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Dixon, L. C. W. and Szegö, G. P., editors, Towards Global Optimisation 2, pages 1–15. Elsevier
North-Holland, New York.

Elster, C. and Neumaier, A. (1995). A grid algorithm for bound constrained optimization of noisy
functions. IMA Journal of Numerical Analysis, 15:585–608.

Frank, P. D. (1995). Global modeling for optimization. SIAG/OPT Views-and-News, (7):9–12.

Gay, D. M. (1983). Algorithm 611. Subroutines for unconstrained minimization using a model/trust-
region approach. ACM Transactions on Mathematical Software, 9:503–524.

Gay, D. M. (1984). A trust region approach to linearly constrained optimization. In Lootsma,
F. A., editor, Numerical Analysis. Proceedings, Dundee 1983, pages 171–189, Berlin. Springer.

13



(1995) and Booker (1996) in BLGS. Our idea is to construct a merit function that encourages the
selection of trial points at which the mean squared error is large, i.e. at which we believe that
less is known about the objective function. This strategy has a great deal in common with the
Sequential Design for Optimization (SDO) algorithm for global optimization proposed by Cox and
John (1996).

The mean squared error function can be estimated by replacing the parameters (β, σ2, θ) with
their MLEs, resulting in an expression that we denote by

M̂SE
[
f̂(x)

]
.

Then a natural family of merit functions comprises those of the form

Φc(x) = f̂c(x) − ρcM̂SE
[
f̂c(x)

]
,

where ρc ≥ 0. We anticipate that a great deal of numerical experimentation will be required to
determine useful choices of the ρc.

We also note that our family of kriging models was derived under the assumption of a stationary
stochastic process. In fact, it seems rather implausible that the same correlations will obtain
throughout the feasible set, so that we likely will prefer different values of θ for different regions of
[a, b]. This poses a problem, because the f̂c are global models. As we descend into the basin of a
local minimizer, we would like to use a value of θ that is suited to that basin, not a value of θ that
was determined by a global compromise.

An obvious way of addressing this difficulty is to implement the “zoom-in” process proposed by
Frank (1995). To do so, we occasionally modify the feasible set, restricting it to a much smaller set
in which a minimizer is deemed to lie. Then the current model, f̂c, is determined by the design sites
in, and restricted in domain to, the current feasible set, [ac, bc]. From a theoretical perspective,
this is a delicate strategy that must be carefully implemented in order to preserve the guaranteed
convergence that has thus far been inherited from the standard theory for pattern search methods.
However, properly implemented, updating the feasible set may permit a useful localization of the
kriging models.

Assuming that we are prepared to replace the current feasible set with a subset of it, when
should we do so? When step 4(a)(i) begins to produce trial points xt ∈ Core(xc), one might guess
that xc is near a local minimizer and that the algorithm is preparing to refine the current grid.
As previously noted, this can be an expensive undertaking, requiring as many as 2p evaluations
of f . At this stage, an interactive user might very well instruct the algorithm to refine the grid
without actually evaluating f on Core(xc), reasoning that an asymptotic convergence theory may
be of little relevance when one can afford only a small number of iterations.

Alternatively, one might interpret the same scenario as a signal to recalibrate the problem.
First, one would replace the current feasible set with a smaller one. Second, instead of performing
2p function evaluations on Core(xc)—a set of points that is not a good design—one would replace
the current grid with a finer grid, design an experiment for the new grid, and proceed. At present,
there is no theory to justify these tactics, but it seems quite plausible that they will result in
practical improvements of an already-promising procedure.
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example, the lower 75 percent of the distributions of best values found by DACE with V = 26 and
by MAGS with V = 11 are remarkably similar, but the former’s upper 10 percent is markedly better
than the latter’s. MAGS with V = 16 found a smallest function value less than or equal to 142.70
on 97 occasions, but found smallest values of 688.75, 855.64, and 885.32 on the other three. This
anomalous phenomenon seems to result from unfortunate initial designs. With only N = 5 design
sites, Latin hypercube sampling on a grid occasionally results in transparently bad designs, e.g. five
collinear sites, from which MAGS has difficulty recovering. To safeguard against this possibility,
we recommend using more sophisticated procedures for determining the initial design.

