
ACTIVE SET IDENTIFICATION FOR LINEARLY CONSTRAINED
MINIMIZATION WITHOUT EXPLICIT DERIVATIVES

ROBERT MICHAEL LEWIS∗ AND VIRGINIA TORCZON†

Abstract. We consider active set identification for linearly constrained optimization problems
in the absence of explicit information about the derivative of the objective function. We begin
by presenting some general results on active set identification that are not tied to any particular
algorithm. These general results are sufficiently strong that, given a sequence of iterates converging
to a Karush–Kuhn–Tucker point, it is possible to identify binding constraints for which there are
nonzero multipliers. We then focus on generating set search methods, a class of derivative-free direct
search methods. We discuss why these general results, which are posed in terms of the direction
of steepest descent, apply to generating set search, even though these methods do not have explicit
recourse to derivatives. Nevertheless, there is a clearly identifiable subsequence of iterations at which
we can reliably estimate the set of constraints that are binding at a solution. We discuss how active
set estimation can be used to accelerate generating set search methods and illustrate the appreciable
improvement that can result using several examples from the CUTEr test suite. We also introduce
two algorithmic refinements for generating set search methods. The first expands the subsequence
of iterations at which we can make inferences about stationarity. The second is a more flexible step
acceptance criterion.

Key words. active sets, constrained optimization, linear constraints, direct search, generating
set search, generalized pattern search, derivative-free methods.

AMS subject classifications. 90C56, 90C30, 65K05

1. Introduction. We consider active constraint identification for generating set
search (GSS) algorithms for linearly constrained minimization. For our discussion the
optimization problem of interest will be posed as

minimize f(x)
subject to Ax ≤ b,

(1.1)

where f : Rn → R and A ∈ Rm×n.
GSS algorithms are a class of direct search methods and as such do not make

explicit use of derivatives of the objective f [13]. Results on active constraint iden-
tification for smooth nonlinear programming, on the other hand, do rely explicitly
on the gradient ∇f(x) of f (e.g., [5, 3, 2, 4, 7, 22]). Nevertheless, GSS algorithms
compute information in the course of their operation that can be used to identify
the set of constraints active at a Karush–Kuhn–Tucker (KKT) point of (1.1). Thus,
while we assume for our theoretical results that f is continuously differentiable, for
the application to GSS methods we do not assume that ∇f(x) (or an approximation
thereto) is computationally available.

We first prove some general active set identification results. While these results
reveal the active set identification properties of GSS methods, they are general and
not tied to any particular class of algorithms. The results in Theorem 3.4 establish the
active set identification properties of a sequence of points in terms of the projection
of the direction of steepest descent onto a cone associated with constraints near the
points in the sequence. Theorem 3.4 allows the sequence to be entirely interior to the

∗Department of Mathematics, College of William & Mary, P.O. Box 8795, Williamsburg, Virginia,
23187-8795; buckaroo@math.wm.edu. This work was supported by the National Science Foundation
under Grant No. DMS-0713812.

†Department of Computer Science, College of William & Mary, P.O. Box 8795, Williamsburg,
Virginia, 23187-8795; va@cs.wm.edu.

1

HTTP://WWW.MATH.WM.EDU/~BUCKAROO
HTTP://WWW.CS.WM.EDU/~VA/
mailto:buckaroo@math.wm.edu
mailto:va@cs.wm.edu

2 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

feasible region in (1.1), and this limits slightly the active set identification properties
of the sequence. However, there is an easily computed auxiliary sequence of points
(that can include points on the boundary) that possesses even stronger active set
identification properties. In Theorem 3.7 we show that for this auxiliary sequence the
projection of the direction of steepest descent onto the tangent cone tends to zero.
It follows then from results of Burke and Moré [3, 4] that this auxiliary sequence
allows us to identify the active constraints for which there are nonzero Lagrange
multipliers (unique or not) without any assumption of linear independence of the
active constraints. Moreover, under mild assumptions this auxiliary sequence will
find the face determined by the active constraints in a finite number of iterations.

Any algorithm for which these general results hold will have active set identifi-
cation properties at least as strong as the gradient projection method [5, 3, 2, 4]. It
is therefore perhaps surprising that these results apply to GSS methods, which do
not have direct access to the gradient. However, even though GSS methods do not
have recourse to ∇f(x), there does exist an implicit relationship between an explic-
itly known algorithmic parameter used to control step lengths and an appropriately
chosen measure of stationarity for (1.1) [15, Section 1.2]. As the step-length control
parameter tends to zero, so does this measure of stationarity. This correlation means
that GSS methods generate at least one subsequence of iterates that satisfies the hy-
potheses of our general active set identification results, and so GSS methods are able
to identify active sets of constraints, even without direct access to the derivative of
the objective.

We illustrate the practical benefits of incorporating active set estimation into GSS
algorithms. We propose several ways in which one can use estimates of the active set
to accelerate the search for a solution of (1.1) and present numerical tests that show
these strategies can appreciably accelerate progress towards a solution. These tests
show that generating set search can be competitive with a derivative-based quasi-
Newton algorithm. As part of these algorithmic developments we also introduce two
refinements for GSS methods. The first expands the subsequence of iterations at which
we can make inferences about stationarity by introducing the notion of tangentially
unsuccessful iterations, as discussed further in Section 4.4. The second is a more
flexible step acceptance criterion that scales automatically with the magnitude of the
objective, as discussed further in Section 4.3.

The general results on active set identification are given in Section 3. The relevant
features of GSS methods are reviewed and expanded in Section 4. Section 5 discusses
the active set identification properties of GSS methods and proposes acceleration
schemes based on them. Section 6 contains some numerical tests of these ideas.

2. Notation. Let Ω denote the feasible region: Ω = {x | Ax ≤ b }. Let aT
i be

the ith row of A. The set of constraints active at a point x ∈ Ω is defined to be

A(x) =
{

i | aT
i x = bi

}
.

Let Ci =
{

y | aT
i y = bi

}
, the affine subspace associated with the ith inequality con-

straint. Given x ∈ Ω and ε ≥ 0, define

I(x, ε) =
{

i | dist(x, Ci) =
∣∣ bi − aT

i x
∣∣ / ‖ ai ‖ ≤ ε

}
, (2.1)

where ‖ · ‖ is the Euclidean norm. The vectors ai for i ∈ I(x, ε) are outward-pointing
normals to the constraints defining the boundary of Ω within distance ε of x. We call
the set of such vectors the working set of constraints associated with x and ε. The

ACTIVE SET IDENTIFICATION WITHOUT EXPLICIT DERIVATIVES 3

ε-normal cone N(x, ε) and its polar the ε-tangent cone T (x, ε) are defined to be

N(x, ε) =

 v | v =
∑

i∈I(x,ε)

ciai, ci ≥ 0

 ∪ {0} and T (x, ε) = N◦(x, ε).

If ε = 0 these cones are the usual normal cone N(x) and tangent cone T (x) of Ω
at x. If K ⊆ Rn is a convex cone and v ∈ Rn, then we denote the Euclidean norm
projection of v onto K by [v]K .

Let R+ be the set of nonnegative real numbers. If {ak} is a sequence, and K ⊂ N
are the indices of an infinite subsequence, then we define {ak}K = { ak | k ∈ K}, and
use the notation ak

K→ a∗ to mean that {ak}K converges to a∗ as k →∞.

3. Results concerning active set identification. Suppose x? is a KKT point
of (1.1), and consider an algorithm that generates a sequence of feasible points
{xk}K ⊂ Ω such that xk

K→ x?. At x? there exist Lagrange multipliers λi, i ∈ A(x?),
possibly nonunique, such that

−∇f(x?) =
∑

i∈A(x?)

λiai, λi ≥ 0 for all i ∈ A(x?). (3.1)

We wish to construct a sequence {x̂k}K such that:
1. For all k sufficiently large, we either identify the active set at x? or at least

those constraints in A(x?) with nonzero multipliers.
2. If x? lies in a face of Ω, then the iterates land on the face that contains x?

in a finite number of iterations. That is, A(x̂k) = A(x?) for all k sufficiently
large. In particular, if x? is at a vertex of Ω, then the iterates land on x? in
a finite number of iterations: x̂k = x? for all k sufficiently large.

Moreover, we want these results to hold under assumptions on ∇f(x?) and A(x?)
that are as mild as possible. Because the gradient projection algorithm possesses
these properties [5, 3, 2, 4], we view these requirements as reasonable expectations
for any combination of optimization algorithm and active set identification technique
applied to (1.1) when f is differentiable.

The following serves as our set of assumptions throughout this section.
Assumption 3.1. Suppose f is continuously differentiable on Ω, and suppose

x? ∈ Ω, K ⊂ N, {xk}K ⊂ Ω, and {εk}K, {ηk}K ⊂ R+ are such that xk
K→ x?,

εk, ηk
K→ 0, and

∥∥ [−∇f(xk)]T (xk,εk)

∥∥ ≤ ηk for all k ∈ K.
The use of a standard set of assumptions simplifies the exposition, though some of
the results (e.g., Proposition 3.2) do not require the full strength of Assumption 3.1.

We begin by recalling the following result [19, Proposition 1].
Proposition 3.2. Let x? and the sequences K, {xk}K, {εk}K, and {ηk}K be as

in Assumption 3.1. Then I(xk, εk) ⊆ A(x?) for all k ∈ K sufficiently large.
We use this result to show that under Assumption 3.1, x? is a KKT point.

Theorem 3.3. Let f , x? and the sequences K, {xk}K, {εk}K, and {ηk}K be as
in Assumption 3.1. Then x? is a KKT point of (1.1).

Proof. From Proposition 3.2 we know that I(xk, εk) ⊆ A(x?) for all k ∈ K
sufficiently large. For such k it follows that N(xk, εk) ⊆ N(x?). Therefore T (x?) ⊆
T (xk, εk) and so ∥∥ [−∇f(xk)]T (x?)

∥∥ ≤ ∥∥ [−∇f(xk)]T (xk,εk)

∥∥ ≤ ηk.

