
IMPLEMENTING GENERATING SET SEARCH METHODS FOR
LINEARLY CONSTRAINED MINIMIZATION∗

ROBERT MICHAEL LEWIS† , ANNE SHEPHERD‡ , AND VIRGINIA TORCZON§

Abstract. We discuss an implementation of a derivative-free generating set search method for
linearly constrained minimization with no assumption of nondegeneracy placed on the constraints.
The convergence guarantees for generating set search methods require that the set of search direc-
tions possesses certain geometrical properties that allow it to approximate the feasible region near
the current iterate. In the hard case, the calculation of the search directions corresponds to finding
the extreme rays of a cone with a degenerate vertex at the origin, a difficult problem. We discuss
here how state-of-the-art computational geometry methods make it tractable to solve this problem
in connection with generating set search. We also discuss a number of other practical issues of imple-
mentation, such as the careful treatment of equality constraints and the desirability of augmenting
the set of search directions beyond the theoretically minimal set. We illustrate the behavior of the
implementation on several problems from the CUTEr test suite. We have found it to be successful
on problems with several hundred variables and linear constraints.

Key words. nonlinear programming, nonlinear optimization, constrained optimization, linear
constraints, degeneracy, direct search, generating set search, generalized pattern search, derivative-
free methods, double description algorithm

AMS subject classifications. 90C30, 90C56, 65K05

DOI. 10.1137/050635432

1. Introduction. We consider ways to implement direct search methods for
solving linearly constrained nonlinear optimization problems of the form

minimize f(x)

subject to ` ≤ Ax ≤ u.
(1.1)

The objective function is f : R
n → R, with decision variables x ∈ R

n. The constraint
matrix is A ∈ R

m×n. If some constraints are unbounded below or above, the compo-
nents of ` and u are allowed to take on the values −∞ and +∞, respectively. Our
approach handles both equality and inequality constraints.

A key step in generating set search (GSS) algorithms [17] is the computation
of the requisite search directions. Generating set search methods for linearly con-
strained problems achieve convergence without explicit recourse to the gradient or
the directional derivative of the objective. They also do not attempt to estimate La-
grange multipliers. Instead, when the search is close to the boundary of the feasible

∗Received by the editors July 7, 2005; accepted for publication (in revised form) May 31, 2007;
published electronically DATE.

http://www.siam.org/journals/sisc/x-x/63543.html
†Department of Mathematics, College of William & Mary, P.O. Box 8795, Williamsburg, Virginia,

23187-8795; buckaroo@math.wm.edu. This research was supported by the National Aeronautics and
Space Administration under Grant NCC-1-02029, by the Computer Science Research Institute at
Sandia National Laboratories, and by the National Science Foundation under Grant DMS-0215444.

‡Department of Computer Science, College of William & Mary, P.O. Box 8795, Williamsburg,
Virginia, 23187-8795; plshep@cs.wm.edu. This research was conducted under the appointment of
a Department of Energy High-Performance Computer Science Graduate Fellowship administered
by the Krell Institute and funded by the Computer Science Research Institute at Sandia National
Laboratories.

§Department of Computer Science, College of William & Mary, P.O. Box 8795, Williamsburg,
Virginia, 23187-8795; va@cs.wm.edu. This research was supported by the Computer Science Research
Institute at Sandia National Laboratories.

1

HTTP://WWW.MATH.WM.EDU/~BUCKAROO
HTTP://WWW.CS.WM.EDU/~PLSHEP/
HTTP://WWW.CS.WM.EDU/~VA/
mailto:buckaroo@math.wm.edu
mailto:plshep@cs.wm.edu
mailto:va@cs.wm.edu

2 R. M. LEWIS, A. SHEPHERD, AND V. TORCZON

region, the set of search directions must include directions that conform to the ge-
ometry of the nearby boundary. For linearly constrained minimization, this requires
identifying a working set of nearly binding constraints at each iteration. The search
directions then are computed as the generators of the polar of the cone generated by
the outward-pointing normals to the constraints in the working set [24, 31, 21, 23, 18].
When the working set defines a cone with a nondegenerate vertex at the origin, the
case is straightforward; computational approaches for handling this case have been
known for some time [24, 31, 21].

The hard case arises if the working set defines a cone with a degenerate vertex
at the origin. Analysis of algorithms that allow degenerate working sets is well-
established [21, 23]. On the other hand, the resulting calculation of the search direc-
tions quickly becomes too difficult for a naive approach. As noted in [21], sophisticated
and efficient computational geometry algorithms are required.

In this paper we show that by using state-of-the-art algorithms from computa-
tional geometry, the hard case can be dealt with in a computationally effective way
and that the naive bounds on the combinatorial complexity involved in managing the
hard case are unduly pessimistic. For example, in section 9 we illustrate a problem for
which the estimate on the number of possible vectors to be considered is more than
2 × 1017 when, in fact, only 5 vectors are needed—and those vectors are correctly
identified in less than one-fifth of a second on a standard desktop computer.

Our specific implementation makes use of the analysis of generating set search
found in [18], which synthesizes the analytical results found in [21, 23]. A new feature
of the algorithms presented in [18] is the way in which the working set of constraints
is chosen, which we show here to be effective in practice.

We use Ω to denote the feasible region for problem (1.1):

Ω = { x ∈ R
n : ` ≤ Ax ≤ u }.

The algorithm we present here, like all of the approaches referenced previously, is a
feasible iterates method for solving (1.1): The initial iterate x0 must be feasible, and
all subsequent iterates xk must satisfy xk ∈ Ω. We assume that f is continuously
differentiable on Ω but that gradient information is not computationally available;
i.e., no procedure exists for computing the gradient of the objective function, and
it cannot be approximated accurately. We do not assume that the constraints are
nondegenerate.

We discuss several topics regarding our implementation, though computing a suf-
ficient set of search directions is the primary focus of this paper. Our goal is to
dynamically identify a set of search directions sufficient to guarantee desirable con-
vergence properties. The general idea is that the set must contain search directions
that comprise all the generators for a particular cone of feasible directions, hence
the name generating set search. An important question to be addressed in any im-
plementation of this approach is what is meant by “close to the boundary”—i.e.,
which constraints belong in the current working set—since the current working set
determines the requirements on the set of search directions needed for the iteration.

Once the current working set has been identified, the next question becomes
how to obtain the desired set of search directions. If the current working set is not
degenerate, then straightforward procedures are outlined in [24, 21]. In the presence of
degeneracy, the situation becomes considerably more complex—a key issue we discuss
here. Equalities in the working set were not treated explicitly in previous work, so
here we elaborate on this case. We also discuss how augmenting the set of search
directions can accelerate progress toward a solution.

IMPLEMENTING GSS FOR LINEARLY CONSTRAINED PROBLEMS 3

Once a set of search directions has been identified, a step of appropriate length
along each of the search directions must be found. The analysis makes this straight-
forward through the use of a scalar step-length control parameter ∆k. In our imple-
mentation the choice of the working set is tied to ∆k as proposed in [18].

Finally, there are the usual implementation details of optimization algorithms
to consider. These include step acceptance criteria, stopping criteria, scaling of the
variables, and data caching.

We begin in section 2 with an example and then give some preliminary defini-
tions and notation in section 3. section 4 discusses how to identify the working set
of constraints, while section 5 discusses how to generate the core set of search di-
rections once the working set has been identified. section 6 discusses why it may be
advantageous to augment the core set of search directions. section 7 discusses how we
determine the lengths of the steps to be taken. In section 8 we state the algorithm and
discuss other details such as initial feasible iterates (section 8.1), step-acceptance cri-
teria (section 8.2), stopping conditions (section 8.3), scaling (section 8.4), and caching
data (section 8.5). section 9 contains some illustrative numerical results. Concluding
remarks are given in section 10.

2. An illustrative example. Figure 2.1 illustrates a few iterations of a greatly
simplified linearly constrained GSS method applied to the two-dimensional modified
Broyden tridiagonal function [4, 25], to which we have added three linear inequality
constraints. Level curves of f are shown in the background. The three constraints
form a triangle. In each figure, a dot denotes the current iterate xk, which is the
“best” point—the feasible point with the lowest value of f found so far.

We partition the indices of the iterations into two sets: S and U . The set S
corresponds to all successful iterations—those for which xk 6= xk+1 (i.e., at iteration k
the search identified a feasible point with a lower value of the objective, and that point
will become the next iterate). The set U corresponds to all unsuccessful iterations—
those for which xk+1 = xk since the search was unable to identify a feasible point
with a lower value of the objective.

