts a wide net, relying on parallel computation to defray the expense of evaluating the
objective at a great many grid points. We are concerned with problems for which huge numbers
of evaluations of the objective are not possible. Here, we want an oracle that proposes promising
trial points using only a small number of evaluations of the objective. Our strategy for creating
such an oracle will be to use previous function values to construct a current global approximation,
fe, of f, then use f. to predict trial points z; at which f(z;) < f(x.). Thus, we will employ the
strategy described in Section 1, not once to replace Problem (1), but repeatedly to guide us to a
solution of it. We elaborate further in the next section.



3 Optimization and Sequential Designs

The optimization strategies considered in this report are predicated on a simple idea, viz. that
providing the oracle in Section 2 with an inexpensive approximation of the objective will allow
it to more efficiently identify promising trial points and thereby reduce the cost of optimization.
The approximations are constructed from known function values by kriging, as will be described in
Section 4. In this section, we focus on the interplay between the pattern search algorithm and the
kriging approximations.

We begin with an instructive analogy. For unconstrained minimization of smooth objective
functions, the numerical algorithms of choice are the quasi-Newton methods. An elementary expo-
sition of these methods was provided by Dennis and Schnabel (1996), who emphasized the following
interpretation: a quasi-Newton algorithm constructs a quadratic approximation fc of the objec-
tive f at the current iterate x. and uses fc to identify a trial point z; at which it is predicted
that f(x;) < f(x.). For example, trust region methods obtain z; by (approximately) minimizing f.
subject to the constraint that x; be within a specified neighborhood of z.. The rationale for the con-
straint is that the approximation fc, which is usually constructed by computing or approximating
the second-order Taylor polynomial of f at z., can only be trusted to approximate f locally.

Trust region methods make effective use of simple local quadratic approximations of the objec-
tive. Because we are concerned with situations in which evaluation of the objective is prohibitively
expensive, we are prepared to invest more resources in constructing and optimizing more compli-
cated global approximations of the objective.

Similarly, classical response surface methodology, from Box and Wilson (1951) to Myers and
Montgomery (1995), constructs local linear or quadratic regression approximations of a stochastic
quadratic objective. Again, the purpose of these approximations is to guide the search for a mini-
mizer or maximizer. Glad and Goldstein (1977) also exploited quadratic regression approximations
for optimization, as did Elster and Neumaier (1995) to guide a grid search. Recently, nonparametric
response surface methods have been proposed in which global approximations of more complicated
objectives are constructed. This work, e.g. Haaland (1996), is closely related to ours.

The zero-order methods on which we base our algorithms are the pattern search methods
described in Section 2. Instead of specifying a complicated pattern of trial points at which the
objective is to be evaluated we attempt to conserve function evaluations by using approximations
to identify promising trial points, as described in Torczon and Trosset (1997). The use of local
linear and quadratic approximations to accelerate numerical optimization by direct search is an
idea that is at least as old as Hooke and Jeeves (1961); however, our use of a global approximation
that is sequentially updated is a more recent idea that poses new challenges.

The following outline details our general strategy for managing approximations to facilitate
optimization by pattern search. The generality of this outline is intentional, for a great many
specifications seem plausible. The MAGS algorithm described by Trosset and Torczon (1997)
represented our first attempt to implement a specific version of this general strategy.

1. Specify an initial grid, I'g, that covers the feasible region.. (The methods described by Tros-
set and Torczon (1997) and by Booker et al. (1998) assumed a rectangular feasible region.
As discussed in Sections 2 and 5, extension to nonrectangular feasible regions specified by
algebraic constraints is now possible.)

2. Perform an initial computer experiment:

(a) Select N initial design sites x1,...,zn. (Trosset and Torczon (1997) employed Latin hy-
percube sampling for this purpose. Booker et al. (1998) preferred orthogonal arrays. Our



current preference is to modify one of these designs according to one of the approximate
maximin criteria discussed further in Section 5.)

(b) Evaluate the true objective f at the initial design sites.

(¢) Construct an initial approximation fo, e.g. by kriging.