4 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

Taking the limit as k →∞ yields [−∇f(x?)]T (x?) = 0, and the result follows.
The next result, Theorem 3.4, summarizes what we can infer about the active

set A(x?) from the sets I(xk, εk). If I ⊂ A(x?) is a subset of constraints active
at x?, let N (A(x?) \ I) be the cone generated by the set { aj | j ∈ A(x?) \ I }, and
let T (A(x?) \ I) be its polar. If i ∈ A(x?), let Πi denote the projection onto the
orthogonal complement of the linear span of the other active constraints; i.e., Πi is
the projection onto (span { aj | j ∈ A(x?) \ {i} })⊥.

Also, problem (1.1) is posed in terms of inequality constraints, so any equality
constraint is ostensibly expressed as a pair of opposing inequalities: aT

i x ≤ bi and
−aT

i x ≤ −bi. Define E =
{

i | aT
i x = bi for all x ∈ Ω

}
to be the set of equality con-

straints; then the set of “true” inequalities active at x? is A(x?) \ E .
Theorem 3.4. Let f , x? and the sequences K, {xk}K, {εk}K, and {ηk}K be as

in Assumption 3.1, and λi, i ∈ A(x?), be as in (3.1).
Then for all k ∈ K sufficiently large we have
1. −∇f(x?) ∈ N(xk, εk);
2. if I ⊂ A(x?) but I ∩ I(xk, εk) = ∅, then [−∇f(x?)]T (A(x?)\I) = 0;
3. if i ∈ A(x?) but i 6∈ I(xk, εk), then λiΠi(ai) = 0.

In addition, suppose that for all i ∈ A(x?) \ E strict complementarity holds at x? and
Πi(ai) 6= 0. Then I(xk, εk) = A(x?) for all k ∈ K sufficiently large.

Proof. We first prove Part 1. Since there is only a finite number of distinct
working sets I(xk, εk), we know that there exists k̄ ∈ K such that if k ≥ k̄ then
the associated working set I(xk, εk) appears infinitely often among the working sets{

I(x`, ε`) | ` ≥ k̄
}
. Suppose k ∈ K and k ≥ k̄. Then

lim
`→∞

I(x`,ε`)=I(xk,εk)

∥∥ [−∇f(x`)]T (xk,εk)

∥∥ ≤ lim
`→∞

I(x`,ε`)=I(xk,εk)

η`,

whence [−∇f(x?)]T (xk,εk) = 0. It follows that −∇f(x?) ∈ N(xk, εk), which is Part 1.
Next, it follows from Proposition 3.2 and Part 1 that there exists k̂ ∈ K such that

I(xk, εk) ⊆ A(x?) and −∇f(x?) ∈ N(xk, εk) for all k ∈ K with k ≥ k̂. Suppose that
for some such k we have I ⊂ A(x?) but I ∩I(xk, εk) = ∅. Then I(xk, εk) ⊆ A(x?)\I,
so N(xk, εk) ⊆ N (A(x?) \ I) and T (A(x?) \ I) ⊆ T (xk, εk). Thus,∥∥ [−∇f(x?)]T (A(x?)\I)

∥∥ ≤ ∥∥ [−∇f(x?)]T (xk,εk)

∥∥ = 0,

which yields Part 2. In addition, since −∇f(x?) ∈ N(xk, εk) there exist nonnegative
scalars λk,j , j ∈ I(xk, εk), such that

−∇f(x?) =
∑

j∈I(xk,εk)

λk,j aj .

If we combine this with (3.1) then we see that for any i ∈ A(x?) we have

λiai =
∑

j∈I(xk,εk)

λk,j aj −
∑

j∈A(x?)\{i}

λj aj .

Thus, if i ∈ A(x?) but i 6∈ I(xk, εk), then I(xk, εk) ⊆ A(x?) \ {i}, whence λiai ∈
span { aj | j ∈ A(x?) \ {i} }. Therefore, 0 = Πi(λiai) = λiΠi(ai), which is Part 3.
(We are indebted to Jim Burke for this proof of Part 3.)

Finally, if strict complementarity holds for the constraints in A(x?) \ E , then
A(x?) = E ∪ { j ∈ A(x?) \ E | λj > 0 }. By assumption xk ∈ Ω for all k ∈ K, so

ACTIVE SET IDENTIFICATION WITHOUT EXPLICIT DERIVATIVES 5

all the equality constraints are satisfied at every iteration and thus E ⊆ I(xk, εk)
for all k ∈ K. If Πi(ai) 6= 0 for all i ∈ A(x?) \ E , then by Part 3 we know that
A(x?) \ E ⊆ I(xk, εk). Thus, A(x?) ⊆ I(xk, εk). However, for k ∈ K sufficiently large
we know that I(xk, εk) ⊆ A(x?), so I(xk, εk) = A(x?).

Roughly speaking, if I(xk, εk) is used as an estimate of A(x?), then the only
constraints in A(x?) we might fail to identify are constraints that are not essential
to make x? a KKT point. For instance, Part 2 says that if a constraint in A(x?)
is missing from I(xk, εk), then x? would remain a KKT point if the constraint were
deleted (though, of course, the feasible region Ω would probably change). Part 3
says that if a constraint has an associated positive multiplier, then it is missing from
I(xk, εk) only if it is a linear combination of the other active constraints.

The following two examples help to illustrate Theorem 3.4. In the first, I(xk, εk)
fails to identify an active constraint with a unique associated multiplier of 0:

minimize f(x1, x2) = (x1 − 1)2 − x2

subject to x1, x2 ≤ 1 (3.2)

The unique KKT point is x? = (1, 1)T , and both constraints are active at x?. Let
a1 = (1, 0)T and a2 = (0, 1)T . Choose a sequence εk ↓ 0 and define xk = (1 −
2εk, 1)T . For any k, I(xk, εk) contains only the constraint corresponding to a2. We
have

∥∥ [−∇f(xk)]T (xk,εk)

∥∥ = 2εk → 0, but I(xk, εk) is a proper subset of A(x?) for
all k. At x? we have −∇f(x?) = a2 and −∇f(x?) ⊥ a1, so there is a zero multiplier
associated with a1; x? remains a KKT point if we drop the constraint x1 ≤ 1.

In the next example x? lies at the apex of a pyramidal feasible region. Let

A =

1 1 1

−1/2 1/2 1
−1 −1 1
1/2 −1/2 1

 , b =

1
1
1
1

 ,

and consider the problem

minimize f(x1, x2, x3) = −x3

subject to Ax ≤ b.
(3.3)

The unique KKT point is x? = (0, 0, 1)T . All four constraints are active at x?. Choose
a sequence εk ↓ 0 and define xk = (0, 0, 1 −

√
3εk)T . For any k, I(xk, εk) contains

only the constraints corresponding to a1 and a3. Since −∇f(xk) = (a1 + a3)/2, we
have [−∇f(xk)]T (xk,εk) = 0 for all k; however, I(xk, εk) is a proper subset of A(x?).
In this example, nonzero multipliers exist for a2 and a4 since −∇f(x?) = (a2 + a4)/2
and yet x? remains a KKT point if we drop the corresponding constraints.

Theorem 3.4 says that using I(xk, εk) to estimate A(x?) mostly achieves the first
of the goals outlined at the start of this section. To realize our first goal fully, as well as
to achieve our second goal—that A(xk) = A(x?) after a finite number of iterations—
in general we will need iterates that lie on the boundary of Ω (in the example (3.3),
for instance, {xk} remains strictly interior to Ω). To address this issue we define an
auxiliary sequence {x̂k} of points that can lie on the boundary of Ω.

To motivate our particular choice of x̂k, we recall some results of Burke and Moré
[3, 4], stated here in terms of the linearly constrained problem (1.1). Theorem 3.5 gives
a necessary and sufficient condition for identifying the active set A(x?) from A(x̂k)
in a finite number of iterations, and a condition under which x? will be attained in

6 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

a finite number of iterations. Theorem 3.6 gives a necessary and sufficient condition
for the identification of all constraints in A(x?) for which there is a strictly positive
Lagrange multiplier.

Theorem 3.5. Let f : Rn → R be continuously differentiable on Ω, and assume
that {x̂k} ⊂ Ω converges to a KKT point x? for which −∇f(x?) is in the relative
interior of N(x?). Then

1. [3, Corollary 3.6] A(x̂k) = A(x?) for all k sufficiently large if and only if
{[−∇f(x̂k)]T (x̂k)} converges to zero; and

2. [3, Corollary 3.5] if N(x?) has a nonempty interior and {[−∇f(x̂k)]T (x̂k)}
converges to zero, then x̂k = x? for all k sufficiently large.

The example in (3.2) illustrates the need for the assumption that −∇f(x?) lies in the
relative interior of N(x?). This assumption is equivalent to

−∇f(x?) =
∑

j∈A(x?)

λjaj , λj > 0 for all j ∈ A(x?)

(see [3, Lemma 3.2]). The example in (3.3) illustrates the need for {[−∇f(x̂k)]T (x̂k)}
to converge to zero; since {xk} remains strictly interior to Ω, T (xk) = Rn for all k.

Theorem 3.6. [4, Theorem 4.5] Let f : Rn → R be continuously differentiable
on Ω, and assume that {x̂k} ⊂ Ω converges to a KKT point x? at which we have

−∇f(x?) =
∑

i∈A(x?)

λiai, λi ≥ 0.

Then limk→∞[−∇f(x̂k)]T (x̂k) = 0 if and only if { i ∈ A(x?) | λi > 0 } ⊆ A(x̂k) for all
k sufficiently large.