Each of the six subfigures in Figure 2.1 represents one iteration of a linearly
constrained GSS method. Taking a step of length ∆k along each of the four search
directions yields the four trial points. The squares represent the trial points under
consideration (points at which the objective function is evaluated) at that particular
iteration. The crosses represent the trial points that are not considered (points at
which the objective function is not evaluated) at that particular iteration because
they are infeasible. In subfigures (b)–(f), the trial points from the previous iteration
are shown in the background for comparison. In subfigure (a), the solution to the
problem is marked with a star.

In subfigure (a), the initial iterate x0 is near two constraints, which are highlighted
using dashed lines. (The mechanism by which we identify nearby constraints and its
connection to the value of ∆k are discussed in more detail in section 4.) Two of
the initial search directions are chosen so that they are parallel to these two nearby
constraints. The other two search directions are the normals to the nearby constraints,
translated to x0. In this instance, there are two feasible descent directions; i.e., moving
along two of the four search directions would allow the search to realize descent on
the value of f at x0 while remaining feasible. Either of the two trial points produced
by these two feasible descent directions is acceptable; here we choose the one that
gives the larger decrease in the value of the objective f to become x1. Since the step
of length ∆0 from x0 to x1 was sufficient to produce decrease, we set ∆1 to ∆0.

4 R. M. LEWIS, A. SHEPHERD, AND V. TORCZON

Ω

(a) k = 0. The initial set of
search directions. Move

Northeast; k ∈ S.

Ω

(b) k = 1. Keep the set of
search directions. Move

Northeast; k ∈ S.

Ω

(c) k = 2. Change the set of
search directions. Contract;

k ∈ U .

Ω

(d) k = 3. Change the set of
search directions. Move

Northeast; k ∈ S.

Ω

(e) k = 4. Change the set of
search directions. Contract;

k ∈ U .

Ω

(f) k = 5. Change the set of
search directions. Move

Southeast; k ∈ S.

Fig. 2.1. A version of linearly constrained GSS applied to the modified Broyden tridiagonal
function augmented with three linear inequality constraints.

In subfigure (b), the same two constraints remain nearby, so we leave the set of
search directions unchanged. Again, there are two feasible descent directions, each of
which leads to a trial point that decreases the value of f at the current iterate. We
accept the trial point that yields the larger decrease as x2 and set ∆2 to ∆1.

In subfigure (c), the set of nearby constraints changes. We drop one of the con-
straints that had existed in our working set of nearby constraints in favor of a newly
identified constraint that yields a different working set. The set of search directions
that results is shown. We do have one descent direction, but now the difficulty is that
currently the step along that direction takes the search outside the feasible region.
Thus, the best iterate is unchanged, so we set x3 to x2. We then contract by setting
∆3 to half the value of ∆2, which has the effect of halving the length of the steps
taken at the next iteration.

The consequences of the contraction are illustrated in subfigure (d). In addition
to reducing the length of the step allowed, the contraction reduced the working set to
one constraint. Given both the new set of search directions along with the reduction
in the length of the steps allowed, we now have a feasible trial point that gives a
decrease in the value of the objective, which we make x4, and set ∆4 to ∆3.

In subfigure (e) the search moves to the new iterate. Once again the search is near

IMPLEMENTING GSS FOR LINEARLY CONSTRAINED PROBLEMS 5

the same two constraints seen in subfigure (c), so we have the same working set and
the same set of search directions, though now we search with a reduced step length
(i.e., ∆4 = 1

2∆2). Again, the length of the steps along the two descent directions is
too long. So we set x5 to x4 and ∆5 to 1

2∆4.

The result of halving ∆ is illustrated in subfigure (f). In addition to reducing
the length of the steps allowed, we have changed the set of working constraints; once
again, we have reduced the set to only one working constraint. A new feasible trial
point that gives a decrease in the value of f is identified (to the Southeast), and at
the next iteration the search will proceed from there.

This example illustrates the essential features the implementation must address:
how to identify the nearby constraints, how to obtain a suitable set of feasible search
directions, how to find a step of an appropriate length, and how to categorize the
iteration as either successful (k ∈ S) or unsuccessful (k ∈ U).

3. Notation and definitions. Norms and inner products are assumed to be
the Euclidean norm and inner product.

A cone K is a set that is closed under nonnegative scalar multiplication: K is a
cone if x ∈ K implies ax ∈ K for all a ≥ 0. A cone is finitely generated if there exists
a (finite) set of vectors v1, . . . , vr such that

K = { λ1v1 + · · · + λrvr | λ1, . . . , λr ≥ 0 } .

The vectors v1, . . . , vr are generators of K. Conversely, the cone generated by a set
of vectors v1, . . . , vr is the set of all nonnegative combinations of these vectors.

The maximal linear subspace contained in a cone K is its lineality space [12]. The
polar of a cone K, denoted by K◦, is the set

K◦ =
{

v | wT v ≤ 0 for all w ∈ K
}

.

The polar K◦ is a convex cone, and if K is finitely generated, then so is K◦.

Let K be a convex cone. Given a vector v, let vK and vK◦ denote the projections
of v onto K and its polar K◦, respectively. The polar decomposition [26, 32] says
that any vector v can be written as the sum of its projections onto K and K◦ and
that the projections are orthogonal: v = vK + vK◦ , and vT

KvK◦ = 0. This means that
R

n is positively spanned by a set of generators of K together with a set of generators
of K◦, a generalization of the direct sum decomposition given by a subspace and its
orthogonal complement.

We borrow the following definition from [18]. For any finite set of vectors G,

κ(G) = inf
v∈Rn

vK 6=0

max
d∈G

vT d

‖ vK ‖ ‖ d ‖
, where K is the cone generated by G. (3.1)

The value κ(G) is a property of the set G, not of the cone K. The measure κ(G)
plays a critical role when choosing the set of search directions, as discussed further in
section 5. Given (3.1), we then have the following.

Proposition 3.1 (Proposition 10.3 of [21]). If G 6= {0}, then κ(G) > 0.

If K is a vector space, then a set of generators for K is called a positive spanning

set [7]. A positive spanning set is like a linear spanning set but with the additional
requirement that all of the coefficients be nonnegative.

6 R. M. LEWIS, A. SHEPHERD, AND V. TORCZON

ε
k

x
k

(a) The inequality constraint is
not included in the working set
since its intersection with the
equality constraint lies outside

the εk-ball.

ε
k

x
k

(b) The inequality constraint is
redundant given the equality

constraint.

ε
k

x
k

(c) Both the upper and lower
bounds are in the working set.

Fig. 4.1. Special cases for linear equality constraints.

4. Constructing the working set of constraints. We next discuss how we
determine the working set of constraints that is used to compute the minimal set of
necessary search directions. Let aT

i denote the rows of A, indexed by i. We partition
the constraints into the equalities and inequalities:

E = { i | `i = ui } and I = { i | `i < ui } .

We denote by C`,i and Cu,i the sets where the bounds on constraint i are binding:

C`,i =
{

y | aT
i y = `i

}

and Cu,i =
{

y | aT
i y = ui

}

.

These sets are faces of the feasible polyhedron. Of interest to us are the outward-
pointing normals to the faces within a prescribed distance of x.

The presence of equality constraints slightly complicates the identification of in-
equality constraints near a given iterate. Figure 4.1(a) illustrates the desirability of
measuring the distances to nearly binding inequality constraints only along direc-
tions that are feasible with respect to equality constraints. The horizontal line in
Figure 4.1(a) represents an equality constraint, while the line at an oblique angle
represents an inequality constraint. The shaded region represents the set of points
feasible with respect to the inequality constraint. The inequality constraint is in close
proximity to the equality constraint near x but only at points that are infeasible with
respect to the equality constraint (a cross indicates where both constraints are active).

We compute the distance to nearby binding inequality constraints along directions
that are feasible with respect to equality constraints as follows. Let N denote the
nullspace of the equality constraints (i.e., the matrix whose rows are aT

i for i ∈ E),
and let Z be an n × r orthogonal matrix whose columns are a basis for N . Given
a ∈ R

n and b ∈ R, let S =
{

y | aT y = b
}

. We then define

distN (x, S) =







| aT x − b |/‖ ZT a ‖ if ZT a 6= 0,
0 if ZT a = 0 and aT x = b,
∞ if ZT a = 0 and aT x 6= b.

This is the distance from x to S inside the nullspace N . If S is parallel to N , as is
the case for the inequality constraint in Figure 4.1(b), we set this distance to be ∞,

IMPLEMENTING GSS FOR LINEARLY CONSTRAINED PROBLEMS 7

unless x ∈ S, in which case the distance is 0, as is true for the equality constraint in
Figure 4.1(b).