3. Set the current grid, I'., equal to the initial grid. Specify a current iterate, x., e.g. . =
argmin(f(z1),..., f(xn)). Set the current approximation, f., equal to the initial approxima-
tion. Let Eval, denote the current set of sites at which the objective has been evaluated. Set
Eval. equal to the set of initial design sites.

4. Do until a minimizer is identified or until the computational budget is exhausted:

(a) Let Core(x.) denote the set of grid points that must be evaluated before the current
grid can be defined. This set is specified by the convergence theory for pattern search
methods. Do until Core(x.) C Eval., i.e. until theory permits refining the current grid:

i. Apply an optimization method to a merit function to obtain z; € I'. \ Eval,, a grid
point at which the objective has not yet been evaluated. (Trosset and Torczon (1997)
applied a finite-difference quasi-Newton method to the current approximation. The
need for more general merit functions that incorporate experimental design consid-
erations is discussed in Section 6.)

ii. Evaluate the objective at z;. Update Eval. and fc.
iii. If f(x¢) < f(zc), then let x. = x;.
(b) Refine the current grid.

In the remainder of this section we identify two inherent difficulties in the use of approximations
to facilitate optimization. Both of these difficulties proceed from a common cause. When a sequence
of design sites is generated by an optimization algorithm, the sites tend to cluster in regions that the
optimization algorithm regards as promising. Such a sequence is rarely space-filling and is not likely
to be a good experimental design for constructing better approximations. Furthermore, excessive
clustering will typically lead to ill-conditioning that affects the calculations of the approximations
themselves.

We address each of these difficulties, in turn, in the context of approximations constructed using
kriging techniques. In Section 6 we propose the use of merit functions that force the optimization
algorithm to take note of experimental design considerations; in Section 7, we comment on the
problem of ill-conditioning. Both these discussions are predicated on approximation by kriging,
which we discuss in the next section.

4 Approximation by Kriging

Suppose that we have observed y; = f(x;) for i = 1,...,n. On the basis of this information, we
want to construct a global approximation f of f. Such inexpensive surrogates for f will be used by
the oracle in the pattern search algorithm to identify promising trial points at which to compute
additional function values.

We assume that there is no uncertainty in the y; = f(x;), i.e. that no stochastic mechanism is in-
volved in evaluating the objective. It is then reasonable to require the approximation to interpolate
these values, i.e. to require that f(x;) = f(z;). Furthermore, we desire families of surrogates that
are rich enough to approximate complicated objectives. Toward these ends, we consider certain



families of approximations that have been studied in the spatial statistics and computer experiment
literatures. We remark, however, that other approximating families are available and we strive to
develop methods that are not specific to our particular choice of approximating family.

The families of approximations that we consider are usually motivated by supposing that f is a
realization of some (nice) stochastic process. For certain geostatistical applications, this supposition
may be quite plausible. In the context of using computer simulations to facilitate the engineering of
better product designs, its plausibility is less clear. The high-frequency, low-amplitude oscillations
that we have described do resemble the realization of a stochastic process, but the general trends
that are our primary concern do not. In any case, we regard the supposition of an underlying
stochastic process as nothing more than a convenient fiction. The value of this fiction lies in its
power to suggest plausible ways of constructing useful approximations and we will try to avoid
invoking it excessively. When we do invoke it, it should be appreciated that optimality criteria
such as BLUP and MLE are defined with respect to the fictional stochastic process and should not
be invested with more importance than the practical utility of the approximations in which they
result.

Our requirement that f (x;) = f(x;) will immediately suggest spline interpolation to the ap-
proximation theorist and kriging to the geostatistician. In fact, as explicated by Watson (1984) and
others, these two well-known methodologies are formally equivalent. Their motivations, however,
are somewhat different: whereas the goal of the former is to interpolate the f(x;) as smoothly as
possible, the goal of the latter is to approximate f as accurately as possible. It is evident that
the kriging perspective is more germane to our present concerns. The remainder of this section
briefly summarizes some relevant facts about kriging in the context of computer experiments. See
Sacks, Welch, Mitchell and Wynn (1989) and Koehler and Owen (1996) for comprehensive surveys
of computer experiment methodology.