Under Assumption 3.1 we have [−∇f(xk)]T (xk,εk)
K→ 0. Theorems 3.5 and 3.6 say

that we would obtain desirable active set identification properties if we were to find a
sequence x̂k

K→ x? for which [−∇f(x̂k)]T (x̂k)
K→ 0. This suggests choosing x̂k so that

T (x̂k) ⊆ T (xk, εk), or, equivalently, that I(xk, εk) ⊆ A(x̂k). To this end, given k ∈ K,
if the set

{
x | x ∈ Ω, aT

i x = bi for i ∈ I(xk, εk)
}

is nonempty, then define

x̂k ∈ argmin
x

{
‖ x− xk ‖ | x ∈ Ω, aT

i x = bi for i ∈ I(xk, εk)
}

; (3.4)

otherwise, x̂k = xk. In (3.4), x̂k is the projection of xk onto a convex set (provided
the set is nonempty), so the argmin is a single point. If x̂k is defined by (3.4) then
I(xk, εk) ⊆ A(x̂k). In the example (3.2), x̂k = xk for all k, while in the example (3.3),
x̂k = x? for all k.

Theorem 3.7. Let f , x? and the sequences K, {xk}K, {εk}K, and {ηk}K be as
in Assumption 3.1. Then

1. ‖ x̂k − xk ‖
K→ 0;

2. [−∇f(x̂k)]T (x̂k)
K→ 0.

Proof. Suppose k ∈ K is sufficiently large that I(xk, εk) ⊆ A(x?). Then

x? ∈
{

x | Ax ≤ b and aT
i x = bi for all i ∈ I(xk, εk)

}
.

Since x? is feasible for the optimization problem in (3.4), it follows that x̂k is defined
via (3.4) and consequently ‖ x̂k − xk ‖ ≤ ‖ x? − xk ‖. Since xk

K→ x? we conclude
that ‖ x̂k − xk ‖

K→ 0, which is Part 1.

ACTIVE SET IDENTIFICATION WITHOUT EXPLICIT DERIVATIVES 7

Moreover, because x̂k is defined via (3.4) we know that I(xk, εk) ⊆ A(x̂k). Thus
N(xk, εk) ⊆ N(x̂k) and T (x̂k) ⊆ T (xk, εk), whence∥∥ [−∇f(x̂k)]T (x̂k)

∥∥ ≤ ∥∥ [−∇f(x̂k)]T (xk,εk)

∥∥
≤

∥∥ [−∇f(xk)]T (xk,εk)

∥∥ +
∥∥ [−∇f(x̂k)]T (xk,εk) − [−∇f(xk)]T (xk,εk)

∥∥
≤ ηk + ‖ ∇f(x̂k)−∇f(xk) ‖ .

Part 2 then follows, since from Part 1 we know that ‖ x̂k − xk ‖
K→ 0.

We now can conclude that {x̂k} has even stronger active set identification prop-
erties than {xk}. From Theorems 3.5 and 3.6 and Part 2 of Theorem 3.7 we obtain
Theorem 3.8, which achieves the two goals concerning active set identification laid out
at the beginning of this section. Theorem 3.4 says that I(xk, εk) serves as a useful
estimate of A(x?); Theorem 3.8 says that A(x̂k) is a sharper estimate.

Theorem 3.8. Let f , x? and the sequences K, {xk}K, {εk}K, and {ηk}K be as
in Assumption 3.1. Then we have the following:

1. If −∇f(x?) lies in the relative interior of N(x?), then A(x̂k) = A(x?) for
all k sufficiently large. If, in addition, N(x?) has a nonempty interior, then
x̂k = x? for all k sufficiently large.

2. Suppose

−∇f(x?) =
∑

i∈A(x?)

λiai, λi ≥ 0.

Then { i ∈ A(x?) | λi > 0 } ⊆ A(x̂k) for all k sufficiently large.

4. Generating set search for linearly constrained minimization. We next
review the features of GSS that are relevant to active set identification for (1.1) (see
[15, 16] for further discussion). GSS algorithms for linearly constrained problems are
feasible iterate methods. Associated with each xk is a value εk → 0, defined shortly,
which is used to compute a working set of nearby constraints I(xk, εk) as defined by
(2.1). The connection with the active set identification results of the previous section
comes through the stationarity properties of GSS discussed in Section 4.7.

4.1. Partitioning the search directions. At the center of the convergence
properties of GSS methods is the notion of a core set of search directions, denoted
Gk, which is constructed at each iteration so as to ensure the inclusion of at least one
direction of descent along which a feasible step of sufficient length can be taken.

In the linearly constrained case, Gk must comprise a set of generators for the
ε-tangent cone T (xk, εk). A set of vectors G generates a cone K if K is the set of all
nonnegative linear combinations of elements of G. The cone K is finitely generated if
it can be generated by a finite set of vectors. If the finite set Gk is chosen so as to
ensure that it generates the cone T (xk, εk), then convergence results for GSS methods
for linearly constrained problems can be obtained under straightforward conditions
detailed in [15, Section 6]. To simplify the discussion, we assume that all of the
directions in Gk are normalized. For details on other options, see [15, section 2.3].
As a set of generators for T (xk, εk), the core search directions (the elements of Gk)
conform to the boundary of Ω near xk, where “near” is determined by the value of
εk. It is this property of Gk that ensures a direction of descent along which a feasible
step of length at least εk can be taken (if xk is not a KKT point).

If the working set of constraints is linearly independent, then it is straightforward
to calculate a set of generators for T (xk, εk) as described in [20, 17, 16], though some

8 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

care is needed to handle the interactions between equality and inequality constraints
correctly, as detailed in [16, Section 4]. If the working set is linearly dependent, then
it is possible to calculate a set of generators as described in [16, Section 5.4.2] using
a state-of-the-art implementation of the double description algorithm [8, 9].

As a practical matter it is useful to allow additional search directions. For in-
stance, in Section 5 we introduce additional search directions to effect the acceleration
strategies based on active set estimation. The set of additional search directions is
denoted by Hk. The total set of search directions Dk is thus Dk = Gk ∪Hk.

In the event that T (xk, εk) contains a nontrivial lineality space consisting of the
set T (xk, εk) ∩ (−T (xk, εk)), as in Figure 4.1, we have some freedom in our choice of
generators. In order to preserve the convergence properties of the algorithm, we place
Condition 4.1 on the choice of Gk. Condition 4.1 makes use of the quantity κ(G),
which appears in [15, (2.1)] and is a generalization of that given in [13, (3.10)]. For
any finite set of vectors G define

κ(G) = inf
v∈Rn

[v]K 6=0

max
d∈G

vT d

‖ [v]K ‖ ‖ d ‖
, where K is the cone generated by G. (4.1)

We place the following condition on the set of search directions Gk.
Condition 4.1. There exists a constant κmin > 0, independent of k, such that

the following holds. For every k, Gk generates T (xk, εk) and if Gk 6= {0}, then κ(Gk) ≥
κmin.

The lower bound κmin from Condition 4.1 precludes a sequence of Gk’s for which
κ(Gk)→ 0. Consider such a situation, borrowed from [15, Section 2.3]. Let

G =
{(
−1

0

)
,

(
1
0

)
,

(
−1
−ν

)}
.

In Figure 4.1 we illustrate G with three choices of ν > 0. Given −∇f(x) = (0,−1)T ,
neither of the first two elements of G are descent directions while the remaining element
in G will be an increasingly poor descent direction as ν → 0.

−∇ f(x)

ε

N(x,ε)

T(x,ε)Ω

x

−∇ f(x)

ε

N(x,ε)

T(x,ε)Ω

x

−∇ f(x)

ε

N(x,ε)

T(x,ε)Ω

x

Fig. 4.1. Condition 4.1 is needed to avoid a sequence of Gk’s for which κ(Gk) → 0.

As first noted in [15, Section 2.3], there is a simple technique to ensure that
Condition 4.1 is satisfied. Start with Proposition 2.3 in [15], which states that for
all x ∈ Ω and ε > 0, there are at most 2m distinct working sets defined by I(x, ε).
Thus, there are at most 2m distinct ε-normal cones and at most 2m distinct ε-tangent
cones. Let k2 > k1. If I(xk2 , εk2) = I(xk1 , εk1), then use the same set of generators
for T (xk2 , εk2) as were used for T (xk1 , εk1). It then follows that there are at most 2m

distinct sets G. Set κmin = min {κ(Gk) | Gk 6= {0} } and Condition 4.1 is satisfied.

ACTIVE SET IDENTIFICATION WITHOUT EXPLICIT DERIVATIVES 9

4.2. Determining the lengths of steps. The step-length control parameter
∆k regulates the steps tried along the search directions in Dk and prevents them from
becoming either too long or too short. The trial point associated with any d ∈ Dk is

xk + ∆̃(d)d, where ∆̃(d) = max {∆ ∈ [0,∆k] | xk + ∆d ∈ Ω } . (4.2)

This construction ensures that the full step (with respect to ∆k) is taken if the re-
sulting trial point is feasible. Otherwise, the trial point is found by taking the longest
feasible step possible from xk along d.

With the directions in Gk normalized, the value of εk used to determine the current
working set is derived from the current value of ∆k according to εk = min{εmax,∆k}
for some εmax > 0. Prudent choices of εmax and ∆0 mean that in practice it is typically
the case that εk = ∆k.

4.3. Ascertaining success. A trial point is considered acceptable only if it
satisfies the sufficient decrease condition

f(xk + ∆̃(d)d) < f(xk)− ρk(∆k). (4.3)

An appropriate sufficient decrease condition allows the possibility of taking exact steps
to the boundary of the feasible region [19, 15, 16]. Here we use

ρk(∆) = αk∆2. (4.4)

We require the sequence {αk} be bounded away from zero; i.e., there exists αmin > 0
such that αmin ≤ αk for all k. The choice of αk in the work reported here is

αk = α max
{
|ftyp|, |f(xk)|

}
, (4.5)

where α > 0 is fixed and ftyp 6= 0 is some fixed value that reflects the typical magni-
tude of the objective, given feasible inputs.

In earlier work [19, 13, 15, 16], the decrease condition was independent of k; here
it is not. We introduce ρk(∆), as in (4.4), so the step acceptance rule (4.3) scales
automatically with the magnitude of the objective. In Section 4.7 we prove that this
change does not vitiate the key stationarity results from [15, Section 6].