Using this specialized notion of distance, we define the sets of inequalities at their
bounds that are within distance ε of x:

I`(x, ε) = { i ∈ I | distN (x, C`,i) ≤ ε } ,

Iu(x, ε) = { i ∈ I | distN (x, Cu,i) ≤ ε } .

Let IE(x, ε) = I`(x, ε) ∩ Iu(x, ε).
We now define the working set of constraints. Given a feasible x and an ε > 0,

the corresponding working set W(x, ε) is made up of two pieces, the first consisting
of vectors we treat as defining equalities and the second consisting of vectors we treat
as defining inequalities. The first piece is

WE(x, ε) = { ai | i ∈ E } ∪ { ai | i ∈ IE(x, ε) } ,

which corresponds to the equality constraints together with every inequality for which
the faces for both its lower and upper bounds are within distance ε of x, as in
Figure 4.1(c). The second piece is

WI(x, ε) = { −ai | i ∈ I`(x, ε) \ IE(x, ε) } ∪ { ai | i ∈ Iu(x, ε) \ IE(x, ε) } ,

which is the set of outward-pointing normals to the inequalities for which the faces of
exactly one of their lower or upper bounds is within distance ε of x. Note that, for the
three examples illustrated in Figure 4.1, WI(x, ε) = ∅. The distinction between WE ,
which consists of constraints that are treated as equalities, and WI , which consists of
constraints that are treated as inequalities, figures in the computation of the requisite
search directions. We return to this point in section 5.

Given x ∈ Ω, the ε-normal cone, denoted N(x, ε), is the cone generated by the
linear span of the vectors in WE(x, ε) together with the nonnegative span of the
vectors in WI(x, ε):

N(x, ε) =







∑

ai∈WE(x,ε)

uiai +
∑

ai∈WI(x,ε)

ξiai | ξi ≥ 0







. (4.1)

If both of the latter sets are empty, then N(x, ε) = {0}. The ε-tangent cone, denoted
by T (x, ε), is the polar of N(x, ε):

T (x, ε) =
{

v | wT v ≤ 0 for all w ∈ N(x, ε)
}

.

If N(x, ε) = {0}, then T (x, ε) = R
n. In addition to the examples illustrated in

Figure 4.1, three examples involving only inequality constraints with three different
values of ε are illustrated in Figure 4.2.

The set x + T (x, ε) approximates the feasible region near x, where “near” is in
terms of ε as measured using distN (x, S). The cone T (x, ε) is important because
if T (x, ε) 6= {0}, then one can proceed from x along all directions in T (x, ε) for a
distance of at least ε and still remain inside the feasible region [21, 18]. The examples
in Figures 4.1–4.2 illustrate this point.

In the algorithm, we allow different values of εk at every iteration k. There is a
lot of flexibility in determining the choice of εk, as discussed in [18]. We have chosen
to yoke εk to ∆k, for the reasons given in [18].

8 R. M. LEWIS, A. SHEPHERD, AND V. TORCZON

T(x,ε
1
)

N(x,ε
1
)

ε
1

x

Ω

(a) Cones for ε1.

T(x,ε
2
)

N(x,ε
2
)

ε
2

x

Ω

(b) Cones for ε2.

T(x,ε
3
)

ε
3

x

Ω

(c) Cones for ε3.

Fig. 4.2. The cones N(x, ε) and T (x, ε) for three values of ε. Note that for this example, as ε

varies from ε1 to 0, there are only the three distinct pairs of cones (N(x, ε3) = {0}).

5. Generating the core set of search directions. Once the nearby con-
straints for a given iteration have been identified, we select the search directions. To
ensure that the convergence results in [18] hold, we make the search conform to the
local geometry of Ω in the sense that, at each iteration k, there is at least one direction
in Dk, the set of search directions at iteration k, along which the search can take an
acceptably long step and still remain feasible.

We decompose Dk into Gk and Hk, where Gk is made up of the directions necessary
to ensure desirable convergence properties and Hk contains any additional directions.
We sometimes refer to Gk as the core set of search directions. Several options for
choosing Gk have been proposed:

1. Gk contains generators for all of the cones T (xk, ε) for all ε ∈ [0, ε∗], where
ε∗ > 0 is independent of k [24, 21].

2. Gk is exactly the set of generators for the cone T (xk, εk), where εk → 0 is
updated according to whether acceptable steps are found, and Hk = ∅ [23].

3. Gk contains generators for the cone T (xk, εk), where εk = ∆kβmax, and βmax

is described in [18].
Here we use the third option, with its explicit link between εk and ∆k, and choose
βmax = 1. As discussed further in section 6, the third option allows us to use a
nonempty set Hk of additional directions chosen so as to accelerate the overall progress
of the search. For any of the three options, the following is required of Gk [21, 18]:

Condition 1. There exists a constant κmin > 0, independent of k, such
that, for every k for which T (xk, εk) 6= {0}, the set Gk generates T (xk, εk)
and satisfies κ(Gk) ≥ κmin.

Observe that the number of distinct ε-normal cones (and consequently the number
of distinct ε-tangent cones) is finite.

The following simple technique, outlined in [18], ensures Condition 1 is satisfied.
Let k2 > k1. If WE(xk2

, εk2
) = WE(xk1

, εk1
) and WI(xk2

, εk2
) = WI(xk1

, εk1
), then

use the same generators for T (xk2
, εk2

) as were used for T (xk1
, εk1

). There are at
most 2m distinct sets G if the same set of generators is always used to generate a
particular ε-tangent cone. Recall that m is the number of linear constraints. Since by
Proposition 3.1 each Gk 6= {0} has a strictly positive value for κ(Gk), and since this

IMPLEMENTING GSS FOR LINEARLY CONSTRAINED PROBLEMS 9

−∇ f(x)

d(1)

d(2)

d(3)
poor

T(x,ε)

N(x,ε)

εx

Ω

(a) Poor choice

−∇ f(x)

d(1)

d(2)
d(3)

good

T(x,ε)

N(x,ε)

εx

Ω

(b) Reasonable choice

−∇ f(x)

T(x,ε)

d(1)

d(2)

d(3)
optimal

T(x,ε)

N(x,ε)

εx

Ω

(c) “Optimal” choice
(w.r.t. κ(Gk))

Fig. 5.1. Condition 1 is needed to avoid a poor choice when choosing Gk.

Fig. 5.2. On the right, a set of generators for the cone (which includes a lineality space along
the fold) that satisfies Condition 1 with a relatively large value of κmin. On the left, a different set
of generators for which κmin is much closer to zero.

technique ensures there are only finitely many Gk’s, we can set κmin = min{κ(Gk) :
T (xk, εk) 6= {0}}. Thus, Condition 1 is satisfied.

The need for Condition 1 arises when there is a lineality space present in T (xk, εk).
In this case the directions of the generators Gk are not uniquely determined. Figure 5.1
depicts the situation where T (xk, εk) contains a halfspace. Condition 1 enforces a
lower bound on κ(Gk) to avoid the situation illustrated in Figure 5.1(a), in which
the search directions can be almost orthogonal to the direction of steepest descent.
Figure 5.1(c), which uses a minimal number of vectors but ensures as large a value for
κ(Gk) as possible, represents an optimal choice in the absence of explicit knowledge
of the gradient.

In R
2 the presence of a lineality space in T (x, ε) means that T (x, ε) is either a

halfspace, as illustrated in Figures 4.2(b) and 5.1, or R
2, as illustrated in Figure 4.2(c).

In more than two dimensions there are other geometrical possibilities that cause the
directions of the generators of T (x, ε) not to be uniquely determined, as illustrated in
Figure 5.2.

As discussed in [18], we need to enforce lower and upper bounds on the lengths of
the search directions. Here we accomplish this by simply normalizing all of the search
directions.

The necessary conditions on the set of search directions all involve the calculation
of generators for the polars of cones determined by the current working set. We treat
the determination of the search directions in increasing order of difficulty. Figure 5.3

10 R. M. LEWIS, A. SHEPHERD, AND V. TORCZON

shows the various cases to consider.

Generate core

search directions

section 5

Easy cases

Empty working set, section 5.1

Only bound constraints in working set, section 5.2

Only equality constraints in working set, section 5.3

Straightforward case

Nondegenerate working set, section 5.4.1

Hard case

Degenerate working set, section 5.4.2

Fig. 5.3. The components involved in the generation of the search directions.

