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Abstract

A standard engineering practice is the use of ap-
proximation models in place of expensive simulations
to drive an optimal design process based on nonlinear
programming algorithms. The use of approximation
techniques is intended to reduce the number of de-
tailed, costly analyses required during optimization
while maintaining the salient features of the design
problem.

The question we address is how to manage the in-
terplay between the optimization and the fidelity of
the approximation models to ensure that the process
converges to a solution of the original design prob-
lem. Using well-established notions from the litera-
ture on trust-region methods and a powerful global
convergence theory for pattern search methods, we
can ensure that the optimization process converges
to a solution of the original design problem.
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Introduction

The desire is to find x∗ to minimize f(x, y(x)),
where x represents the control variables, y(x) rep-
resents the state equations, and f is the design ob-
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jective. We assume that the control variables x are
subject to some constraints. In addition, we assume:

• y(x) is never available, but computational proce-
dures are available to compute or estimate some
M∗(x) ≈ y(x);

• models Mα(x) ≈ M∗(x) can be built with in-
creasing “accuracy” at additional computational
cost.

The task is to minimize f(x,M∗(x)) by approxi-
mately optimizing appropriately chosen f(x,Mα(x)).

The Art of Model Management

Suppose we want to solve the following general
minimization problem:

min
z

φ(z), subject to z ∈ B,

where B denotes the feasible region for the optimiza-
tion problem.

Then given a putative solution zk ≈ z∗ we can
follow the general strategy:

• If convergence, then exit; otherwise, continue.

• Build a global model G of φ on B.

• Build a local model m of G at zk.

• From m obtain a ztrial
k+

that improves G.

• If ztrial
k+

improves φ, then zk+1 = ztrial
k+

; other-
wise, either backtrack on the amount of opti-
mization applied to G to obtain a more conser-
vative choice of ztrial

k+
, or refine the global model

G and repeat the process.

This simple strategy leads the the following frame-
work for using approximation models in optimization.

1



Proposed Optimization Framework Using
Approximation Models

Given Mα, M∗, x0 ≈ x∗, y∗
0 = M∗(x0):

For k = 0, 1, · · ·, do

1. If convergence, then exit; otherwise, continue.

2. Apply an optimization algorithm to the ap-
proximate problem to find an xk+ for which
f(xk+, yα

k+
) satisfies an appropriate decrease

condition for f(x,Mα(x)) from xk. (This could
mean something like “do a complete optimiza-
tion for the problem defined by f(x,Mα(x))” or
“take some (fixed) number of optimization iter-
ation on the problem defined by f(x,Mα(x)).”

Compute predk ≡ f(xk, y∗
k) − f(xk+, yα

k+
). This

is the amount of reduction that the approximate
problem defined by f(x,Mα(x)) predicts if the
trial solution xk+ is applied to the true problem
f(x,M∗(x)).

3. Compute y∗
k+

= M∗(xk+) using either a detailed
analysis or adaptive heuristics.

Computer aredk = f(xk, y∗
k)−f(xk+, y∗

k+
). This

is the amount of reduction realized by the trial
step xk+ when applied to the actual problem
f(x,M∗(x))

4. If aredk

predk

≤ 0, then (improvement was predicted

but not achieved)

Set xk+1 = xk and y∗
k+1

= y∗
k.

(Reject the step.)

Get a more faithful model Mα anchored at xk.
(Refine the model.)

Allow less optimization on the approximate
problem at the next iteration.

Else, if 0 < aredk

predk

≤ 10−4, then (much more

improvement was predicted than achieved)

Set xk+1 = xk+ and y∗
k+1

= y∗
k+

.
(Accept the step.)

Update the current Mα to interpolate to yk+1.

Allow less optimization on the approximate
problem at the next iteration.

Else, if 10−4 < aredk

predk

≤ 0.5, then (the prediction

was satisfactory)

Set xk+1 = xk+ and y∗
k+1

= y∗
k+

.
(Accept the step.)

Update the current Mα to interpolate to yk+1.

Allow the same optimization on the approxi-
mate problem at the next iteration.

Else, 0.5 < aredk

predk

(the prediction was excellent,

or more decrease was obtained than predicted)

Set xk+1 = xk+ and y∗
k+1

= y∗
k+

.
(Accept the step.)

Update the current Mα to interpolate to yk+1.
Consider using a less accurate approxima-
tion model.

Allow more optimization on the approximate
problem at the next iteration.

5. Return to Step 1.

To finish the specification for the general algorithm
we must determine:

• how to find a trial step xk+,

• what constitutes an appropriate decrease condi-
tion for f(x,Mα(x)) from xk,

• how to update the amount of optimization to be
done on the approximate problem in Step 2, and

• how to incorporate adaptive heuristics to esti-
mate y∗

k+
.

We use well-established notions from the literature
on trust-region methods [1] and a powerful global
convergence theory for pattern search methods [2] to
manage this interplay between optimization and the
fidelity of the approximation models. A careful use
of these techniques insures that the process converges
under the mild condition that at any given point at
which a full simulation has been run, the approxima-
tion model agrees with the objective function of the
optimization problem [3].

Computational testing is underway and will be the
subject of future reports.
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