To ensure asymptotic success, if there is no direction d ∈ Dk for which (4.3) is
satisfied, then ∆k+1 ← θk∆k for some choice of θk satisfying 0 < θk ≤ θmax < 1.
Otherwise, ∆k+1 ← φk∆k for some choice of φk satisfying 1 ≤ φk ≤ φmax < ∞. To
keep things simple, in both the examples shown here and in our implementation, we
use θk = 1

2 and φk = 1 for all k.

4.4. Tangentially unsuccessful iterations. We distinguish three types of it-
erations. This is a departure from previous work [17, 15, 16] in which the iterations
are designated as either successful when a trial point that yields acceptable decrease
on the value of the objective is found, or unsuccessful, when no acceptable decrease is
found. Let S and U denote the sets of successful and unsuccessful iterations, respec-
tively; then the set of all iterations is S ∪ U with S ∩ U = ∅.

We want to track more closely a lack of decrease along the core search directions
contained in the set Gk, so we introduce a new set UT , for tangentially unsuccessful
iterations. A tangentially unsuccessful iteration is one at which we know that (4.3)
is not satisfied for any d ∈ Gk. We call the iteration tangentially unsuccessful since
no decrease is realized by any of the trial steps defined by the generators of the ε-
tangent cone. Thus, any unsuccessful step is also tangentially unsuccessful, since at

10 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

an unsuccessful step no direction in Dk = Gk ∪Hk is found to satisfy (4.3). However,
a tangentially unsuccessful step is not necessarily unsuccessful, since steps along the
directions in Gk may be unsuccessful but a step along one of the extra search directions
in Hk is successful. To summarize, we have U ⊆ UT but, possibly, S ∩ UT 6= ∅.

4.5. Illustration. In Figure 4.3 we illustrate several iterations of one variant of
linearly constrained GSS applied to a simple example. This example will be used later
to give some insight into how GSS can be accelerated by active set identification. The
objective in Figure 4.3 is a modification of the two-dimensional Broyden tridiagonal
function [1, 21]. Its level sets are indicated in the background in Figure 4.3. We have
introduced two linear inequality constraints, both of which are active at the KKT
point, which is indicated by the star in Figure 4.3(a). Figure 4.2 provides a legend.

— level set of f F KKT point
— constraint • current iterate xk◦ ε-ball to identify working set � trial point xk + ∆kdk, dk ∈ Gk

----- constraint in working set ××× infeasible trial point xk + ∆kdk, dk ∈ Hk

— direction defined by dk ∈ Gk N feasible trial point xk + ∆̃(dk)dk , dk ∈ Hk

— direction defined by dk ∈ Hk � feasible trial point from iteration k − 1
— direction from iteration k − 1 N feasible trial point from iteration k − 1

Fig. 4.2. Legend for Figures 4.3–5.4.

Ω

(a) k = 0. The working set con-
tains one constraint. Move East;
k ∈ S.

Ω

(b) k = 1. New working set.
Change set of search directions.
Move North; k ∈ S and k ∈ UT .

Ω

(c) k = 2. Same working set.
Keep set of search directions. No
decrease; halve ∆k; k ∈ U and
k ∈ UT .

Fig. 4.3. A version of linearly constrained GSS applied to the modified Broyden tridiagonal
function augmented with two linear inequality constraints.

At the first iteration, illustrated in Figure 4.3(a), we choose G0 = {e1,−e1,−e2},
where ei, i ∈ {1, 2} is a unit coordinate vector. The choice of e1 and −e1 is dictated
by the single constraint in the working set. Since T (x0, ε0) is a nontrivial lineality
space—the same one encountered in Figure 4.1—we require a third vector to ensure
that G0 generates T (x0, ε0); −e2 is a sensible choice as it yields the best possible value
of κ(G0) while using the smallest possible number of generators for T (x0, ε0). We also
elect to include the vector e2, which generates N(x0, ε0), since it allows the search to
move toward the constraint contained in the working set. Thus, H0 = {e2}. A full
step of length ∆0 along e2 is not feasible, so we reduce the length of the step so we
stop at the boundary, leading to a step of the form ∆̃(e2)e2. The step to the East
satisfies (4.3), so this trial point becomes the next iterate and we assign k = 0 to S.

ACTIVE SET IDENTIFICATION WITHOUT EXPLICIT DERIVATIVES 11

At the next iteration, illustrated in Figure 4.3(b), the second constraint enters
the working set of constraints. This gives us a new core set G1 containing only two
vectors. However, none of the trial steps defined by the vectors in G1 improve upon the
value of the objective at the current iterate. Again, H1 comprises a set of generators
for the ε-normal cone. By considering the feasible steps along the directions in H1

we see the most improvement by taking the step to the North, so that is the step we
accept. We assign k = 1 to both S and UT since, while the iteration was a success,
no improvement was found along the directions defined by the vectors in G1.

At the next iteration, illustrated in Figure 4.3(c), the working set remains un-
changed, so we do not change the set of search directions: G2 ← G1 and H2 ← H1.
Once again, the full steps of length ∆2 along the vectors contained in the core set
G2 are feasible but do not yield improvement. Moreover, there are no feasible steps
along the two vectors in H2. Since no feasible decrease has been found, the iteration
is unsuccessful ; the current iterate is unchanged, k = 2 is assigned to the set U as
well as to the set UT , and ∆3 ← 1

2∆2. The same is true in the next two iterations,
illustrated (at a finer scale) in Figures 4.4(a)–4.4(b).

Ω

(a) k = 3. Same working set.
Keep set of search directions. No
decrease; halve ∆k; k ∈ U and
k ∈ UT .

Ω

(b) k = 4. Same working set.
Keep set of search directions. No
decrease; halve ∆k; k ∈ U and
k ∈ UT .

Ω

(c) k = 5. New working set
(with respect to k = 4). Change
set of search directions. Move
East; k ∈ S.

Fig. 4.4. A continuation (at a finer scale) of the example started in Figure 4.3.

At iteration k = 5, illustrated in Figure 4.4(c), the reductions in ∆k finally pay
off. Now ε5 = ∆5 is sufficiently small that the second constraint is dropped from the
working set. Then it is possible to take a feasible step of length ∆5 along the vector
e1 ∈ G5. The iteration is successful and k = 5 is assigned to the set S.

4.6. The algorithm. Algorithm 4.1 restates Algorithm 5.1 from [15]. We as-
sume that the search directions in Gk have been normalized, though this simplification
is not essential to the results here. We use (4.3) as our new sufficient decrease criterion.
We also now keep track of tangentially unsuccessful iterations.

4.7. Stationarity results. Next we examine the relevant convergence proper-
ties of Algorithm 4.1. The results in this section and their proofs are extensions of
results in [17, 13, 15]. They are key to active set identification for GSS.

The following theorem, similar to [15, Theorem 6.3] shows that for the subse-
quence of iterations k ∈ UT , Algorithm 4.1 bounds the size of the projection of
−∇f(xk) onto T (xk, εk) as a function of the step-length control parameter ∆k. The
two modifications introduced in Algorithm 4.1 mean that Theorem 4.2 differs from

12 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

Step 0. Initialization. Let x0 ∈ Ω be the initial iterate. Let ∆tol > 0 be the
tolerance used to test for convergence. Let ∆0 > ∆tol be the initial
value of the step-length control parameter. Let ∆0 ≤ ∆max < ∞ be an
upper bound on the step-length control parameter. Let εmax > ∆tol be
the maximum distance used to identify nearby constraints (εmax = +∞
is permissible). Let α > 0. Let ρk(∆k) = α max

˘
|ftyp|, |f(xk)|

¯
∆2

k,
where ftyp 6= 0 is some value that reflects the typical magnitude of the
objective for x ∈ Ω (use ftyp = 1 as a default). Let 1 ≤ φmax < ∞. Let
0 < θmax < 1.

Step 1. Choose search directions. Let εk = min{εmax, ∆k}. Choose a set of
search directions Dk = Gk ∪Hk satisfying Condition 4.1. Normalize the
core search directions in Gk so that ‖ d ‖ = 1 for all d ∈ Gk.

Step 2. Look for decrease. Consider trial steps of the form xk + ∆̃(d)d for
d ∈ Dk, where ∆̃(d) is as defined in (4.2), until either finding a dk ∈ Dk

that satisfies (4.3) (a successful iteration) or determining that (4.3) is
not satisfied for any d ∈ Gk (an unsuccessful iteration).

Step 3. Successful Iteration. If there exists dk ∈ Dk such that (4.3) holds,
then:

– Set xk+1 = xk + ∆̃(dk)dk.

– Set
∆k+1 = min{∆max, φk∆k} with 1 ≤ φk ≤ φmax. (4.6)

– Set S = S ∪ {k}.

– If during Step 2 it was determined that (4.3) is not satisfied for any
d ∈ Gk, set UT = UT ∪ {k}.

Step 4. Unsuccessful Iteration. Otherwise,

– Set xk+1 = xk.

– Set
∆k+1 = θk∆k with 0 < θk ≤ θmax. (4.7)

– Set U = U ∪ {k}.

– Set UT = UT ∪ {k}.

If ∆k+1 < ∆tol, then terminate.

Step 5. Advance. Increment k by one and go to Step 1.

Algorithm 4.1: A linearly constrained GSS algorithm

[15, Theorem 6.3] in two respects. First, we have replaced ρ(∆k) with a ρk(∆k) that
does not satisfy the requirements on ρ(·) found in [15, Condition 4]. Second, the
bound (4.8) is shown to hold for the subsequence UT , not just the subsequence U
(recall that U ⊆ UT).

Theorem 4.2. Suppose that ∇f is Lipschitz continuous with constant M on Ω.
Consider the iterates produced by Algorithm 4.1. If k ∈ UT and εk satisfies εk = ∆k,

ACTIVE SET IDENTIFICATION WITHOUT EXPLICIT DERIVATIVES 13

then ∥∥ [−∇f(xk)]T (xk,εk)

∥∥ ≤ 1
κmin

(M + αk) ∆k, (4.8)

where κmin is from Condition 4.1 and αk is from (4.5).
Proof. Clearly, we need only consider the case when [−∇f(xk)]T (xk,εk) 6= 0.