5.1. When the working set is empty. If the working set is empty, then
N(xk, εk) = {0} and T (xk, εk) = R

n, and any positive spanning set of R
n suffices

as Gk [30, 19]. We use the unit coordinate vectors ±ei, i = 1, . . . , n, to form Gk

both because they are apt for many applications and because the orthonormality of
the vectors ensures a reasonable value for κmin in Condition 1. In our testing we
have found that the coordinate directions are a consistently effective set of search
directions for scientific and engineering problems. The coordinate directions have
physical meaning for such applications; thus using them to form the core set of search
directions Gk both guarantees a positive basis and seems to lead to better overall
performance.

5.2. When the working set contains only bound constraints. A similar
situation holds if only bound constraints are present. This case is also simple since we
know a priori that the generators for the ε-normal and ε-tangent cones can be drawn
from the set of coordinate directions [20]. Thus we include in Gk the unit coordinate
vectors ±ei, i = 1, . . . , n. As noted in [21, section 8.3], if not all of the variables are
bounded, then one can make a choice of Gk that is more parsimonious in the number
of directions, but we did not choose to do so in our implementation.

5.3. When the working set consists only of equality constraints. If the
working set consists only of equality constraints, then the generators of T (xk, εk)
correspond to a positive spanning set for the nullspace of the vectors in WE(xk, εk).
In this situation by default we compute an orthonormal basis Z for this nullspace and
take as our generators the “coordinatelike” set consisting of the elements of Z and
their negatives.

5.4. When the working set contains general linear constraints. Once
the nearby constraints have been identified using xk and εk, their outward-pointing
normals are extracted from the rows of the constraint matrix A to form the working
set of constraints. So, for instance, in the case shown in Figure 5.4 the outward-
pointing normals a1 and a2 constitute the working set WI(xk, εk) = {a1, a2} (there
are no equality constraints in this example). There are then two cases to consider:
when the working set is known to be nondegenerate and when the working set may
be degenerate.

IMPLEMENTING GSS FOR LINEARLY CONSTRAINED PROBLEMS 11

ε
k

x
k

a
1

a
2

ε
k

x
k

N(x
k
,ε

k
)

T(x
k
,ε

k
)

Fig. 5.4. The outward-pointing normals a1 and a2 of the nearby constraints are translated to
xk to form the ε-normal cone N(xk, εk) and thus define its polar the ε-tangent cone T (xk, εk). The
normalized generators for N(xk, εk) and T (xk, εk) form the set of search directions.

5.4.1. When the working set is known to be nondegenerate. Figure 5.4
depicts the computationally straightforward case.

We begin with two general propositions concerning the polar of a finitely generated
cone K. Proposition 5.1 is an elaboration of the construction given in [21, section 8.2]
and shows how one can construct generators for K◦ if the generators of K are linearly
independent. In particular, this means that K cannot contain a linear subspace. In
those situations where K does contain a linear subspace, for instance, as illustrated
in Figures 5.1–5.2, Proposition 5.2 enables us to reduce the situation to one where we
can apply Proposition 5.1.

Proposition 5.1. Suppose K is generated by the positive span of the columns of

the matrix Q = [q1 . . . qr]. Let N be a matrix whose columns are a positive spanning

set for the nullspace of QT . Finally, suppose QT has a right inverse R.

Then K◦ is the positive span of the columns of −R together with the linear span

of the columns of N :

K◦ = { w | w = −Ru + Nξ, u ≥ 0 } .

Proof. Let C = { w | w = −Ru + Nξ, u ≥ 0 }. We first show that C ⊂ K◦.
Suppose d ∈ C. To show that d ∈ K◦, we must show that qT

i d ≤ 0 for all i = 1, . . . , r,
i.e., QT d ≤ 0. Since QT R = I and QT N = 0,

QT d = QT (−Ru + Nξ) = −u ≤ 0.

Therefore d ∈ K◦, so C ⊂ K◦.
We next show that C◦ ⊂ K, whence K◦ ⊂ C, and so K◦ = C. If d ∈ C◦, then

dT (−Ru + Nξ) ≤ 0 for u ≥ 0 and for all ξ. In particular, dT Nξ = 0 for all ξ, so d
is orthogonal to the positive span of the columns of N , which is the nullspace of QT .
The latter means that d lies in the range of Q, so d = Qs for some s. At the same
time, we know that −dT Ru ≥ 0 for all u ≥ 0, whence −sT QT Ru = −sT u ≤ 0 for all
u ≥ 0, so s ≥ 0. Thus d = Qs for s ≥ 0, meaning d ∈ K and C◦ ⊂ K.

Proposition 5.2 says that if the cone K contains a linear subspace L, then com-
puting K◦ is a matter of looking at the polar of K ∩ L⊥.

Proposition 5.2. Suppose that the cone K can be written as the linear span of

the vectors v1, . . . , vq together with the nonnegative span of the vectors p1, . . . , pr:

K = { v | v = α1v1 + · · · + αqvq + λ1p1 + · · · + λrpr, λi ≥ 0 for i = 1, . . . , r } .

12 R. M. LEWIS, A. SHEPHERD, AND V. TORCZON

Step 1. Let L be the linear subspace spanned by the vectors in
WE(xk, εk). Compute a basis Z for L⊥.

Step 2. Check whether the set of vectors
{

ZT p | p ∈ WI(xk, εk)
}

is
linearly independent. If so, proceed to Step 3. If not, proceed to
the more complicated construction described in section 5.4.2.

Step 3. Let Q be the matrix whose columns are the vectors ZT p for
p ∈ WI(xk, εk). Compute a right inverse R for QT and a matrix N
whose columns are a positive spanning set for the nullspace of QT .

Step 4. Gk is then the columns of −ZR together the columns of ZN .

Fig. 5.5. The process for attempting the straightforward construction of Gk.

Let L be the linear subspace spanned by v1, . . . , vq. Then

K◦ =
{

w ∈ L⊥ | wT pi ≤ 0 for all i = 1, . . . , r
}

.

Proof. Let P =
{

w ∈ L⊥ | wT pi ≤ 0 for all i = 1, . . . , r
}

. Clearly, P ⊂ K◦.
Conversely, if w ∈ K◦, then we have wT pi ≤ 0 for all i = 1, . . . , r. In addition, since
L is contained in K we have vi ∈ K and −vi ∈ K for all i = 1, . . . , q. Thus we have
wT vi ≤ 0 and −wT vi ≤ 0, so wT vi = 0 and w ∈ L⊥, whence K◦ ⊂ P .

We use Propositions 5.1 and 5.2 to compute generators for T (xk, εk) = N(xk, εk)◦

as follows. Recall the definition of N(xk, εk) in (4.1). Let L denote the linear span of
the vectors in WE(xk, εk). Let Z denote a matrix whose columns span L⊥. Applying
Proposition 5.2 with K = N(xk, εk) then says

T (xk, εk) =
{

w ∈ L⊥ | wT p ≤ 0 for all p ∈ WI(xk, εk)
}

=
{

Zc | cT ZT p ≤ 0 for all p ∈ WI(xk, εk)
}

.

The latter condition says that the set of c of interest to us is actually the polar of
the cone K̃ generated by the vectors ZT p for all p ∈ WI(xk, εk). If this latter set of
vectors is linearly independent, we can apply Proposition 5.1 to obtain generators for
K̃◦ and then map them back to the original space under the action of Z. If they are
not linearly independent, we must use the more sophisticated approach discussed in
section 5.4.2. The procedure is summarized in Figure 5.5.

In our implementation we compute an orthonormal basis Z in Step 1. In Step 3
we use the pseudoinverse of QT as the right inverse. This choice is attractive because
the columns of the pseudoinverse are orthogonal to the lineality space of T (xk, εk) (as
in the examples on the right in Figures 5.1–5.2), which helps improve the conditioning
of the resulting set of search directions (Condition 1).

Also in Step 3 our implementation computes the positive spanning set N by
computing an orthonormal basis B for the nullspace of QT and setting N = [B −B].
This corresponds to a coordinatelike search in the nullspace of QT .

5.4.2. When the working set may be degenerate. If the construction de-
scribed in Figure 5.5 cannot be applied, because linear dependence of the set of vec-
tors

{

ZT p | p ∈ WI(xk, εk)
}

is detected, the computation of the search directions

IMPLEMENTING GSS FOR LINEARLY CONSTRAINED PROBLEMS 13

is more complicated. In this case N(xk, εk) is a cone with a degenerate vertex at the
origin, so we refer to this situation as the degenerate case. (The easiest example to
envision is the apex defined by the four triangular faces of a pyramid.)

