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The problem:

minimize f(x)

subject to Ax ≤ b,

where f : R
n → R, x ∈ R

n, A is an m × n matrix, and b ∈ R
m.

We use Ω to denote the feasible region: Ω = { x ∈ R
n : Ax ≤ b }.

We assume that f is continuously differentiable on Ω but that gradient
information is not computationally available.

We do not assume that the constraints are nondegenerate.



The stationarity measure:1

χ(x) ≡ max
x+w∈Ω, ‖ w ‖≤1

−∇f(x)Tw,

where χ(x) is a continuous function with the property

χ(x) = 0 for x ∈ Ω

if and only if

x is a KKT point of the linearly constrained problem.

1A. R. Conn, N. Gould, A. Sartenaer, and P. L. Toint, Convergence propreties of an augmented Lagrangian

algorithm for optimization with a combination of general equality and linear constraints, SIOPT, 1996.



First-order stationarity

Main result: Once ∆k is small enough the subsequence xk for k ∈ U ⊆
{0, 1, 2, . . .} produced by a Generating Set Search (GSS) method for the
linearly constrained optimization problems satisfies

χ(xk) = O(∆k).

Observe: a careful specification of a GSS method for linearly constrained
optimization ensures, at a minimum, that lim infk→∞ = 0, so that first-
order stationarity for this subsequence of iterates is immediate.

But that is not the primary motivation for this investigation since global
convergence to KKT points for the linearly constrained problems have
already been established [see May, 1974; Yu/Li, 1981; Lewis/Torczon,
2000; Lucidi/Sciandrone/Tseng, 2002;. . ..]



What are GSS methods for linearly constrained

optimization?

Look at one simple example applied to the problem:

minimize
x∈R2

f(x1, x2)

where

f(x) =
∣

∣(3 − 2x1)x1 − 2x2 + 1
∣

∣

7
3 +

∣

∣(3 − 2x2)x2 − x1 + 1
∣

∣

7
3 ,

—the modified Broyden tridiagonal function—augmented with three linear
constraints.

Use a feasible iterates approach.



The initial set of search directions:



Identify feasible improvement:



Move Northeast and keep the set of search directions



Identify feasible improvement:



Move Northeast and change the set of search directions



No feasible improvement:



Contract and change the set of search directions



Identify feasible improvement:



Move Northeast and change the set of search directions



No feasible improvement:



Contract and change the set of search directions



Critical:

When close to the boundary of the feasible region, the set of directions
must conform to the geometry of the nearby constraints.

Essential features:

• identifying the nearby constraints

• obtaining a set of search directions

• finding a step of an appropriate length

• accepting a step



Identifying the nearby constraints

Find the outward-pointing normals within distance ε of the current iterate.
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The conditions on ε depend on the convergence analysis in effect.



Obtaining a set of search directions: Part I

Translate the outward-pointing normals within distance ε of the current
iterate x to obtain

• the ε-normal cone N(x, ε) and

• its polar, the ε-tangent cone T (x, ε).
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Obtaining a set of search directions: Part II

The set of search directions must contain generators for the ε-tangent cone
T (x, ε).
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Conditioning is important!



Conditioning: concern

When T (x, ε) is a lineality space or half space, there is freedom in choosing
the generators:
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Conditioning: requirement that must be enforced

There exists a constant κmin > 0, independent of k, such that for all k
there exists a set of generators G for T (xk, εk) and, furthermore,

κ(G) ≡ min
v∈Rn

vK 6=0

max
d∈G

vTd

‖ vK ‖ ‖ d ‖
≥ κmin.



Conditioning: gratis

There exists a constant νmin > 0, independent of k, such that for all k
there exists a set of generators A for N(xk, εk) such that

κ(A) ≥ νmin.

The “for free” is because each N(x, ε) is generated by at most m rows of
the constraint matrix A.



Obtaining a set of search directions: Part III

What—precisely—the set of search directions contains depends on the
convergence analysis in effect.

Choices:

• At a minimum, generators for the ε-tangent cones T (xk, ε) for all
ε ∈ [0, ε∗]. [Lewis/Torczon, 2000]

• Only generators for the ε-tangent cone T (xk, εk).
[Lucidi/Sciandrone/Tseng, 2002]

• At a minimum, generators for the ε-tangent cone T (xk, εk), where
εk = min{εmax, βmax∆k}. [Kolda/Torczon/Lewis, 2004]

The sets used for the example contained generators for both T (xk, εk) and
N(xk, εk).



The initial set of search directions:



Move Northeast and keep the set of search directions



Move Northeast and change the set of search directions



Contract and change the set of search directions



Move Northeast and change the set of search directions



Contract and change the set of search directions



Finding steps of an appropriate length

First: bound the lengths of the direction vectors.

Specifically, there must exist βmin and βmax, independent of k, such that
for all k the following holds:

βmin ≤ ‖ d ‖ ≤ βmax for all d ∈ Gk.



Finding steps of an appropriate length

Second: once the lengths of the direction vectors are bounded for all k, tie
the lengths of the steps tried to a step-length control parameter ∆k.

Requirement: If xk + ∆kd
(i)
k ∈ Ω, then the actual step taken along d(i)

must be of length ∆k, just as for unconstrained generating set search
methods.

Question: What to do when xk + ∆kd
(i)
k 6∈ Ω?



Finding feasible steps of an appropriate length
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Once again, the analysis allows multiple options.



Accepting a step

If
xk + ∆̃kdk ∈ Ω

and
f(xk + ∆̃k) < f(xk) − ρ(∆k)

then k ∈ S,
xk+1 = xk + ∆̃k

and
∆k+1 = φk∆k for a choice of φk ≥ 1.

Otherwise, k ∈ U ,
xk+1 = xk,

and
∆k+1 = θk∆k, for some choice θk ∈ (0, 1).



The forcing function:

1. The function ρ(·) is a nonnegative continuous function on [0,+∞).

2. The function ρ(·) is o(t) as t ↓ 0; i.e., limt↓0 ρ(t)/t = 0.

3. The function ρ(·) is nondecreasing; i.e., ρ(t1) ≤ ρ(t2) if t1 ≤ t2.



The stationarity result:

If the set F = {x ∈ Ω | f(x) ≤ f(x0)} is bounded and the gradient of f is
Lipschitz continuous with constant M on F , then there exists γ > 0 such
that for all x ∈ F , ‖ ∇f(x) ‖ < γ.

Further, for all k ∈ U , if εk = βmax∆k, then

χ(xk) ≤

(

M

κmin
+

γ

νmin

)

∆kβmax +
1

κminβmin

ρ(∆k)

∆k

.



Conclusions:

• ∆k can be used to assess progress toward a KKT point.

• The bound on χ(xk) illuminates what algorithmic parameters can—and
should—be monitored to assure the effectiveness of an implementation.

• Our analysis yields an estimate that makes it possible to use linearly
constrained GSS methods with the augmeted Lagrangian approach
of Conn/Gould/Sartenaer/Toint to handle problems with general
constraints.