Condition 4.1 guarantees a set Gk that generates T (xk, εk). Recall that Algorithm 4.1
requires ‖ d ‖ = 1 for all d ∈ Gk. Thus, by (4.1) with K = T (xk, εk) and v = −∇f(xk),
there exists some d̂ ∈ Gk such that

κmin

∥∥ [−∇f(xk)]T (xk,εk)

∥∥ ≤ −∇f(xk)T d̂. (4.9)

The fact that k ∈ UT ensures that f(xk +∆̃(d)d) ≥ f(xk)−ρk(∆k) for all d ∈ Gk.
By assumption εk = ∆k and Algorithm 4.1 requires ‖ d ‖ = 1 for all d ∈ Gk, so
‖ ∆kd ‖ = εk for all d ∈ Gk. From [15, Proposition 2.2] we know that if x ∈ Ω and
v ∈ T (x, ε) satisfies ‖ v ‖ ≤ ε, then x + v ∈ Ω. Therefore xk + ∆kd ∈ Ω for all d ∈ Gk.
This, together with (4.2), ensures

f(xk + ∆kd)− f(xk) + ρk(∆k) ≥ 0 for all d ∈ Gk. (4.10)

Meanwhile, the mean value theorem says that for each d ∈ Gk there is some
σk(d) ∈ (0, 1) for which

f(xk + ∆kd)− f(xk) = ∆k∇f(xk + σk(d)∆kd)T d for all d ∈ Gk.

Combining this with (4.10) yields

0 ≤ ∆k∇f(xk + σk(d)∆kd)T d + ρk(∆k) for all d ∈ Gk.

Dividing through by ∆k and subtracting ∇f(xk)T d from both sides leads to

−∇f(xk)T d ≤ (∇f(xk + σk(d)∆kd)−∇f(xk))T d +
ρk(∆k)

∆k
for all d ∈ Gk.

Since 0 < σk(d) < 1 and ‖ d ‖ = 1 for all d ∈ Gk, from the assumption that ∇f is
Lipschitz continuous with constant M on Ω we obtain

−∇f(xk)T d ≤M∆k +
ρk(∆k)

∆k
for all d ∈ Gk. (4.11)

Since (4.11) holds for all d ∈ Gk, (4.9) tells us that for some d̂ ∈ Gk,

κmin

∥∥ [−∇f(xk)]T (xk,εk)

∥∥ ≤M∆k +
ρk(∆k)

∆k
.

Using (4.4) finishes the proof:∥∥ [−∇f(xk)]T (xk,εk)

∥∥ ≤ 1
κmin

(M + αk) ∆k. (4.12)

From (4.12) it is easy to see that the choice of αk in (4.5) yields a bound on the
relative size of the projection of −∇f(xk) onto T (xk, εk):∥∥ [−∇f(xk)]T (xk,εk)

∥∥ ≤ 1
κmin

(
M + α max

{
|ftyp|, |f(xk)|

})
∆k.

14 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

The next result strengthens [13, Theorem 3.4] while replacing the function ρ from
[13, 15, 16] by the functions ρk.

Theorem 4.3. Consider the iterates produced by Algorithm 4.1. Then either
limk→∞ ∆k = 0 or limk→∞ f(xk) = −∞.

Proof. Suppose limk→∞ ∆k 6= 0. Observe that there must be at least one success-
ful iteration, since otherwise every iteration would be unsuccessful and the updating
rule (4.7) would ensure that limk→∞ ∆k = 0. Let k̄ be the first successful iteration.

Let ∆? = lim supk→∞ ∆k. Since limk→∞ ∆k 6= 0 we know that ∆? > 0. Recalling
that Step 0 in Algorithm 4.1 requires 1 ≤ φmax <∞, define

Q =
{

k | k ≥ k̄, ∆k ≥ ∆?/2
}

Q′ =
{

k | k ≥ k̄, ∆k ≥ ∆?/(2φmax)
}

.

We claim that there are infinitely many successful iterations in Q′.
To prove the claim, note that Q is infinite. If there are infinitely many successful

iterations in Q then there is nothing to prove since Q ⊆ Q′. On the other hand,
suppose there are infinitely many unsuccessful iterations in Q. Let k be any such
iteration, and let m be such that iteration k−m− 1 was the last successful iteration
preceding k (there must be such an iteration since k > k̄). Since iteration k −m− 1
was successful and iterations k−m to k were unsuccessful, the update rules say that

∆k = θk−1θk−2 · · · θk−mφk−m−1∆k−m−1

∆k−m−1 = (θk−1θk−2 · · · θk−mφk−m−1)−1∆k.

From (4.6) and (4.7), along with the fact that k ∈ Q, we obtain

∆max ≥ ∆k−m−1 ≥
1

(θmax)m

∆?

2φmax
≥ ∆?

2φmax
.

Since k −m− 1 ≥ k̄, we conclude that k −m− 1 ∈ Q′. Moreover,

(θmax)m ≥ ∆?

2φmax∆max
.

Using the fact log θmax < 0 because θmax < 1 we obtain

m ≤ m̄ =

⌈
log ∆?

2φmax∆max

log θmax

⌉
.

Note that m̄ does not depend on k. Thus, for each of the infinitely many unsuccessful
iterations k ∈ Q there is a successful iteration in Q′ that precedes k by no more than
m̄ + 1 iterations, so there must be infinitely many successful iterations in Q′.

Next, let ρ? = α
∣∣ ftyp

∣∣ (∆?/(2φmax))2. Then ρ? > 0. If k ∈ Q′ is a successful
iteration, it follows from the step acceptance rule (4.3), the definitions (4.4) and (4.5),
and the definition of Q′ that

f(xk+1)− f(xk) < −ρk(∆k) < −ρ? < 0.

Meanwhile, for all other iterations (successful iterations not in Q′ and unsuccess-
ful iterations) we have f(xk+1) ≤ f(xk). Since there are infinitely many successful
iterations in Q′, it follows that limk→∞ f(xk) = −∞, and the theorem is proved.

ACTIVE SET IDENTIFICATION WITHOUT EXPLICIT DERIVATIVES 15

Theorems 4.2 and 4.3 then yield the following.
Theorem 4.4. Let ∇f be Lipschitz continuous with constant M on Ω and let

{xk} be the sequence of iterates produced by Algorithm 4.1 with εk satisfying εk = ∆k.
If {xk} is bounded, or if f is bounded below on Ω, then

lim
k∈UT→∞

∥∥ [−∇f(xk)]T (xk,εk)

∥∥ = 0.

5. Active set identification properties of GSS. It is straightforward to spec-
ify Algorithm 4.1 so the conclusions of Theorems 4.2–4.4 apply. For instance, the
choice φmax = 1 ensures that {∆k} is monotonically nonincreasing. Then, the choice
εmax ≥ ∆0 ensures that εk = ∆k for all k.

In this case, any convergent subsequence {xk}K, K ⊆ UT , of tangentially un-
successful iterations produced by Algorithm 4.1 satisfies Assumption 3.1, and the
identification results of Section 3 hold. Thus, for problem (1.1) GSS has active set
identification properties like those of gradient projection—even though GSS does not
explicitly rely on derivatives of the objective. Theorem 3.4 allows us to make infer-
ences about the constraints active at x? from the working sets I(xk, εk) at tangentially
unsuccessful iterates xk. The stronger results of Theorem 3.7 hold for the auxiliary
sequence {x̂k}K, defined in (3.4): under mild assumptions, in a finite number of iter-
ations x̂k will identify the face containing x?.

We next turn to strategies for using the results of Section 3 to accelerate GSS
algorithms. We first illustrate what can slow progress towards a solution if the search
does not make better use of information about the working set I(xk, εk).

Figures 4.3–4.4 show GSS making slow but steady progress toward the KKT point.
Figure 5.1 magnifies the next three iterations. Notice the pattern that emerges: if
the working set contains both the constraints that are active at the solution, then no
progress is made since there is no search direction that yields feasible improvement.
But as soon as the working set drops back down to a single constraint, a feasible
step to the East is possible—which is exactly what is needed to move the current
iterate toward the solution at the vertex. This behavior is especially contrary, since
the search fails to make progress at those steps where it actually has information that
suggests where the solution lies.

Ω

(a) k = 6. New working set
(w.r.t. k = 5). Change set of
search directions. No decrease;
halve ∆k; k ∈ U and k ∈ UT .

Ω

(b) k = 7. Same working set.
Keep set of search directions.
No decrease; halve ∆k; k ∈ U
and k ∈ UT .

Ω

(c) k = 8. New working set
(w.r.t. k = 7). Change set of
search directions. Move East;
k ∈ S.

Fig. 5.1. A continuation (at a finer scale) of the example given in Figures 4.3–4.4.

16 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

If k is sufficiently large, then at a tangentially unsuccessful step −∇f(xk) lies
primarily in the direction of N(xk, εk) in the sense that

∥∥ [−∇f(xk)]T (xk,εk)

∥∥ �∥∥ [−∇f(xk)]N(xk,εk)

∥∥. This suggests we include the generators of N(xk, εk) in the
set of additional search directions Hk [16, Section 6], as illustrated in Figures 4.3–5.1.
However, in this example there are no feasible steps along the generators of N(xk, εk)
once k > 1. In general, steps along individual generators of N(xk, εk) capture only
one constraint in A(x?) at a time, as seen in Figure 4.3(b). Active set strategies that
change one constraint in the working set at a time are generally not as efficient as
those that allow multiple constraints to change [11].

Our resolution is to use x̂k from (3.4). We now outline some active set strategies
for GSS that make use of the sequence {x̂k} and its properties described in Theo-
rem 3.7, as well as other information we can infer from the working set I(xk, εk).