The problem of finding a set of generators for T (xk, εk) is a special case of the
problem of finding the vertices and extreme rays of a polyhedron (the V -representation
of the polyhedron) given the description of the polyhedron as an intersection of half-
spaces (the H-representation). This is a well-studied problem in computational ge-
ometry (see [2] for a survey) for which practical algorithms have been developed.

The two main classes of algorithms for solving this type of problem are pivoting
algorithms and insertion algorithms. Pivoting algorithms move from vertex to vertex
along the edges of the polyhedron by generating feasible bases, as in the simplex
method. The reverse search algorithm [3, 1] is an example of such a method.

Insertion algorithms compute the V -description by working with the intersec-
tion of an increasing number of halfspaces. Typically, for a polyhedral cone these
algorithms start with a maximal linearly independent set of normals defining the
halfspaces and construct an initial set of extreme rays as in Figure 5.5. Additional
halfspaces are then introduced, and the extreme rays are recomputed as positive
combinations of existing extreme rays; this process continues until the entire set of
halfspaces has been introduced. The double description method [27] is an example of
an insertion algorithm. A discussion of the double description method, along with a
description of the techniques used in a practical implementation, can be found in [11].

As observed in [2], pivoting algorithms can be inefficient if they encounter a highly
degenerate vertex. For this reason we chose the double description method. We use
Fukuda’s cddlib package [10], which is based on an efficient implementation of the
double description algorithm that directly addresses known—and serious—pitfalls of
a naive implementation of the double description method and that has been shown
to be effective in dealing with highly degenerate vertices [11]. We conducted our own
comparison of Avis’s lrs reverse search code [1] and Fukuda’s cdd double description
code [10] on problems we knew to be highly degenerate. Our experience confirmed
the observation made in [9]: cdd tends to be efficient for highly degenerate inputs,
while lrs tends to be efficient for nondegenerate or slightly degenerate problems.

Another observation made in [9] that bears repeating is that the number of in-
equalities defining the polyhedron does not by itself indicate the degree of difficulty
of a vertex/ray enumeration problem. It is noted in [9] that cdd can handle a highly
degenerate problem with 711 inequalities in 19 dimensions quite easily, while a prob-
lem with 729 inequalities in 8 dimensions is extremely difficult to solve. Our own
experience confirms this, as discussed further in section 9.

During our testing with cdd, one useful lesson we learned is that it is more efficient
to retain equalities in the problem rather than to eliminate the equalities by reparam-
eterizing the problem in terms of a basis for the nullspace of the equality constraints.
We initially thought that using the equalities to eliminate variables and reduce the
dimension of the problem would be an advantage. But this did not prove to be the
case. In several instances, elimination of equalities led to a significant deterioration
in the performance of cdd. This is due to the fact that the arrays of constraint coef-
ficients went from being sparse—and frequently integral—to being dense real arrays,
which greatly hindered the progress of the double description method.

We close by noting that only a subset of the generators for T (xk, εk) may suffice
at some iterations. For example, if an iteration is successful, the iteration can be
terminated as soon as at least one of the search directions yields a trial point that

14 R. M. LEWIS, A. SHEPHERD, AND V. TORCZON

satisfies the acceptance criterion. Thus, the generators could be computed on an
“as needed” basis (though, for an unsuccessful iteration, ultimately a complete set
of generators for T (xk, εk) will be required). Such an approach would be akin to
that used by the pivoting algorithms. But, as already noted, the pivoting algorithms
can be inefficient if they encounter a highly degenerate vertex. Since cdd has proven
efficient on all but one of the problems we have tested, we currently compute all of
the generators for T (xk, εk) at each iteration for which the working set changes.

6. Augmenting the core set of search directions. While generators of
T (xk, εk) are theoretically sufficient for the convergence analysis, in practice there
can be appreciable benefits to including additional search directions. The situation
illustrated in Figure 6.1 shows the desirability of additional directions, since the gen-
erators for T (xk, εk) necessarily point into the relative interior of the feasible region,
while it may be preferable to move toward the boundary.

At the very least, we would like the total set of search directions to be a positive
basis for R

n or, if equality constraints are present, a positive basis for the nullspace
of the equality constraints. If WE(xk, εk) is empty, one simple way to accomplish this
is to include in Hk the set WI(xk, εk), the outward-pointing normals to the working
set of constraints. Since these vectors generate N(xk, εk), and since T (xk, εk) is polar
to N(xk, εk), by the polar decomposition, R

n = N(xk, εk) ⊕ T (xk, εk). Thus, includ-
ing the vectors that generate N(xk, εk) in Hk means that Dk constitutes a positive
spanning set for R

n, as illustrated in Figure 6.2. See section 9 for a computational
illustration of the advantage of including these directions.

The preceding discussion needs to be modified if equality constraints are present.
Typically, in this case the outward-pointing normals ai to constraints in the working
set are infeasible directions—they do not lie in the nullspace of the equality con-
straints. Thus, a step along a direction ai will lead to violation of the equality con-
straints. In this situation we replace the outward-pointing normals by their projection
into the nullspace of the equality constraints.

T(x,ε
1
)

N(x,ε
1
) −∇ f(x)

x

Ω

(a) First iteration is
unsuccessful and so ∆1 is

halved for the next iteration.

T(x,ε
2
)

N(x,ε
2
) −∇ f(x)

x

Ω

(b) The second iteration is also
unsuccessful and so ∆2 is

halved again.

T(x,ε
3
)

−∇ f(x)

Ω

(c) Now, locally, the problem
looks unconstrained and a
successful step toward the

boundary is possible.

Fig. 6.1. Minimizing the number of function evaluations at a single iteration might require
more total function evaluations since in this instance it will take at least five function evaluations
to find decrease.

7. Determining the lengths of the steps. The step-length control parameter

∆k determines the length of a step along each direction for a given set of search

IMPLEMENTING GSS FOR LINEARLY CONSTRAINED PROBLEMS 15

T(x,ε
1
)

N(x,ε
1
) −∇ f(x)

x

Ω

(a) Both generators of N(x, ε1)
are descent directions.

T(x,ε
1
)

N(x,ε
1
) −∇ f(x)

x

Ω

(b) Limiting the steps along
the generators of N(x, ε1)

ensures feasible steps.

Fig. 6.2. Why including the generators for the ε-normal cone N(x, ε1) might be a good idea
since decrease may be found after as few as one function evaluation.

directions. In the presence of constraints, we must consider the possibility that some

of the trial points xk + ∆kd
(i)
k , d

(i)
k ∈ Dk, may be infeasible. With this in mind, we

choose the maximum ∆̃
(i)
k ∈ [0,∆k] such that xk +∆̃

(i)
k d

(i)
k ∈ Ω, thereby ensuring that

a full step will be taken, if feasible.

It is possible to choose ∆̃
(i)
k = ∆k if the result will be feasible and ∆̃

(i)
k = 0

otherwise, thereby rejecting infeasible points. This simple strategy was illustrated
in the initial example given in Figure 2.1. We have found it much more efficient,
however, to allow steps that stop at the boundary, as suggested in [22, 23]. The latter
strategy is illustrated in Figure 6.2(b).

For the search directions in Hk we actually choose ∆̃
(i)
k to be the maximum value

in [σtol∆k,∆k] satisfying xk + ∆̃
(i)
k d

(i)
k ∈ Ω, where σtol ≥ 0. The factor σtol prevents

excessively short steps to the boundary, relative to the current value of ∆k. Our
experience has been that such steps typically yield little improvement and have the
overall effect of retarding decrease in ∆k.

8. Linearly constrained GSS. The variant of GSS that we have implemented
for problems with linear constraints is outlined in Figure 8.1. See [18] for discussions
of some of the many other possible variations on the specification of GSS algorithms
for linearly constrained optimization. The remainder of this section is devoted to
further explanation of the algorithm given in Figure 8.1.

8.1. Finding an initial feasible iterate. GSS methods for linearly constrained
problems are feasible iterates methods—all iterates xk, k = 0, 1, 2, . . ., satisfy xk ∈ Ω.
If an infeasible initial iterate is given, then we compute its Euclidean projection onto
the feasible polyhedron; this is a quadratic program. For some of the test problems
discussed in section 9 the starting value provided is infeasible, and for these we used
this projection strategy. Alternatively, one could use phase one of the simplex method
to obtain a starting point at a vertex of the feasible region.

8.2. Accepting steps. We opted to impose the sufficient decrease condition

f(xk + ∆̃kdk) < f(xk) − ρ(∆k),

16 R. M. LEWIS, A. SHEPHERD, AND V. TORCZON

Algorithm 8.1 (Linearly constrained GSS using a sufficient
decrease globalization strategy)

Initialization.