6 Conclusions and Future Work

The results presented in Section 5 suggest that the potential value of the methods that we have
proposed for optimizing expensive objective functions is considerable. Of course, comprehensive
numerical experiments on a variety of objective functions in a variety of dimensions will be required
to fully appreciate the advantages and disadvantages of these methods. We plan to undertake such
investigations in future work. We conclude this report by describing some modifications of MAGS
that we envision for these investigations.

We begin by noting that the design of the current model, f̂c, is sequential, comprising the initial
design sites x1, . . . , xN and the trial sites xt subsequently identified in 4(a)(i) in Figure 2. At present,
the initial design sites are selected according to the principles of experimental design without regard
to optimization, whereas the subsequent trial sites are determined by an optimization algorithm
without regard to the design of experiments. Because the sequence of trial points generated by an
optimization algorithm tends to cluster in promising regions, this sequence is rarely space-filling
and is not likely to be a good experimental design. Moreover, especially during the early stages of
optimization, greater gains are likely to come from improving the fit of f̂c to f than from accurately
identifying a minimizer of f̂c. Our present implementation of MAGS is a greedy algorithm in the
sense that it tries to minimize f̂c without concern for the fit of the subsequent model, f̂+.

The desirability of balancing the concerns of numerical optimization and the concerns of ex-
perimental design was recognized by Frank (1995), who proposed a dichotomous search strategy.
Given an optimization criterion, e.g. the objective function, and a design criterion, one obtains some
fraction of new design sites using one criterion and the balance using the other. An implementation
of this Balanced Local-Global Search (BLGS) strategy was described by Booker et al. (1995) and
employed by Booker (1996) and Booker et al. (1996).

In contrast to the dichotomous BLGS strategy, we envision modifying 4(a)(i) as follows: apply
an optimization algorithm to a merit function, Φc, to obtain xt ∈ Γc \ Evalc. The merit function
should be specified so as to balance the potentially competing goals of finding sites at which f̂c is
small and choosing good design sites. Notice that this modification in no way affects the convergence
theory for MAGS—it is a purely empirical matter whether or not it improves the performance of
the algorithm.

To illustrate what we have in mind, we again invoke the fiction that the objective function, f ,
is a realization of a stochastic process. Under the assumptions delineated in Section 3, the mean
squared error of (3) for predicting f(x) is

MSE
[
f̂(x)

]
= σ2


1 −

[
a(x)′, r(x; θ)′

]
[

0 A′

A R(θ)

]
−1 [

a(x)
r(x; θ)

]
 .

As detailed by Sacks, Welch, Mitchell and Wynn (1989), this function plays a fundamental role
in several approaches to optimal design. It is also the design criterion employed by Booker et al.
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Percentile DACE11 DACE16 DACE21 DACE26 MAGS11 MAGS16

Minimum 3.41 5.29 5.02 3.26 5.77 3.43
5% 9.60 11.99 10.64 9.89 5.77 5.77

10% 15.63 13.74 17.16 14.42 6.78 5.77
25% 37.26 30.83 26.04 24.75 28.98 6.78
50% 116.75 71.61 51.69 41.70 43.89 30.48
75% 367.95 122.35 99.96 86.33 87.78 64.55
90% 601.86 240.92 190.71 154.20 343.21 101.63
95% 951.55 423.13 230.89 281.84 529.02 135.22

Maximum 1027.52 1243.90 774.91 349.43 1617.61 885.32

Table 2: Percentiles of smallest values of the Goldstein-Price objective function found by six opti-
mization strategies, each replicated 100 times.

To obtain a trial point, xt, from the current iterate, xc, a finite-difference quasi-Newton method
was started from xc to obtain a minimizer, x̂, of the current model, f̂c. Let x̄ denote the grid
point nearest x̂. If the objective function had not previously been evaluated at x̄, then we set
xt = x̄; otherwise, we set xt equal to the point in Core(x̄) nearest x̂. Each time that a new function
value was obtained, we re-estimated all three of the model parameters, (β, σ2, θ). This process was
repeated until V function evaluations had been performed, at which time the smallest function
value was recorded.