5.1. Jumping onto the face identified by the working set. If at iteration
k we find that (4.3) is not satisfied by any d ∈ Gk, then the step is tangentially
unsuccessful. We then could try the point x̂k defined by (3.4). If this trial point
exists and satisfies (4.3), we can accept it. If it is not acceptable, we could still track
A(x̂k) as an estimate of A(x?). The rationale for the latter is that we may actually
have A(x̂k) = A(x?) but might not have taken the right step into this face.

A more aggressive strategy, which we have found to be more effective in our
tests, is to try the step x̂k for all iterations, tangentially unsuccessful or not. If this
trial point exists and satisfies the acceptance criterion (4.3), we immediately accept
it. This strategy is consistent with our stationarity results since it is equivalent
to including the vector for this step (scaled by 1/∆k) in Hk. In this aggressive
strategy we venture that constraints that appear in the working set are active at
the solution. This is only guaranteed to be true asymptotically, and then only for
the subsequence k ∈ UT . However, in our tests we found that GSS had surprisingly
few iterations that were tangentially unsuccessful (i.e., k ∈ UT) while also being
successful (i.e., k ∈ S). In general, S ∩ UT = ∅. Moreover, to ascertain that an
iteration is tangentially unsuccessful we must verify that (4.3) is not satisfied for any
d ∈ Gk, which requires |Gk| evaluations of the objective. This can be expensive when
evaluation of the objective is costly.

On the other hand, determining whether the projection onto a face is a successful
step requires only one evaluation of the objective. If the step is successful, the work
for the iteration is done; otherwise, we revert to the usual strategy after this single
speculative objective evaluation. We accept the potential cost of a rejected step since
Theorem 3.7 assures us that asymptotically it will work consistently in our favor.

This aggressive strategy might not succeed in the initial iterations if we start far
from a solution. For instance, consider a problem with only lower and upper bounds
on the variables. Suppose x? is the vertex where all the upper bounds are active and
x0 is a feasible point near the vertex where all the lower bounds are active. Choose
∆0 so that all of the lower bounds, but none of the upper bounds, are contained
in the working set I(x0, ε0). Then at k = 0, the projection will produce the vertex
defined by the lower bounds and most likely the objective function at that point will
not satisfy (4.3). However, once the upper bounds begin to enter the working set,
Theorem 3.7 tells us this strategy is sound.

5.2. Restricting the search to the face identified by the working set.
Theorem 3.7 tells us that a step to x̂k is a step into a face of Ω that contains x? once
k is sufficiently large. Once in such a face we have the option of giving priority to

ACTIVE SET IDENTIFICATION WITHOUT EXPLICIT DERIVATIVES 17

searching inside that face. To do so, we (re)order the directions in Gk so that the
trial steps inside the face are evaluated first. If one of these trial steps satisfies (4.3),
then we accept it and declare the iteration successful without requiring any further
evaluations. However, if none of the steps restricted to the face satisfy (4.3), then
we continue the search using the directions remaining in Gk and/or Hk, which may
possibly move the search off of the current face.

Figure 5.2 illustrates this strategy. Rather than automatically attempting to
evaluate f at all four of the trial points defined by ∆k and the set of directions Dk,
we start by evaluating the objective at trial steps in the face identified by the single
constraint in the working set. If one of these two trial points is successful, we do not
consider the trial steps defined by the two directions normal to this constraint. The
reasoning here is that, in general, the performance of direct search methods suffers as
the number of optimization variables increases. If we can, with reasonable confidence,
restrict the search to a face, then the reduced dimension of the problem should make
the search more efficient.

If the working set is a reasonable approximation of the active set, then searching
first in the face for improvement makes sense. Furthermore, as long as the iterations
remain successful, we do not risk premature convergence so long as once we cannot
find a successful step in the face we return to a search in the full space.

Ω Ω Ω

Fig. 5.2. Giving priority to searching along directions inside a face believed to contain x? with
H used to denote the steps within the face defined by the constraint in the working set. In this case
the third generator of T (xk, εk) is not needed for the search to progress.

5.3. Identifying vertex solutions. Another benefit of computing x̂k is that
Theorem 3.7 says that if {xk} is converging to a KKT point x? which is a vertex, then
{xk} converges to x? in a finite number of iterations. If we find a successful step to a
vertex and this is followed by an unbroken sequence of unsuccessful iterations, then
this suggests that we have arrived at a KKT point.

This gives us another mechanism for terminating the search. Various analytical
results, of which Theorem 4.2 is an example, bound appropriately chosen measures of
stationarity in terms of the step-length control parameter ∆k [6, 18, 15]. This makes
the magnitude of ∆k a practical measure of stationarity; hence our use of the test
θk∆k < ∆tol, for some ∆tol > 0, for termination in Step 4 in Algorithm 4.1. However,
we only decrease ∆ at the end of an unsuccessful iteration, and to determine that an
iteration is unsuccessful requires verifying that (4.3) is not satisfied for any d ∈ Gk.
Experience has shown that GSS methods make good progress toward the solution,
but they can be slow and costly in verifying that a solution has been found—precisely
because they lack explicit derivative information. In the case of vertex solutions the

18 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

strategy outlined gives a new stopping rule that might require far fewer objective
evaluations, as illustrated by the example in Figure 5.3.

5.4. Illustration of the active set strategies. Figures 5.3–5.4 illustrate what
happens if the strategies in Sections 5.1–5.3 are incorporated into Algorithm 4.1 and
applied to the same problem used in Figures 4.3–4.4. In Section 6 these same strategies
are successfully applied to far more difficult problems from the CUTEr test suite.

Ω

(a) k = 0. New working set.
Try but reject the speculative
step x̂k. Move East; k ∈ S.

Ω

(b) k = 1. New working set.
Try and accept the speculative
step x̂k; k ∈ S and k ∈ UT .

Ω

(c) k = 2. Same working set.
No decrease; halve ∆k; k ∈ U
and k ∈ UT .

Fig. 5.3. The effect of employing the strategies in Sections 5.1–5.3 on the example used in
Figures 4.3–4.4. The speculative step x̂k defined in (3.4) is denoted by �.

Ω

(a) k = 3. Same working set.
No decrease; halve ∆k; k ∈ U
and k ∈ UT .

Ω

(b) k = 4. Same working set.
No decrease; halve ∆k; k ∈ U
and k ∈ UT .

Ω

(c) k = 5. Same working set.
No decrease; halve ∆k; k ∈ U
and k ∈ UT . Possibly stop.

Fig. 5.4. A continuation (at a finer scale) of the example started in Figure 5.3. For any k > 1,
Theorem 3.7 supports the conclusion for this example that xk = x̂k = x? since xk is at a vertex
defined by the constraints in I(xk, εk), I(xk, εk) remains the same, and k ∈ UT .

6. Numerical illustration. We demonstrate the effect of the active set strate-
gies outlined in Section 5 on eight problems drawn from the CUTEr test suite [12].
Basic characteristics of these eight problems are given in Table 6.1. In seven of the
eight problems the search encountered (at least once) working sets for which N(xk, εk)
has a degenerate vertex at the origin; to handle this situation we employed the strat-
egy outlined in [16, Section 5.4.2], which makes use of state-of-the-art algorithms from
computational geometry to deal with the degeneracy in a computationally effective

ACTIVE SET IDENTIFICATION WITHOUT EXPLICIT DERIVATIVES 19

way. We included the problem bleachng, even though it only has bounds on the vari-
ables, because it is representative of the type of simulation-based problems to which
direct search methods are often applied [13, Section 1.2.1]. For bleachng, evaluation
of the objective involves the numerical integration of a system of differential equa-
tions. Second derivatives of the objective are not available, computing the objective
is relatively expensive, and the values obtained are only moderately accurate.

of linear # of bounds CUTEr
problem n network eq. eq. ineq. lower upper classification

avion2 49 0 15 0 49 49 OLR2-RN-49-15

bleachng 17 0 0 0 9 8 SBR1-RN-17-0

dallasm 196 151 0 0 196 196 ONR2-MN-196-151

dallass 46 31 0 0 46 46 ONR2-MN-46-31

himmelbi 100 0 0 12 100 100 OLR2-MN-100-12

loadbal 31 11 0 20 31 11 OLR2-MN-31-31

spanhyd 97 33 16 0 97 97 ONR2-RN-97-33

water 31 10 0 0 31 31 ONR2-MN-31-10

Table 6.1. Summary of problem characteristics

6.1. Starting values and tolerances for the results reported here. For
all eight test problems, we started with the value of x0 specified by CUTEr, though
we often had to project into the feasible region, as discussed in [16, Section 8.1].
The objective values at the feasible points used to initiate the search are given in
Table 6.2. The optimal feasible value of the objective function given in Table 6.2
was either extracted from the CUTEr file, when that information is included, or was
defined as the best objective value found using snopt [10], when that information is
not included in the CUTEr file. An exception was made for bleachng since the low
solution reported in the CUTEr file is almost twice the value of the best solutions
found by both our method and snopt; the value reported by snopt is treated here as
optimal. It is worth noting that on bleachng, snopt terminates due to numerical
difficulties, indicating that the current point cannot be improved upon; we suspect
that at some point the derivatives are not sufficiently accurate due to the odessa
ode solver used to evaluate the objective.

problem f(x0), x0 ∈ Ω f(x∗), x∗ ∈ Ω max evals.

avion2 9.46803e+07 9.46801e+07 1500
bleachng 1.59238e+04 9.17676e+03 540
dallasm 6.19530e+07 -4.81981e+04 5910
dallass 1.24987e+07 -3.2393 e+04 1410
himmelbi -7.84832e+02 -1.73557e+03 3030
loadbal 1.54669e+00 4.52851e-01 960
spanhyd 2.26888e+10 2.39738e+02 2940
water 1.71709e+04 1.05494e+04 960

Table 6.2. Starting feasible values, best known optimal feasible values, and limits on the number
of function evaluations we allowed

When both lower and upper bounds are given for all the variables in the problem,
we scale the variables to lie between −1 and 1 as described in [16, Section 8.4]. An
advantage of scaling is that it makes it easier to define the reasonable default value
∆0 = 2 since 2 is the longest possible feasible step along a unit coordinate direction.
Thus we used ∆0 = 2 as our default, even when we had no prior knowledge of
reasonable ranges for the variables and so did not scale the problem.