Let f : R
n → R be given. Let Ω be the feasible region.

Let x0 ∈ Ω be the initial guess.

Let ∆tol > 0 be the step-length convergence tolerance.

Let ∆0 > ∆tol be the initial value of the step-length control parameter.

Let σtol ≥ 0 control the lower bound on the length of successful steps.

Let εmax > ∆tol be the maximum distance used to identify nearby
constraints (εmax = +∞ is permissible).

Let ρ(∆) = α∆2 be the forcing function, with α > 0.

Algorithm. For each iteration k = 0, 1, 2, . . .

Step 1. Let εk = min{εmax,∆k}. Choose a set of normalized search
directions Dk = Gk ∪Hk satisfying Condition 1.

Step 2. If there exists d
(i)
k ∈ Dk, together with the maximum

∆̃
(i)
k ∈ [σtol∆k,∆k] such that xk + ∆̃kdk ∈ Ω, which satisfy

f
(

xk + ∆̃
(i)
k d

(i)
k

)

< f(xk) − ρ(∆k),

then:

– Set xk+1 = xk + ∆̃
(i)
k d

(i)
k (a successful step).

– Set ∆k+1 = ∆k.

Step 3. Otherwise, for every d ∈ Gk,

f(xk + ∆kd) ≥ f(xk) − ρ(∆k).

In this case:

– Set xk+1 = xk (an unsuccessful step).

– Set ∆k+1 = 1
2∆k.

If ∆k+1 < ∆tol, then terminate.

Fig. 8.1. Linearly constrained GSS using a sufficient decrease globalization strategy.

with ρ(∆) = α∆2. For any given problem the value of α should be chosen to reflect
the relative magnitude of f and ∆. Our primary reason for using a sufficient decrease
condition was that, as discussed in section 7 (and illustrated in Figure 6.2(b)), it

allows us to choose ∆̃
(i)
k to be the maximum value in [σtol∆k,∆k] satisfying xk +

∆̃
(i)
k d

(i)
k ∈ Ω. Furthermore, as shown in [18, section 6], this particular choice of ρ(∆)

IMPLEMENTING GSS FOR LINEARLY CONSTRAINED PROBLEMS 17

ensures the useful estimate (8.1), which we discuss in the next section.
For the results reported here we used the classical update for ∆k. If k ∈ S, then

∆k+1 = φk∆k, with φk = 1 for all k; otherwise, ∆k+1 = θk∆k, with θk = 1
2 for all k.

8.3. Stopping criteria. We stop the algorithm once the step-length parameter
∆k falls below a specified tolerance ∆tol. This stopping criterion is motivated by
the relationship between ∆k and χ(xk), a particular measure of progress toward a
Karush–Kuhn–Tucker (KKT) point of (1.1). For x ∈ Ω, let

χ(x) ≡ max
x+w∈Ω

‖ w ‖≤1

−∇f(x)T w.

Of interest to us here are the following properties [5, 6]: (1) χ(x) is continuous on Ω,
(2) χ(x) ≥ 0, and (3) χ(x) = 0 if and only if x is a KKT point for (1.1). We therefore
wish to see χ(xk) tend to zero.

In [18, Theorem 6.4] it is shown that once ∆k is small enough, so that εk = ∆k,
then

χ(xk) = O(∆k) for k ∈ U . (8.1)

Theorem 6.4 is most simply stated under the assumptions that the set F =
{ x ∈ Ω | f(x) ≤ f(x0) } is bounded and that the gradient of f is Lipschitz contin-
uous with constant M on F . Relaxations of these assumptions, along with a full
statement and proof of the theorem, are found in [18].

The big-O relationship between χ(xk) and ∆k means that as ∆k is reduced, which
happens only at unsuccessful iterations, the upper bound on the value of the measure
of stationarity is also reduced. Relationship (8.1) is analogous to the unconstrained
minimization result (see [8, section 3] or [17, section 3.6]):

‖ ∇f(xk) ‖ = O(∆k) for k ∈ U . (8.2)

Results (8.1) and (8.2) support using the magnitude of ∆k as a test for termination.
Obviously, one can also stop after a specified number of objective evaluations, an

option we exercise in our testing in section 9.

8.4. Scaling. The relative scaling of variables can have a profound effect on the
efficiency of optimization algorithms. We allow as an option the common technique
of shifting and rescaling the variables so that they have a similar range and size. We
work in a computational space whose variables w are related to the original variables
x via x = Dw + c, where D is a diagonal matrix with positive diagonal entries and c
is a constant vector, both provided by the user. We solve the transformed problem

minimize f(Dw + c)

subject to ` − Ac ≤ ADw ≤ u − Ac.

The scaling scheme we use in the numerical tests presented in section 9 is based
on that described in [13, section 7.5.1]. The latter scaling is based on the range of the
variables and transforms the variables to lie between −1 and 1.

One advantage of scaling is that it makes it easier to define a reasonable default
value for ∆0. For the results reported in section 9, whenever scaling is applied to a
problem, the default value for ∆0 is 2 since the longest possible feasible step along a
unit coordinate direction is 2 (the variables in the rescaled problem lie between −1
and 1).

18 R. M. LEWIS, A. SHEPHERD, AND V. TORCZON

8.5. Caching data. The potentially regular pattern to the steps the search takes
means that the search may revisit points. This is particularly true for unconstrained
and bound constrained problems. To avoid reevaluating known values of f , we store
values of x at which we evaluate the objective and the corresponding objective values.
Before evaluating f at a trial point wt in the rescaled space, we examine the data
cache to see whether we have already evaluated f at a point within some relative
distance of wt. We do not evaluate f at wt if we have already evaluated f at a point
w̄ for which ‖ wt−w̄ ‖ < rtol‖ wt ‖. By default, rtol = 10−8. For a more sophisticated
caching strategy, see [16].

Caching yields only minor improvements in efficiency if general linear inequality
constraints are present. If there are a considerable number of general linear con-
straints (i.e., constraints other than bounds) in the working set, then there is only a
small chance of reevaluating f near a previous iterate. Still, if each evaluation of the
objective function is expensive, then it is worth avoiding reevaluations.

9. Some numerical illustrations. We present some illustrations of the behav-
ior of our implementation of the algorithm given in Figure 8.1 using five test problems
from the CUTEr test suite [14, 15], listed in Table 9.1. All five problems have nonlin-
ear objectives. We chose these specific problems for illustration since the algorithm
must deal repeatedly with highly degenerate instances of the search direction calcu-
lation discussed in section 5.4.2. As the results in section 9.2 show, the solution of
such problems is usually quite tractable given a good implementation of the double
description algorithm.

9.1. Starting values and tolerances for the results reported here. We
started with the value of x0 specified by CUTEr, though we often had to project into
the feasible region, as discussed in section 8.1.

We terminated the program either when the value of ∆k fell below ∆tol = ∆0/220

or when the number of evaluations of the objective reached that which would have
been needed for 20 centered difference evaluations of the gradient if one had used the
equality constraints to eliminate variables. See Table 9.2 for the maximum number
of evaluations allowed for each problem.

When the problem was scaled (as it was for all but loadbal), we used ∆0 = 2, as
discussed in section 8.4. We used the default value σtol = 10−3. We set εmax = 25∆0

so that it played no role in the results reported here. We set α = 10−4 in the forcing
function ρ(∆) = α∆2.

The core set of search directions Gk consisted of generators for the ε-tangent cone
T (xk, εk). With one exception (for the purposes of illustrating the potential advantage

of linear # of bounds
Network

Problem n equalities Equalities Inequalities Lower Upper

avion2 49 0 15 0 49 49
dallasm 197 151 0 0 197 197
dallass 46 31 0 0 46 46
loadbal 31 11 0 20 31 11
spanhyd 97 33 16 0 97 97

Table 9.1
Problems used from the CUTEr test problem set

http://www.numerical.rl.ac.uk/cute/mastsif.html

IMPLEMENTING GSS FOR LINEARLY CONSTRAINED PROBLEMS 19

Value of objective/Value of ∆ Number of directions
◦ f(xk), k ∈ S (successful) ◦ cardinality of the working set; no change in Dk

• f(xk), k ∈ U (unsuccessful) •◦ cardinality of the working set; cddlib called
4 magnitude of ∆k •◦ cardinality of the working set; otherwise
— optimal objective value � cardinality of Gk (set of core directions)

(computed using ×+ cardinality of Hk (set of extra directions)
minos [28]) — n (number of decision variables)

Fig. 9.1. Legends for the remaining figures.