We begin by assuming that f is a realization of a stochastic process F' that is indexed by the
continuous parameter set RP. We assume that this process has known mean u(z) = 0 and known
covariance function c¢(+,-), and that each symmetric p x p matrix c(s,t) is strictly positive definite.

Let

flz1)

y= :

and for each = € R? define b(x) € R" to minimize E[y'b — F(z)]2. Then f(z) = y/b(z) is the best
linear unbiased predictor (BLUP) of f(z) and it is well-known that
fla) =y 0 e(x), (2)
where C' is the symmetric positive definite n x n matrix [c(z;, z;)] and

c(z,x)

c(z) =

(itn, 2)

This is a simple example of kriging. Notice that kriging necessarily interpolates: since C~'C = I
and c(z;) is column j of C,

f(@)) =y C 7 e(ay) = y'e; = y; = f(z).

Thus far we have assumed that the stochastic process is known. We now suppose that F' is a
Gaussian process with mean j(z) = a(z)’'3 and covariance function c(s,t) = o2ry(s,t). We assume



that a : R? — R is a known function, that § € R? is an unknown vector, that ¢? > 0 is an

unknown scalar, and that ry(-,-) is an unknown element of a known family of correlation functions.
Next let A denote the n x ¢ matrix [aj(x;)], let R(#) denote the symmetric n x n matrix
[ro(xi, x;)], and let

ro(z1, )
r(x;0) = :
79(Tp, x)
Then, for 5 and 6 fixed, the BLUP of f(z) is (cf. equation (2))
f@) = a(@) B+ (y — AB)R(0)~'r(;0). (3)

Thus, by varying 8 and 6, we define a family of interpolating functions from which we can select a
specific f to approximate f.
Given a family of interpolating functions defined by (3), we require a sensible way of specifying

(8,02,0) and thereby f. For 6 fixed, the mazimum likelihood estimates (MLEs) of 3 and o2 have
explicit formulas:

B(0) = [A'RO) 4] ARO) My

and
1

n

0) == [y— 48(0)| RO) [y - 45(0)] .

To compute é, the MLE of 0, it turns out that one must minimize
nlog 62(0) + log det R(6) (4)

as a function of 6.

It is now evident that, in specifying a family of correlation functions, there is a potential tradeoff
between the richness of the family defined by (3) and the ease of maximizing (4). The richer the
approximating family, the more difficult it may be to select a plausible member of it. Most papers
on computer experiments have been concerned with deriving a single approximation f that will
be used as a permanent surrogate for f. Understandably, the authors have used rich families with
rather complicated correlation functions for which 6 is a vector of dimension p or greater. This
makes maximizing (4) difficult, but 6 need only be computed once. In contrast, we are concerned
with deriving a sequence of approximations that will be used for the sole purpose of guiding our
optimization of f. Hence, we are content to sacrifice some flexibility in (3) in order to simplify
minimizing (4). In numerical experiments, we have used the 1-parameter isotropic correlation
function defined by

ro(s,t) = exp (—0fls — |2) , (5)

where || - || denotes the Euclidean norm on R?.

5 Space-Filling Initial Designs

In the language of computer experiments, points at which the objective is evaluated are called
design sites. Evidently, one cannot construct an initial approximation until one knows the value of
the objective at a set of design sites. The problem of choosing the initial design sites is a problem
of experimental design.

10



Roughly speaking, there are two approaches to the design of computer experiments. The para-
metric approach is often invested with a Bayesian interpretation. As in Section 4, one assumes that
f is the realization of a stochastic process and specifies a parametric family of possible processes. It
is possible to extend familiar design criteria like D-optimality to this setting, then construct designs
that are optimal with respect to the specified family. We are disinclined to pursue this approach
because it ties the problem of choosing the design sites to the problem of specifying a family of
approximations. Furthermore, the practical difficulties of actually computing such optimal designs
can be formidable.