20 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

The algorithm terminated either when the value of ∆k fell below ∆tol = 1.0e-05
or when the number of evaluations of the objective reached that which would be
needed, at a minimum, for 30 iterations of a higher-order nonlinear programming
method (such as snopt) using forward-difference estimates of the gradient; these
limits are given in Table 6.2. The specific value chosen for ∆tol is an acknowledg-
ment of the fact that there are no more than seven significant decimal digits in the
specification of the problems drawn from the CUTEr test suite (in fact, the data for
several of the problems are specified to only two or three decimal digits). We used a
factor of 1

2 to reduce ∆k after an unsuccessful iteration; we left ∆k unchanged after
a successful iteration, meaning that θk = 1

2 and φk = 1 for all k. Thus the sequence
{∆k} was monotonically nonincreasing. This, together with the choices of ∆0 and
∆tol, meant that ∆k could be reduced at most eighteen times. The second stopping
criterion imposes a fairly stringent limit on the number of evaluations of the objec-
tive. Our implementation employs a caching scheme, described in [16, Section 8.5],
to avoid reevaluating the objective at points for which the objective has already been
computed. Each run starts with the cache empty and only increments the number of
evaluations of the objective once for evaluating the objective at any given point; there
is no increment if in subsequent iterations the value of the objective at that point is
found in the cache.

We set εmax = 25∆0 so that it played no role in the results reported here. We set
α = 1.0e-04 and ftyp = 1.

When the problem looked unconstrained locally (i.e., the working set was empty),
coordinate search was used. Otherwise, the core set of search directions Gk consisted
of generators for the ε-tangent cone T (xk, εk). A description of the construction of
the set Gk in the presence of linear constraints can be found in [16, Section 5]. The
set Hk consisted of generators for the ε-normal cone N(xk, εk). The generators for
both T (xk, εk) and N(xk, εk) were normalized. In addition, whenever I(xk, εk) was
not empty, the set Hk contained the vector from xk to the x̂k defined by (3.4).

The tests were run on an Apple MacBook with a 2 GHz Intel Core 2 Duo processor
and 1 GB memory running Mac OS X, Version 10.4.10 and using Matlab 7.4.0 R2007a.
With the exception of bleachng, all the runs reported here took no more than
one minute to execute, even with graphical and printed output to the screen during
execution. The elapsed times for bleachng were around three minutes since invoking
odessa appreciably increases the cost of an objective evaluation.

6.2. The results. We include a summary and illustrations of the iteration his-
tory for each problem. Tables 6.3–6.6 give a summary of the solutions obtained.
The active set strategies were designed with two goals: to obtain better solutions
by obtaining as large as possible a fraction of optimal improvement, and to identify
potential solutions more quickly by driving ∆k below ∆tol more quickly. The value
f sol was the best objective value found by our method given ∆tol and the limit on
the number of objective evaluations allowed. The value f0 was the value at the ini-
tial feasible point at which the search commenced. The value f opt was the optimal
solution, as defined in Section 6.1. Fraction of optimal improvement was defined as

|f0− f sol|
|f0− f opt|

.

In Table 6.3 it is clear that the active set strategies, when employed, obtained frac-
tions of optimal improvement that were at least comparable—and generally better—
than those obtained without employing the active set strategies.

ACTIVE SET IDENTIFICATION WITHOUT EXPLICIT DERIVATIVES 21

active objective value fraction of opt.
problem set? at termination improvement

avion2 no 9.46801e+07 0.99983
avion2 yes 9.46801e+07 0.99999
bleachng no 9.17676e+03 1.00000
bleachng yes 9.17676e+03 1.00000
dallasm no -4.81525e+04 0.99999
dallasm yes -4.81311e+04 0.99999
dallass no -3.22905e+04 0.99999
dallass yes -3.22406e+04 0.99999
himmelbi no -1.72387e+03 0.98770
himmelbi yes -1.73488e+03 0.99928
loadbal no 4.52897e-01 0.99996
loadbal yes 4.52851e-01 1.00000
spanhyd no 2.39738e+02 1.00000
spanhyd yes 2.39739e+02 1.00000
water no 1.05992e+04 0.99247
water yes 1.05494e+04 1.00000

Table 6.3. Summary of solutions obtained

The results in Table 6.4 show that the active set strategies can help identify
solutions more quickly by driving ∆k below ∆tol more quickly. In four of the instances,
the run using the active set strategies terminated with ∆k < ∆tol, which occurred
for only two of the runs that did not employ the active set strategies. Furthermore,
even when the runs using the active set strategies terminated because the limit on
the number of objective evaluations was reached, the value of ∆k obtained using the
active set strategies was at least as low, if not lower, than the value obtained when
the active set strategies were not employed.

active reason ∆k at reductions # of obj. cache
problem set? terminated termination of ∆k evals. hits

avion2 no max evals. 1.220703e-04 14 1500 882
avion2 yes ∆k < ∆tol 7.629395e-06 18 852 560
bleachng no ∆k < ∆tol 7.629395e-06 18 368 195
bleachng yes ∆k < ∆tol 7.629395e-06 18 329 115
dallasm no max evals. 7.812500e-03 8 5910 931
dallasm yes max evals. 7.812500e-03 8 5910 701
dallass no max evals. 1.562500e-02 7 1410 273
dallass yes max evals. 7.812500e-03 8 1410 275
himmelbi no max evals. 7.812500e-03 8 3030 1288
himmelbi yes max evals. 7.812500e-03 8 3030 1187
loadbal no max evals. 3.125000e-02 6 960 466
loadbal yes max evals. 3.051758e-05 16 960 357
spanhyd no ∆k < ∆tol 7.629395e-06 18 1110 2023
spanhyd yes ∆k < ∆tol 7.629395e-06 18 1121 1519
water no max evals. 7.812500e-03 8 960 899
water yes ∆k < ∆tol 7.629395e-06 18 868 585

Table 6.4. Summary of state at termination

Figures 6.2–6.9 give the iteration histories of the test problems. For each problem
there is a pair of graphs, the legends for which are given in Figure 6.1. Each pair of
graphs shows the progress made by the algorithm, with and without the active set
strategies employed, along with the value of ∆k relative to the number of objective
evaluations. In every case, at least one of the two active set steps, either a step to the

22 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

face identified by the working set of constraints or a step within the face identified by
the working set, was accepted during the course of the search.

Value of objective/Value of ∆

— f(x?)
� f(xk), k ∈ S; accepted step x̂k to face identified by I(xk, εk)
H f(xk), k ∈ S; accepted step within face identified by I(xk, 0)
◦ f(xk), k ∈ S, accepted regular search step
X f(xk), k ∈ U
4 magnitude of ∆k

Fig. 6.1. Legend for Figures 6.2–6.9.

0 500 1000 1500
9.468

9.468

9.468

9.468

9.468

9.468

9.468

9.468

9.468

9.468

9.468
x 10

7

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

V
al

ue
 o

f ∆

0 500 1000 1500
9.468

9.468

9.468

9.468

9.468

9.468

9.468

9.468

9.468

9.468

9.468
x 10

7

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

V
al

ue
 o

f ∆

Fig. 6.2. Progress on avion2. On the left, without the active set strategies enabled. On the
right, with the active set strategies enabled.

0 100 200 300 400 500
10

3

10
4

10
5

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

V
al

ue
 o

f ∆

0 100 200 300 400 500
10

3

10
4

10
5

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

V
al

ue
 o

f ∆

Fig. 6.3. Progress on bleachng. On the left, without the active set strategies enabled. On the
right, with the active set strategies enabled.

In addition to the results illustrated in Figures 6.2–6.9, Figures 6.10–6.13 show
how our results compare with those found using snopt. The runs from snopt were
made using the finite-difference option so that the count of objective evaluations can
be compared. In all cases our algorithm exhibits the good global behavior one would
expect from a gradient-related method and is competitive with snopt in this regard.

7. Conclusions. We have presented some general results on active set identifi-
cation and shown that as a consequence the generating set search class of direct search
algorithms possess active set identification properties that are as strong as those of

ACTIVE SET IDENTIFICATION WITHOUT EXPLICIT DERIVATIVES 23

0 1000 2000 3000 4000 5000
−1

0

1

2

3

4

5

6

7
x 10

7

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

V
al

ue
 o

f ∆

0 1000 2000 3000 4000 5000
−1

0

1

2

3

4

5

6

7
x 10

7

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

V
al

ue
 o

f ∆

Fig. 6.4. Progress on dallasm. On the left, without the active set strategies enabled. On the
right, with the active set strategies enabled.

0 200 400 600 800 1000 1200 1400
−2

0

2

4

6

8

10

12

14
x 10

6

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

V
al

ue
 o

f ∆

0 200 400 600 800 1000 1200 1400
−2

0

2

4

6

8

10

12

14
x 10

6

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

V
al

ue
 o

f ∆
Fig. 6.5. Progress on dallass. On the left, without the active set strategies enabled. On the

right, with the active set strategies enabled.

0 500 1000 1500 2000 2500 3000
−1800

−1600

−1400

−1200

−1000

−800

−600

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

V
al

ue
 o

f ∆

0 500 1000 1500 2000 2500 3000
−1800

−1600

−1400

−1200

−1000

−800

−600

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

V
al

ue
 o

f ∆

Fig. 6.6. Progress on himmelbi. On the left, without the active set strategies enabled. On the
right, with the active set strategies enabled.

the gradient projection method. This is the case even though generating set search
does not have explicit recourse to derivatives.