0 200 400 600 800 1000 1200 1400
9.459

9.46

9.461

9.462

9.463

9.464

9.465

9.466

9.467

9.468
x 10

7

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

10
−4

10
−3

10
−2

10
−1

10
0

10
1

V
al

ue
 o

f ∆

0 10 20 30 40
0

10

20

30

40

50

60

70

Iteration

N
um

be
r

of
 d

ire
ct

io
ns

Fig. 9.2. Results for the avion2 test problem. Legends are given in Figure 9.1.

of allowing a nonempty set Hk) Hk consisted of generators for the ε-normal cone
N(xk, εk) (projected into the nullspace of any equality constraints in the working set,
as described in section 6). Recall that, by definition, Dk = Gk ∪Hk.

The tests were run on a 1 processor, 3 GHz Pentium 4 workstation with 2 GB
memory running Linux and using Matlab R2006b.

9.2. The results. Below we include a summary, along with illustrations, of the
the iteration history for each problem. See Figure 9.1 for a legend.

The first problem is avion2, an aeronautical design problem. In this case the
equality constraints have rank 15, leaving 34 degrees of freedom in the problem. The
plot on the left in Figure 9.2 gives the iteration history for the value of the objective
and the value of ∆, both plotted against the number of evaluations of the objective.
Solid circles indicate where unsuccessful iterations were encountered. The plot on the
right in Figure 9.2 shows the size of the working set at each iteration, the number
of vectors in Gk, and the number of vectors in Hk. Solid circles in this plot indicate
iterations where the simple polar construction in section 5.4.1 was not applicable and
consequently cddlib was called, as described in section 5.4.2. Open circles indicate
iterations where the working set was unchanged from the previous iteration so no
new calculation of the search directions was needed. The set Hk has fewer vectors
than the working set because we do not include outward-pointing normals for equality
constraints in the working set. The solid line indicates the number of decision variables
in the problem; when the size of the working set is above this line, the algorithm must
deal with the degeneracy discussed in section 5.4.2. Observe that degeneracy is also
encountered when the size of the working set is smaller than the number of decision
variables; this occurs because of redundant constraints.

The next test problem is spanhyd, a model of a hydroelectric system. This
problem includes 33 network equality constraints of rank 32 and 16 fixed variables,

20 R. M. LEWIS, A. SHEPHERD, AND V. TORCZON

0 200 400 600 800 1000 1200 1400 1600 1800
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

V
al

ue
 o

f ∆

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

Iteration

N
um

be
r

of
 d

ire
ct

io
ns

Fig. 9.3. Results for the spanhyd test problem. Legends are given in Figure 9.1.

0 200 400 600 800 1000 1200 1400
9.459

9.46

9.461

9.462

9.463

9.464

9.465

9.466

9.467

9.468
x 10

7

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

V
al

ue
 o

f ∆

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
10

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

10
−4

10
−3

10
−2

10
−1

10
0

10
1

V
al

ue
 o

f ∆

Fig. 9.4. Progress versus cost history for the avion2 (left) and spanhyd (right) test problems
if only the theoretically minimal set of search directions Dk = Gk is used at each iteration k. Legend
is given in Figure 9.1.

leaving 49 degrees of freedom in the problem. We modify the scaling scheme slightly
by not scaling variables whose original range is narrow; specifically, we scale only the
variables that vary over a range of more than 0.1. The plot on the left in Figure 9.3
shows that the algorithm makes good progress toward the optimal objective value.
For this problem the test terminated because ∆k ≤ ∆tol.

More interesting is the plot on the right, which shows that the degenerate case
arises multiple times. Moreover, the plot on the right in Figure 9.3 reveals how badly
one can be fooled by the naive bound on the potential number of search directions.
For instance, at iteration 4 there are 128 constraints in the working set. Of these, 67
are equality constraints, with rank 66. Eliminating these degrees of freedom from the
97 variables still leaves brute force enumeration of

(

128 − 67
97 − 66

)

=
61!

31! 30!
≈ 2.33 × 1017

possible generators for T (xk, εk). There are, in fact, only 5 generators, which cddlib

finds in less than 0.17 seconds.
Figure 9.4 illustrates the point made in section 6 about the desirability of using

more than the theoretically minimal set of search directions. In this test we used
only the generators of T (xk, εk) (the core set of search directions), setting Hk =

IMPLEMENTING GSS FOR LINEARLY CONSTRAINED PROBLEMS 21

0 100 200 300 400 500 600 700
−2

0

2

4

6

8

10

12

14
x 10

6

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

0.2512

0.3981

0.631

1

1.5849

V
al

ue
 o

f ∆

0 5 10 15 20 25
0

10

20

30

40

50

60

70

80

Iteration

N
um

be
r

of
 d

ire
ct

io
ns

Fig. 9.5. Results for the dallass test problem. Legends are given in Figure 9.1.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−1

0

1

2

3

4

5

6

7
x 10

7

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

1

1.2589

1.5849

1.9953

V
al

ue
 o

f ∆

0 10 20 30 40
0

50

100

150

200

250

300

Iteration

N
um

be
r

of
 d

ire
ct

io
ns

Fig. 9.6. Results for the dallasm test problem. Legends are given in Figure 9.1.

∅. Comparisons with Figures 9.2 and 9.3 show that using the smaller set of search
directions can appreciably retard the progress of the search.

Figure 9.5 gives results for the dallass test problem, a small model of the Dallas
water system. The plot on the left shows that the problem is solved quickly. In the
plot on the right, lighter solid circles indicate iterations where the simpler construction
of the search directions given in section 5.4.1 was used. The degenerate case occurs
only in the first five iterations.

In Figure 9.6 we give the results for the dallasm test problem, a medium size
model of the Dallas water system. While the algorithm makes progress towards the
solution, reducing the value of the objective by a factor of 160, it does not solve the
problem within the budget of objective evaluations allowed. The plot on the right
shows that in the first 26 iterations there is considerable degeneracy in the working
set. In the most extreme case, at iteration 4 there are 293 constraints in the working
set, of which 151 are equalities with rank 150. Eliminating these degrees of freedom
from the 197 variables leaves

(

293 − 151
197 − 150

)

=
142!

47! 95!
≈ 1.01 × 1038

possible generators for T (xk, εk). There are actually only 134 generators, which
cddlib finds in about 4.3 seconds.

22 R. M. LEWIS, A. SHEPHERD, AND V. TORCZON

0 100 200 300 400 500 600 700 800 900

0.5012

0.631

0.7943

1

1.2589

Number of objective evaluations

V
al

ue
 o

f o
bj

ec
tiv

e

10
0

V
al

ue
 o

f ∆

0 10 20 30 40
10

15

20

25

30

35

40

Iteration

N
um

be
r

of
 d

ire
ct

io
ns

Fig. 9.7. Results for the loadbal test problem. Legends are given in Figure 9.1.

CUTEr Degrees of Stopping conditions Total time (seconds)
problem freedom Max evals. Reason Elapsed In cddlib

avion2 34 1380 Max evals. 2.47 0.15
dallasm 47 1900 Max evals. 92.91 75.86
dallass 16 660 Max evals. 1.32 0.09
loadbal 21 860 Max evals. 1.56 0.02
spanhyd 49 1980 ∆ < ∆tol 6.68 2.43

Table 9.2
Summary of test results

Figure 9.7 gives results for the loadbal problem, a load–balancing problem from
computer science. Absent upper bounds on all of the variables, and with no prior
knowledge of reasonable ranges for the variables, we do not scale. We choose ∆0 = 8
based on the magnitude of the starting point. There is rapid progress toward the
solution.

We summarize the test results in Table 9.2.

In evaluating the timings, one should bear in mind that the cost of an objective
evaluation was insignificant since the objectives are explicitly defined functions. In
more realistic settings the cost of an objective evaluation would likely be much higher,
so the relative cost of treating degenerate working sets should be appreciably less.

We tested our implementation on other problems from the CUTEr test set (e.g.,
himmelbi) and for most of them saw results comparable to the ones reported above.
Two exceptions were qpcboei1 and qpcboei2. In both cases we encountered highly
degenerate cases of the working set that exercised cddlib. For instance, in qpcboei1,
a 384 variable problem, we encountered working sets with over 700 constraints for
which cddlib took about 40 seconds to compute the core search directions. In
qpcboei2, a 143 variable problem, we encountered a working set consisting of 30
equalities and 189 inequalities for which cddlib did not find a set of core search di-
rections in an acceptable amount of time; we terminated the job after allowing cddlib

to work for 12 hours.