The nonparametric approach to the design of computer experiments chooses design sites in a
manner that is perceived to be “space-filling”. When the experimental region £ C RP is a bounded
rectangle, Latin hypercube sampling (McKay, Beckman, and Conover, 1979) and orthogonal array
sampling (Owen, 1992, 1994; Tang, 1993) are practical, inexpensive ways of generating space-
filling designs. Design criteria that are explicitly space-filling include the minimax and maximin
principles proposed by Johnson, Moore, and Ylvisaker (1990); however, these designs can be difficult
to compute.

Unfortunately, the utility of Latin hypercube and orthogonal array sampling diminishes when,
as is often the case, the experimental region is not rectangular, i.e. when the optimization problem
has a nonrectangular feasible region. If E can be inscribed in a rectangle of the same dimension,
then a plausible space-filling design can often be obtained by the simple ad hoc device of generating
a space-filling design for the circumscribing rectangle and accepting the resulting design sites that
fall in E. To improve such designs—and to generate plausible space-filling designs in regions that
do not readily lend themselves to this device—Trosset (1998) suggested a method of approximating
maximin designs. Approximate maximin designs can be computed by conventional nonlinear pro-
gramming algorithms, subject to the usual caveats about the possibility that such algorithms will
find nonglobal solutions. The remainder of this section describes how this can be accomplished.

Let NV denote the specified number of design sites and suppose that x1,...,xy € E, where E is
a compact subset of RP. For convenience, we place x in row i of the N x p design matrix X = (z).
We then abuse notation and write X € F.

Let
P

1/2
dij(X) = |lz; — zjll2 = lZ(m - xjk)2‘| .

k=1
Then X* € E is a maximin Euclidean distance design in F if

mind;; (X7) = min di; (X)

for all X € E. Maximin designs are intuitively appealing because they explicitly endeavor to spread
the design sites as much as possible.

Let ¢ denote any strictly decreasing function on [0,00), e.g. ¢(t) = exp(—t?), and let ¢;;(X) =
#(dij(X)). Let v(X) denote the vector of length m = n(n — 1)/2 whose kth component is ¢;;(X),
where

k=0 -1 —=j/2)+i-]
forj=1,...,N—landi=j+1,...,N. Then X* is a maximin design if and only if it is a (global)
solution of the constrained optimization problem

minimize  [|v(X)||oo

: (6)
subject to X € F.
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The objective in Problem (6) involves the sup norm, which is not smooth. The standard way
of circumventing this difficulty would lead us to reformulate Problem (6) as

minimize z

subject to X € F,
Ul(X) < Ryen 7/U7TL(X) < 2,

but this approach introduces a large number of nonlinear inequality constraints. Instead, we ap-
proximate ||v(X )|/« by the smooth objective ||v(X)|,, resulting in the more tractable optimization
problem

minimize  ||v(X)|»

subject to X € E.

(7)

Let X7 denote a global solution of Problem (7). The following result, a proof of which appears
in Trosset (1998), justifies calling X an approximate maximin design, although it should be noted
that the plausibility of X7 as a space-filling design does not depend on this justification.

Theorem 1 Let o), — 00 as k — oo and let X*° be any accumulation point of {X°k}. Then X
s a maximin design.

Once o has been fixed, Problem (7) is equivalent to the following:

minimize 37, [¢; (X)) @®
subject to X € E.
How difficult it will be to solve Problem (8) will depend on how easily one can manage (a) the
objective, which in turn will depend on the choice of ¢; and (b) the constraints.
Ideally, we would like to choose ¢ in a way that facilitates global optimization by inducing as
few local minimizers as possible. At present, it is difficult to see how to do this. For the present,
we opt for simplicity and set ¢(t) = exp(—t?). With this choice of ¢, Problem (8) simplifies to

minimize Y-, exp[—o ) (zix — Tjx)] (©)
subject to X € FE.

The resulting objective, for which first and second derivatives are easily computed, is reminiscent

of the SSTRESS criterion for metric multidimensional scaling. The interested reader is referred to

Kearsley, Tapia, and Trosset (1994) for a survey of some algorithms available for the unconstrained

minimization of the SStress criterion.