Our general analytical results show that the working sets of constraints at the
standard sequence of iterates produced by generating set search will, under relatively
mild assumptions, identify those constraints active at a KKT point for which there

24 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

0 200 400 600 800

0.5012

0.631

0.7943

1

1.2589

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

V
al

ue
 o

f ∆

0 200 400 600 800

0.5012

0.631

0.7943

1

1.2589

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

V
al

ue
 o

f ∆

Fig. 6.7. Progress on loadbal. On the left, without the active set strategies enabled. On the
right, with the active set strategies enabled.

0 500 1000 1500 2000 2500
10

2

10
4

10
6

10
8

10
10

10
12

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

V
al

ue
 o

f ∆

0 500 1000 1500 2000 2500
10

2

10
4

10
6

10
8

10
10

10
12

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

V
al

ue
 o

f ∆

Fig. 6.8. Progress on spanhyd. On the left, without the active set strategies enabled. On the
right, with the active set strategies enabled.

0 200 400 600 800

12589.2541

15848.9319

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

V
al

ue
 o

f ∆

0 200 400 600 800

12589.2541

15848.9319

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

V
al

ue
 o

f ∆

Fig. 6.9. Progress on water. On the left, without the active set strategies enabled. On the
right, with the active set strategies enabled.

exist nonzero Lagrange multipliers. The general results also show how a straightfor-
ward modification of generating set search will enjoy active set identification properties
comparable to the gradient projection algorithm.

We have used these ideas on active set identification to modify our implementation
of GSS for solving (1.1) [16] and thus accelerate the progress of the search. This claim
is substantiated with results obtained by applying the new variant of GSS for linearly
constrained problems to a subset of difficult problems from the CUTEr test suite.

ACTIVE SET IDENTIFICATION WITHOUT EXPLICIT DERIVATIVES 25

active maximum violation at solution
problem set? lower bounds upper bounds

avion2 no 0.00000e+00 0.00000e+00

avion2 yes 1.77636e-15 0.00000e+00

bleachng no 0.00000e+00 0.00000e+00

bleachng yes 0.00000e+00 0.00000e+00

dallasm no 3.55271e-14 0.00000e+00

dallasm yes 1.77636e-14 0.00000e+00

dallass no 0.00000e+00 0.00000e+00

dallass yes 0.00000e+00 0.00000e+00

himmelbi no 3.41061e-13 0.00000e+00

himmelbi yes 2.67164e-12 0.00000e+00

loadbal no 3.27056e-15 0.00000e+00

loadbal yes 1.67351e-14 0.00000e+00

spanhyd no 1.42109e-14 0.00000e+00

spanhyd yes 0.00000e+00 0.00000e+00

water no 9.09495e-13 0.00000e+00

water yes 5.68434e-13 0.00000e+00

Table 6.5. Summary of feasibility of simple bounds at termination.

active maximum violation at solution
problem set? linear lower bounds linear upper bounds

avion2 no 3.63798e-12 4.54747e-13

avion2 yes 2.54659e-11 3.92220e-12

dallasm no 4.17028e-13 3.62377e-13

dallasm yes 2.23821e-13 1.77636e-13

dallass no 2.90323e-13 2.93099e-13

dallass yes 1.56319e-13 9.76996e-14

himmelbi no 0.00000e+00 2.67164e-12

himmelbi yes 1.70530e-13 5.57066e-12

loadbal no 1.77636e-14 1.13687e-13

loadbal yes 2.84217e-14 8.52651e-14

spanhyd no 2.16716e-13 7.74492e-13

spanhyd yes 2.52243e-13 5.45342e-13

water no 2.27374e-13 2.27374e-13

water yes 2.16005e-12 1.08002e-12

Table 6.6. Summary of feasibility of linear constraints at termination.

0 500 1000 1500
9.468

9.468

9.468

9.468

9.468

9.468

9.468

9.468

9.468

9.468

9.468
x 10

7

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

0 100 200 300 400 500
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6
x 10

4

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

Fig. 6.10. Progress on avion2,on the left, and bleachng, on the right, with the active set
strategies enabled (◦) vs. progress for snopt with finite-differencing (�).

26 ROBERT MICHAEL LEWIS AND VIRGINIA TORCZON

0 1000 2000 3000 4000 5000
−1

0

1

2

3

4

5

6

7
x 10

7

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

0 200 400 600 800 1000 1200 1400
−2

0

2

4

6

8

10

12

14
x 10

6

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

Fig. 6.11. Progress on dallasm,on the left, and dallass, on the right, with the active set
strategies enabled (◦) vs. progress for snopt with finite-differencing (�).

0 500 1000 1500 2000 2500 3000
−1800

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

200

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

0 200 400 600 800
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

Fig. 6.12. Progress on himmelbi,on the left, and loadbal, on the right, with the active set
strategies enabled (◦) vs. progress for snopt with finite-differencing (�).

0 500 1000 1500 2000 2500
0

0.5

1

1.5

2

2.5
x 10

10

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

0 200 400 600 800
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
x 10

4

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

Fig. 6.13. Progress on spanhyd,on the left, and water, on the right, with the active set
strategies enabled (◦) vs. progress for snopt with finite-differencing (�).

We plan to extend this approach to handle problems with nonlinear constraints
for which derivatives can be obtained. Under appropriate constraint qualifications,
similar active set results should hold for GSS methods should there be sufficiently
accurate gradients to allow the linearization of nonlinear constraints, as in the ap-
proaches considered in [19]. In addition, the active set identification results may also

ACTIVE SET IDENTIFICATION WITHOUT EXPLICIT DERIVATIVES 27

be useful in conjunction with the treatment of inequality constraints via nonnegative
slacks, as in the augmented Lagrangian approaches described in [18, 14].

Acknowledgments. The authors are deeply grateful to Philip Gill for making
snopt available for use in the numerical tests reported in this paper. We also sin-
cerely thank the anonymous referee and Jim Burke (the second referee, who revealed
his identity), for their careful reading of the paper and their numerous corrections,
suggestions, and questions, all of which greatly improved the paper. Finally, we thank
Margaret Wright, Associate Editor, for her gracious help throughout the review pro-
cess.

REFERENCES

[1] C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Mathematics
of Computation, 19 (1965), pp. 577–593.

[2] J. Burke, On the identification of active constraints II: The nonconvex case, SIAM J. Nu-
mer. Anal., 27 (1990), pp. 1081–1102.

[3] J. V. Burke and J. J. Moré, On the identification of active constraints, SIAM J. Nu-
mer. Anal., 25 (1988), pp. 1197–1211.

[4] , Exposing constraints, SIAM J. Optim., 4 (1994), pp. 573–595.
[5] P. H. Calamai and J. J. Moré, Projected gradient methods for linearly constrained problems,

Mathematical Programming, 39 (1987), pp. 93–116.
[6] E. D. Dolan, R. M. Lewis, and V. J. Torczon, On the local convergence properties of pattern

search, SIAM J. Optim., 14 (2003), pp. 567–583.
[7] F. Facchinei, A. Fischer, and C. Kanzow, On the accurate identification of active con-

straints, SIAM J. Optim., 9 (1998), pp. 14–32.
[8] K. Fukuda, cddlib, 2005. http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html.
[9] K. Fukuda and A. Prodon, Double description method revisited, in Combinatorics and Com-

puter Science, M. Deza, R. Euler, and I. Manoussakis, eds., vol. 1120 of Lecture Notes in
Computer Science, Springer-Verlag, 1997, pp. 91–111.

[10] P. E. Gill, W. Murray, and M. A. Saunders, SNOPT: An SQP algorithm for large-scale
constrained optimization, SIAM J. Optim., 12 (2002), pp. 979–1006. See also http://www.

sbsi-sol-optimize.com/asp/sol_product_snopt.htm.
[11] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, Lon-

don, 1981.
[12] N. I. M. Gould, D. Orban, and P. L. Toint, CUTEr (and SifDec), a constrained and uncon-

strained testing environment, revisited, ACM Trans. Math. Software, 29 (2003), pp. 373–
394. See also http://cuter.rl.ac.uk/cuter-www/.

[13] T. G. Kolda, R. M. Lewis, and V. Torczon, Optimization by direct search: New perspectives
on some classical and modern methods, SIAM Review, 45 (2003), pp. 385–482.

[14] , A generating set direct search augmented Lagrangian algorithm for optimization with
a combination of general and linear constraints, Tech. Rep. 2006–5315, Sandia National
Laboratories, Albuquerque, NM 87185 and Livermore, CA 94550, August 2006.

[15] , Stationarity results for generating set search for linearly constrained optimization,
SIAM J. Optim., 17 (2006), pp. 943–968.

[16] R. M. Lewis, A. Shepherd, and V. Torczon, Implementing generating set search methods
for linearly constrained minimization, SIAM J. Sci. Comput., 29 (2007), pp. 2507–2530.

[17] R. M. Lewis and V. Torczon, Pattern search methods for linearly constrained minimization,
SIAM J. Optim., 10 (2000), pp. 917–941.

[18] , A globally convergent augmented Lagrangian pattern search algorithm for optimization
with general constraints and simple bounds, SIAM J. Optim., 12 (2002), pp. 1075–1089.

[19] S. Lucidi, M. Sciandrone, and P. Tseng, Objective-derivative-free methods for constrained
optimization, Mathematical Programming, 92 (2002), pp. 37–59.

[20] J. H. May, Linearly Constrained Nonlinear Programming: A Solution Method That Does
Not Require Analytic Derivatives, PhD thesis, Yale University, New Haven, Connecticut,
December 1974.

[21] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, Testing unconstrained optimization soft-
ware, ACM Trans. Math. Software, 7 (1981), pp. 17–41.

[22] C. Oberlin and S. J. Wright, Active set identification in nonlinear programming, SIAM
J. Optim., 17 (2006), pp. 577–605.

http://www.ifor.math.ethz.ch/~fukuda/cdd_home/cdd.html
http://www.sbsi-sol-optimize.com/asp/sol_product_snopt.htm
http://www.sbsi-sol-optimize.com/asp/sol_product_snopt.htm
http://cuter.rl.ac.uk/cuter-www/