10. Concluding remarks. Our numerical results illustrate the value of the
condition defining the working set for generating set search introduced in [18]. This
condition reduces the number of core search directions required in [21] while allowing

IMPLEMENTING GSS FOR LINEARLY CONSTRAINED PROBLEMS 23

the flexibility of introducing extra search directions. As the discussion in section 6
would suggest, we have found that augmenting the set of search directions beyond the
theoretically minimal set typically leads to greater overall efficiency of the algorithm.
We also have shown that state-of-the-art computational geometry methods make the
calculation of the search directions needed by generating set search tractable even in
the degenerate case. In addition, the presentation here addresses the various details
that arise when handling linear equality constraints. Finally, the introduction of
linear constraints has allowed us to solve larger dimensional problems than is usually
possible for the unconstrained case.

Our implementation gives us a basis for implementing a generating set search ver-
sion of the augmented Lagrangian algorithm in [5]. In this approach, linear constraints
are treated explicitly rather than being included in the augmented Lagrangian. The
ability to treat degeneracy explicitly, as we do here, is important because the combi-
nation of general linear constraints and simple bounds frequently leads to degeneracy,
and treatment of degeneracy by an augmented Lagrangian approach can be slow.

Future work includes using information collected during the progress of the algo-
rithm to estimate the set of constraints binding at a solution as well as developing
strategies for moving more quickly to solutions on the boundary.

Acknowledgments. Komei Fukuda has made his cdd package publicly available
and graciously answered our questions about cddlib. Conversations with Rakesh
Kumar about his experience implementing and testing the algorithm in [21] for the
MathWorks Genetic Algorithm and Direct Search Toolbox [29] provided many useful
insights when we tackled degenerate constraints. Josh Griffin read an early version
of the paper and reported back numerous bugs and inconsistencies that we had over-
looked. Tammy Kolda, Associate Editor, and two anonymous referees carefully read
the paper and responded with numerous suggestions that appreciably improved the
presentation. Stephen Nash also sent along several helpful observations concerning
the first version of the paper. We extend our sincere thanks to all of these people.

REFERENCES

[1] D. Avis, lrs: A revised implementation of the reverse search vertex enumeration algorithm, in
Polytopes - Combinatorics and Computation, G. Kalai and G. Ziegler, eds., Birkhauser-
Verlag, 2000, pp. 177–198.

[2] D. Avis, D. Bremner, and R. Seidel, How good are convex hull algorithms?, Computational
Geometry: Theory and Applications, 7 (1997), pp. 265–301.

[3] D. M. Avis and K. Fukuda, A pivoting algorithm for convex hulls and vertex enumeration of
arrangements and polyhedra, Discrete and Computational Geometry, 8 (1992), pp. 295–313.

[4] C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Mathematics
of Computation, 19 (1965), pp. 577–593.

[5] A. R. Conn, N. Gould, A. Sartenaer, and P. L. Toint, Convergence properties of an
augmented Lagrangian algorithm for optimization with a combination of general equality
and linear constraints, SIAM Journal on Optimization, 6 (1996), pp. 674–703.

[6] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust-Region Methods, vol. 1 of MPS/SIAM
Series on Optimization, SIAM, Philadelphia, 2000.

[7] C. Davis, Theory of positive linear dependence, American Journal of Mathematics, 76 (1954),
pp. 733–746.

[8] E. D. Dolan, R. M. Lewis, and V. J. Torczon, On the local convergence properties of pattern
search, SIAM Journal on Optimization, 14 (2003), pp. 567–583.

[9] K. Fukuda, cdd/cdd+ Reference Manual, Institute for Operations Research, ETH–Zentrum,
Zurich, Switzerland, 2005. Available at ftp://ftp.ifor.math.ethz.ch/pub/fukuda/cdd

/cddman/cddman.html.
[10] , cddlib, 2005. http://www.ifor.math.ethz.ch/∼fukuda/cdd home/.

ftp://ftp.ifor.math.ethz.ch/pub/fukuda/cdd
/cddman/cddman.html
http://www.ifor.math.ethz.ch/~fukuda/cdd_home/

24 R. M. LEWIS, A. SHEPHERD, AND V. TORCZON

[11] K. Fukuda and A. Prodon, Double description method revisited, in Combinatorics and Com-
puter Science, M. Deza, R. Euler, and I. Manoussakis, eds., vol. 1120 of Lecture Notes in
Computer Science, Springer-Verlag, 1997, pp. 91–111.

[12] M. Gerstenhaber, Theory of convex polyhedral cones, in Activity Analysis of Production
and Allocation, T. C. Koopmans, ed., John Wiley & Sons, New York, 1951, pp. 298–316.
Cowles Commission Monograph No. 13.

[13] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press, Lon-
don, 1981.

[14] N. I. M. Gould, D. Orban, and P. L. Toint, CUTEr: a Constrained and Unconstrained
Testing Environment, revisited, 2001. http://cuter.rl.ac.uk/cuter-www/doc.html.

[15] N. I. M. Gould, D. Orban, and P. L. Toint, CUTEr (and SifDec), a constrained and un-
constrained testing environment, revisited, ACM Transactions on Mathematical Software,
29 (2003), pp. 373–394.

[16] P. D. Hough, T. G. Kolda, and H. A. Patrick, Usage manual for APPSPACK 2.0, Tech.
Rep. SAND2000–8843, Sandia National Laboratories, Livermore, CA 94550, August 2000.

[17] T. G. Kolda, R. M. Lewis, and V. Torczon, Optimization by direct search: New perspectives
on some classical and modern methods, SIAM Review, 45 (2003), pp. 385–482.

[18] , Stationarity results for generating set search for linearly constrained optimization,
SIAM Journal on Optimization, 17 (2006), pp. 943–968.

[19] R. M. Lewis and V. Torczon, Rank ordering and positive bases in pattern search algorithms,
Tech. Rep. 96–71, Institute for Computer Applications in Science and Engineering, NASA
Langley Research Center, Hampton, Virginia, 1996.

[20] , Pattern search algorithms for bound constrained minimization, SIAM Journal on Op-
timization, 9 (1999), pp. 1082–1099.

[21] , Pattern search methods for linearly constrained minimization, SIAM Journal on Opti-
mization, 10 (2000), pp. 917–941.

[22] S. Lucidi and M. Sciandrone, A derivative-free algorithm for bound constrained optimization,
Computational Optimization and Applications, 21 (2002), pp. 119–142.

[23] S. Lucidi, M. Sciandrone, and P. Tseng, Objective-derivative-free methods for constrained
optimization, Mathematical Programming, 92 (2002), pp. 37–59.

[24] J. H. May, Linearly Constrained Nonlinear Programming: A Solution Method That Does
Not Require Analytic Derivatives, PhD thesis, Yale University, New Haven, Connecticut,
December 1974.

[25] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, Testing unconstrained optimization soft-
ware, Association for Computing Machinery (ACM) Transactions on Mathematical Soft-
ware, 7 (1981), pp. 17–41.

[26] J.-J. Moreau, Décomposition orthgonale d’un espace hilbertien selon deux cônes mutuellement
polaires, Comptes Rendus de l’Académie des Sciences de Paris, 255 (1962), pp. 238–240.

[27] T. S. Motzkin, H. Raiffa, G. Thompson, and R. M. Thrall, The double description method,
in Contributions to Theory of Games, H. Kuhn and A.W.Tucker, eds., vol. 2, Princeton
University Press, 1953.

[28] B. A. Murtagh and M. A. Saunders, MINOS 5.5 user’s guide, Tech. Rep. SOL 83–20R, De-
partment of Operations Research, Stanford University, Palo Alto, California, 1983. Revised
July 1998.

[29] The Mathworks, Inc., Genetic algorithm and direct search toolbox user’s guide, version 2.0.
http://www.mathworks.com/products/gads/, January 2005.

[30] W. Yu, Positive basis and a class of direct search techniques, Scientia Sinica, Special Issue of
Mathematics, 1 (1979), pp. 53–67.

[31] W. Yu and Y. Li, A direct search method by the local positive basis for linearly constrained
optimization, Chinese Annals of Mathematics, 2 (1981), pp. 139–146.

[32] E. H. Zarantonello, Projections on convex sets in Hilbert space and spectral theory, in Contri-
butions to Nonlinear Functional Analysis, E. H. Zarantonello, ed., Academic Press, London
and New York, 1971, pp. 237–424.

h
http://www.mathworks.com/products/gads/