Each of the six procedures described above was replicated 100 times. The results are summarized
in Table 2, from which several interesting conclusions can be drawn. First, we note that each
strategy did indeed do better when permitted more function evaluations. Thus, DACE with V = 16
function evaluations usually outperformed DACE with V = 11 function evaluations and MAGS with
V = 16 function evaluations usually outperformed MAGS with V = 11 function evaluations. This
result is not surprising.

Second, we note that MAGS typically found smaller function values with fewer function eval-
uations than did DACE. The crucial comparisons are between DACE and MAGS with V = 11
function evaluations and between DACE and MAGS with V = 16 function evaluations. In each
case, typical performance decisively favors MAGS. For example, the median best function value
found by MAGS11 is less than 40 percent of the median best value found by DACE11. Similarly,
the median best function value found by MAGS16 is less than 45 percent of the median best value
found by DACE16.

The DACE experiments with V = 21, 26 were included to benchmark the performance of MAGS.
Except for the extreme upper percentiles, the distribution of best function values found by MAGS
with V = 11 is strikingly similar to the distribution of best function values found by DACE with
V = 26 function evaluations. Thus, another way to state the case for MAGS is to observe that
DACE typically required more than twice as many function evaluations to match the performance
of MAGS11. Such observations confirm the central thesis of this report, that optimization is most
efficiently accomplished by iterative methods. This is a familiar issue in statistics that is often
raised when comparing Taguchi and response surface methods, e.g. in the panel discussion edited
by Nair (1992) and by Trosset (1996). Our results strengthen the cases made by Frank (1995),
Booker et al. (1995), Booker et al. (1996) and Booker (1996) for using sequential modeling strategies
to optimize expensive functions.

We note that despite its generally superior performance, MAGS occasionally disappoints. For
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Minimizer f(x) Frequency

(0,-10) 3 38
(-6,-4) 30 44
(18,2) 84 8
(12,8) 840 10

Table 1: Minima of the rescaled Goldstein-Price objective function on [−20, 20] × [−20, 20] found
by 100 quasi-Newton searches.

mize, an implementation of Brent’s (1973) safeguarded polynomial interpolation procedure. When
finite-difference quasi-Newton methods for multivariate optimization were employed (typically for
minimizing models), they were performed using the S-PLUS function nlminb, an implementation
of a trust-region method for bound-constrained optimization developed by Gay (1983, 1984).

The objective function used in our experiments was a rescaled version of an eighth-order poly-
nomial of p = 2 variables constructed by Goldstein and Price (1971). One of the test problems
employed by Dixon and Szegö (1978) in their study of global optimization was to minimize the
Goldstein-Price polynomial in the feasible region [−2, 2]× [−2, 2]. We rescaled this problem so that
the feasible region was [−20, 20] × [−20, 20].

The Goldstein-Price polynomial is a complicated function that has four minimizers and is not
easily modelled. Because it is a polynomial, the minimizers are easily located by a finite-difference
quasi-Newton method. To estimate the relative sizes of their basins of attraction, we drew 100
points from a uniform distribution on the feasible region and started nlminb from each point. The
results are summarized in Table 1.

The models that we employed are a special case of the family specified by (3). We set q = 1, so
that β is a scalar parameter, and a(x) ≡ 1. We used the correlation function specified by (5) and
estimated the scalar parameter θ by applying optimize to (4).

We implemented two strategies for derivative-free optimization with a small value of V , the
permitted number of objective function evaluations. First, we implemented a DACE strategy with
V = 11, 16, 21, 26. For these procedures, we constructed a model, f̂ , from N = V − 1 design
sites obtained by Latin hypercube sampling. We then minimized f̂ by a finite-difference quasi-
Newton method, starting from the initial design site with the smallest objective function value.
The objective function was then evaluated at the minimizer of f̂ so obtained and the smallest of
the V function values was recorded.