We envision solving Problem (9) by employing standard nonlinear programming software. Thus,
our methods are suited to situations in which the experimental region is specified by a finite number
of algebraic (preferably linear) equality and inequality constraints. The reader seeking to identify
algorithms and software suited to specific applications is referred to Moré and Wright (1993).

6 Merit Functions

Especially during the early stages of optimization, greater gains are likely to come from improving
the current approximation to the true objective than from accurately identifying a minimizer of the
current approximation. The MAGS algorithm proposed by Trosset and Torczon (1997) identified

12



a trial site by minimizing the current approximation without concern for the quality of the new
approximation that will result after the expensive simulation has been run at the trial site.

The desirability of balancing the concerns of numerical optimization and the concerns of experi-
mental design was recognized by Frank (1995), who proposed a dichotomous search strategy. Given
an optimization criterion, e.g. the current approximation employed as a surrogate objective, and a
design criterion, one obtains some fraction of new design sites using one criterion and the balance
using the other. An implementation of this Balanced Local-Global Search (BLGS) was described
by Booker et al. (1995) and employed by Booker (1996), Booker et al. (1996), and Booker et al.
(1998).

In contrast to the dichotomous BLGS strategy, we prefer to identify new design sites by opti-
mizing a merit function. The merit function should be specified so as to balance the potentially
competing goals of finding trial sites at which the current approximation is small and choosing good
design sites. This way of selecting trial points in no way affects the convergence of the underlying
pattern search—it is a purely empirical matter whether or not it improves the performance of the
algorithm.

To illustrate, let f.(z) denote the current approximation at z and let de(z) denote the distance
from x to the nearest design site at which the expensive simulation has been evaluated. The latter
is the maximin design criterion described in Section 5. Then a natural family of merit functions
comprises those of the form

Qc(x) = fc(x) - pcdc(x)a
where p. > 0.

Notice that we allow the merit function to depend on the iteration. Initially, when insuffi-
cient information has been gathered to construct a good approximation, greater weight should be
placed on the design criterion. As more information is gathered and the approximation improves,
progressively more weight can be placed on the optimization of the approximation. We manage
the relative weighting of these criteria by adaptively reweighting them according to how well the
current approximation predicts decrease in the true objective.

7 Addressing Ill-Conditioning

An approximation constructed by kriging is usually represented by an algebraic formula, e.g. (3),
that requires inverting an estimated covariance matrix. In theory, this poses no difficulties because
the covariance matrix is assumed to be strictly positive definite; in practice, the estimated covariance
matrix may be ill-conditioned.

The covariance function is constructed so that values of the objective at points that are close
together are more highly correlated than values of the objective values at points that are far apart.
When the points are selected according to the principles of experimental design, the covariance
matrix is usually reasonably well-conditioned. Unfortunately, optimization algorithms tend to
sample the objective at points that cluster in promising basins, inevitably resulting in covariance
matrices that are ill-conditioned or even singular. This difficulty has complicated our attempts to
exploit kriging approximations for the purpose of facilitating optimization.

Two simple techniques address the problem of ill-conditioned estimated covariance matrices.
To date, we have computed the pseudoinverse by performing a singular value decomposition and
setting all singular values smaller than a specified tolerance equal to zero. Alternatively, by adding
a constant to the diagonal of the covariance matrix (a “nugget effect”), we can force the matrix to
be as well-conditioned as we desire. Both of these techniques sacrifice the property that the kriging
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approximation interpolates the function values used to construct it. However, the error that is
introduced is usually small and is rarely of consequence.

8 Conclusions

Trosset and Torczon (1997), Serafini (1998), and Booker et al. (1998) have all reported encouraging
numerical experiments that commend the sequential use of approximations when optimizing ex-
pensive objectives. We have described the methodology that is common to these endeavors. More
significantly, we have identified several critical issues that inevitably arise when this methodology
is implemented. This report sets forth our current thinking about how to address these issues.
Our central theme is that, when using approximations to facilitate optimization, the concerns of
experimental design and the concerns of optimization are inextricably linked. Future progress will
depend on balancing these concerns efficiently.
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