Second, we implemented the MAGS strategy described in Section 4 with V = 11, 16. For these
procedures, it is first necessary to specify an initial grid. This involves a trade-off: coarse grids tend
to safeguard against unlucky initial designs, whereas fine grids permit more function evaluations
before it becomes necessary to evaluate f at a core pattern of points in order to refine the grid. Our
choice of a family of grids was further complicated by the fact that the minimizers of our objective
function occur on the integer lattice in <2. To avoid using grids that contain the minimizers, we
selected an initial grid of the form

xi = −20 + jiπ/2,

for ji = 0, 1, 2, . . .. Subsequent grids, which were rarely required, were obtained by halving the
current distance between adjacent grid points. To obtain an initial design on the initial grid, we
first obtained N = 5 points by Latin hypercube sampling, then moved each point to the nearest
grid point. The initial model was constructed from this design.
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for the choice of N . Because we are concerned with problems for which sequential optimization is
practicable, considerably less than the entire budget of functions evaluations (V ) will be invested
in initial design, i.e. we will choose N � V . At present, we prefer to choose N ≥ p + 1, thereby
permitting at least a simplex design.

Because evaluation of the objective function is expensive, it seems sensible to cache the function
values that have been computed. We denote the current set of points at which f has been evaluated
by Evalc, which in step 3 we initialize to comprise the initial design sites. For any point x ∈ Γc, we
denote by Core(x) the core pattern of points adjacent to x. Then, in loop 4(a), Core(xc) ⊂ Evalc
is precisely the condition required by the convergence theory for pattern search methods that must
be satisfied before the current grid can be refined. Notice that this condition must eventually
obtain, i.e. loop 4(a) cannot repeat indefinitely, because Γc is finite and we only consider trial
points xt ∈ Γc at which f has not yet been evaluated. Thus, the logic of loop 4 is to (a) search for
points of improvement on the current grid until (b) we replace the current grid with a finer grid.
Loop 4 repeats until we have exhausted our budget of objective function evaluations.

It is within loop 4(a) that we exploit the models obtained by kriging. Step 4(a)(i) produces a
trial point xt at which f is evaluated in the hope that f(xt) < f(xc). As soon as f(xt) has been
computed, we add xt to the set Evalc and update the current model f̂c. It is not entirely clear
how best to update f̂c. One could completely refit the family of models to the new set of function
values, but one might decline to re-estimate certain parameters if one believed that the value of
updating them did not justify the expense.

The generality of the convergence theory for pattern search methods permits us to be rather
vague in specifying step 4(a)(i). This ambiguity is desirable because it encompasses a great many
possibilities deserving consideration. Thus, we can search for a local minimizer of f̂c using whatever
algorithm we prefer, e.g. quasi-Newton, steepest descent, pattern search, etc. We can start our
search from whatever point we prefer or we can use multiple starting points and pursue multiple
searches before determining xt. We can even search for a global minimizer of f̂c if we are so inclined.
Furthermore, we can terminate our search whenever we please. (We envision searching until we near
a local minimizer of f̂c, but we can terminate sooner if the search becomes expensive. Trade-offs
between the cost of evaluating the objective function and the cost of constructing and optimizing
the models can be mediated by the model management strategy proposed by Dennis and Torczon
(1996) and developed by Serafini (1997).) The only requirement is that we eventually return a trial
point xt that belongs to the current grid and at which f has not yet been evaluated.

Most search strategies for a desirable xt will not restrict attention to the current grid. Because
we require xt ∈ Γc, we suggest terminating the search when step lengths become appreciably smaller
than the minimal distance between grid points and choosing xt to be a grid point that is near the
terminal iterate of the search. There are various plausible ways of implementing this suggestion.
We might prefer the nearest grid point or we might prefer a nearby grid point at which the model
predicts greater decrease. Because we require xt 6∈ Evalc, we might not actually select the nominally
preferred grid point. Similarly, if we are impatient to refine the grid, we might select xt ∈ Core(xc)
even when a nonadjacent point is nominally preferred.

5 Numerical Experiments

We now describe some numerical experiments intended to illustrate the viability of the methods
proposed in Section 4. These experiments were performed on a Toshiba Satellite 100CS notebook
computer with a 75MHz Pentium processor, using S-PLUS for Windows software. In what follows,
univariate optimization (for parameter estimation) was performed using the S-PLUS function opti-
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1. Specify an initial grid, Γ0, on [a, b].

2. Perform an initial computer experiment:

(a) Select initial design sites x1, . . . , xN ∈ Γ0.

(b) Compute f(x1), . . . , f(xN ).

(c) Construct f̂0 by kriging.

3. Let Γc = Γ0. Let xc = argmin(f(x1), . . . , f(xN )). Let f̂c = f̂0 and Evalc = {x1, . . . , xN}.

4. Do until convergence:

(a) Do until Core(xc) ⊂ Evalc:

i. Apply an optimization algorithm to f̂c to obtain xt ∈ Γc \ Evalc.

ii. Compute f(xt). Let Evalc = Evalc ∪ {xt}. Update f̂c.

iii. If f(xt) < f(xc), then let xc = xt.

(b) Refine Γc.

Figure 2: Model-Assisted Grid Search (MAGS) for minimizing an expensive objective function.

Trust region methods make effective use of simple local models of the objective function. Be-
cause we are concerned with situations in which evaluation of the objective function is prohibitively
expensive, we are prepared to invest more resources in constructing and optimizing more compli-
cated global models of the objective function.

Similarly, classical response surface methodology, from Box and Wilson (1951) to Myers and
Montgomery (1995), constructs local linear or quadratic regression models of a stochastic quadratic
objective function. Again, the purpose of these models is to guide the search for a minimizer or
maximizer. Glad and Goldstein (1977) also exploited quadratic regression models for optimization,
as did Elster and Neumaier (1995) to guide a grid search. Recently, nonparametric response surface
methods have been proposed in which global models of more complicated objective functions are
constructed. This work, e.g. Haaland (1996), is closely related to ours. Frank (1995) surveyed
numerous issues that arise when using global models of expensive objective functions to facilitate
optimization.

The remainder of this section develops a specific methodology for using global models to mini-
mize expensive objective functions. The essential logic of the methods that we propose is summa-
rized in Figure 2. For simplicity, we assume that the expense of all operations performed on the
model(s) is negligible in comparison to the expense of function evaluation(s). Dennis and Torczon
(1996) have proposed a general model management strategy that can be employed when it is nec-
essary to balance these expenses. This model management strategy is currently being developed
and extended by Serafini (1997) and is capable of accommodating our methods as a special case.

Techniques for designing the initial computer experiment in step 2 do not concern us here,
except for two details. First, it is convenient to employ a technique that permits the initial design
sites to be selected from the initial grid. Several such techniques were described by Koehler and
Owen (1996). Second, we must specify N , the number of initial design sites. A great deal of
numerical experimentation will be required before it becomes possible to suggest useful guidelines
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Thus, by varying β and θ, we define a family of interpolating functions from which we can select a
specific f̂ to model f .

Given a family of interpolating functions defined by (3), we require a sensible way of specifying
(β, σ2, θ) and thereby f̂ . For θ fixed, the maximum likelihood estimates (MLEs) of β and σ2 have
explicit formulas:

β̂(θ) =
[
A′R(θ)−1A

]
−1

A′R(θ)−1y

and

σ̂2(θ) =
1

n

[
y − Aβ̂(θ)

]
′

R(θ)−1
[
y − Aβ̂(θ)

]
.

To compute θ̂, the MLE of θ, it turns out that one must minimize

n log σ̂2(θ) + log detR(θ) (4)

as a function of θ.
It is now evident that, in specifying a family of correlation functions, there is a potential tradeoff

between the richness of the family defined by (3) and the ease of maximizing (4). The richer the
family of models, the more difficult it may be to select a plausible member of it. Most of the
previous research on computer experiments has been concerned with deriving a single model f̂
that will be used as a permanent surrogate for f . Understandably, the authors have used rich
families with rather complicated correlation functions for which θ is a vector of dimension p or
greater. This makes maximizing (4) difficult, but θ̂ need only be computed once. In contrast, we
are concerned with deriving a sequence of models that will be used for the sole purpose of guiding
our optimization of f . Hence, we are content to sacrifice some flexibility in (3) in order to simplify
minimizing (4). In the numerical experiments that we report in Section 5, we used the 1-parameter
isotropic correlation function defined by

rθ(s, t) = exp
(
−θ‖s − t‖2

)
, (5)

where ‖ · ‖ denotes the Euclidean norm on <p.

4 Model-Assisted Grid Search

The optimization strategies developed in this report are all predicated on a simple idea, viz. that
providing the oracle in Section 2 with an inexpensive surrogate model of the objective function
will allow it to more efficiently identify promising trial points and thereby reduce the cost of
optimization. The surrogate models will be constructed from known function values by kriging,
as described in Section 3. In this section, we describe the interplay between the pattern search
algorithm and the kriging models in greater detail.

We begin with an instructive analogy. For unconstrained minimization of smooth objective
functions, the numerical algorithms of choice are the quasi-Newton methods. An elementary expo-
sition of these methods was provided by Dennis and Schnabel (1983), who emphasized the following
interpretation: a quasi-Newton algorithm constructs a quadratic model f̂c of the objective function
f at the current iterate xc and uses f̂c to identify a trial point xt at which it is predicted that
f(xt) < f(xc). For example, trust region methods obtain xt by (approximately) minimizing f̂c

subject to the constraint that xt be within a specified neighborhood of xc. The rationale for the
constraint is that the model f̂c, which is usually constructed by computing or approximating the
second-order Taylor polynomial of f at xc, can only be trusted to approximate f locally.
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process as nothing more than a convenient fiction. The value of this fiction lies in its power to
suggest plausible ways of constructing useful models and we will try to avoid invoking it excessively.
When we do invoke it, it should be appreciated that optimality criteria such as BLUP and MLE
(see below) are defined with respect to the fictional stochastic process and should not be invested
with more importance than the practical utility of the models to which they lead.

Our requirement that f̂(xi) = f(xi) will immediately suggest spline interpolation to the ap-
proximation theorist and kriging to the geostatistician. In fact, as explicated by Watson (1984) and
others, these two well-known methodologies are formally equivalent. Their motivations, however,
are somewhat different: whereas the goal of the former is to interpolate the f(xi) as smoothly as
possible, the goal of the latter is to approximate f as accurately as possible. It is evident that the
kriging perspective is more germane to our present concerns. The remainder of this section briefly
summarizes some relevant facts about kriging in the context of computer experiments. See Sacks,
Welch, Mitchell and Wynn (1989), Booker (1994), and Koehler and Owen (1996) for comprehensive
surveys of computer experiment methodology.

We begin by assuming that f is a realization of a stochastic process F that is indexed by the
continuous parameter set <p. We assume that this process has known mean µ(x) = 0 and known
covariance function c(·, ·), and that each symmetric p× p matrix c(s, t) is strictly positive definite.
Let

y =




f(x1)
...

f(xn)




and for each x ∈ <p define b(x) ∈ <n to minimize E[y′b − F (x)]2. Then f̂(x) = y′b(x) is the best
linear unbiased predictor (BLUP) of f(x) and it is well-known that

f̂(x) = y′C−1~c(x), (2)

where C is the symmetric positive definite n × n matrix [c(xi, xj)] and

~c(x) =




c(x1, x)
...

c(xn, x)


 .

This is a simple example of kriging. Notice that kriging necessarily interpolates: since C−1C = I
and ~c(xj) is column j of C,

f̂(xj) = y′C−1~c(xj) = y′ej = yj = f(xj).

Thus far we have assumed that the stochastic process is known. We now suppose that F is a
Gaussian process with mean µ(x) = a(x)′β and covariance function c(s, t) = σ2rθ(s, t). We assume
that a : <p → <q is a known function, that β ∈ <q is an unknown vector, that σ2 > 0 is an
unknown scalar, and that rθ(·, ·) is an unknown element of a known family of correlation functions.

Next let A denote the n × q matrix [aj(xi)], let R(θ) denote the symmetric n × n matrix
[rθ(xi, xj)], and let

r(x; θ) =




rθ(x1, x)
...

rθ(xn, x)


 .

Then, for β and θ fixed, the BLUP of f(x) is (cf. equation (2))

f̂(x) = a(x)′β + (y − Aβ)′R(θ)−1r(x; θ). (3)
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the objective function to terminate by the traditional criteria of numerical optimization. For the
problems that we consider, the relevant termination criterion is whether or not we have exhausted
the permitted number (V ) of function evaluations.

Derivative-free methods for numerical optimization can be quite profligate with respect to the
number of function evaluations that they require. Because the number of function evaluations
available to us is severely limited, we want to use these evaluations as efficiently as possible. On
the bright side, the convergence theory for pattern search methods allows us to replace xc with any
xt for which f(xt) < f(xc). Hence, no matter how comprehensive a search for trial points we may
have envisioned, we can abort it as soon as we find a single trial point that satisfies f(xt) < f(xc).
On the dark side, the oracle may require a great many function evaluations to produce even one
xt for which f(xt) < f(xc). Furthermore, if the oracle is unsuccessful, then we can not refine the
current grid until after f has been evaluated at each grid point adjacent to xc—a process that may
require as many as 2p additional function evaluations if xc is an interior grid point and f has not
yet been evaluated at any of the grid points adjacent to xc.

The fundamental purpose of this report is to introduce methods that reduce the expense of the
oracle. We do not attempt to reduce the number of points in the core pattern. For unconstrained
optimization, Lewis and Torczon (1996b) have introduced core patterns that contain only p + 1
points.

Pattern search algorithms may intentionally use large numbers of function evaluations. For
example, the oracle employed by Dennis’s and Torczon’s (1991) parallel direct search intentionally
casts a wide net, relying on parallel computation to defray the expense of evaluating the objective
function at a great many grid points. We are concerned with problems for which huge numbers of
function evaluations are not possible. Here, we want an oracle that proposes promising trial points
using only a small number of function values. Our strategy for creating such an oracle will be to
use previous function values to construct a current global model, f̂c, of f , then use f̂c to predict
trial points xt at which f(xt) < f(xc). Thus, we will employ the strategy described in Section 1,
not once to replace Problem (1), but repeatedly to guide us to a solution of it. We now turn to a
description of the models that our oracles will exploit.

3 Computer Experiment Models

Suppose that we have observed yi = f(xi) for i = 1, . . . , n. On the basis of this information, we
want to construct a global model f̂ of f . Such inexpensive surrogates for f will be used by the oracle
in the pattern search algorithm to identify promising trial points at which to compute additional
function values.

We assume that there is no uncertainty in the yi = f(xi), i.e. that no stochastic mechanism is
involved in evaluating the objective function. It is then reasonable to require the surrogate function
to interpolate these values, i.e. to require that f̂(xi) = f(xi). Furthermore, we desire families of
surrogate functions that are rich enough to model a variety of complicated objective functions. We
are led to consider certain families of models that have been studied in the spatial statistics and
computer experiment literatures.

The families of models that we consider are usually motivated by supposing that f is a realization
of some (nice) stochastic process. For certain geostatistical applications, this supposition may be
quite plausible. In the context of using computer simulations to facilitate the engineering of better
product designs, its plausibility is less clear. The high-frequency, low-amplitude oscillations that
we have described do resemble the realization of a stochastic process, but the general trends that
are our primary concern do not. In any case, we regard the supposition of an underlying stochastic
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1. Specify the current grid. Select x0 from the current grid. Let xc = x0.

2. Do until convergence:

(a) Let T (+) = ∅.

(b) Do while T (+) = ∅:

i. Search the current grid for a set of xt ∈ [a, b] at which f is then evaluated. Let T (+)
denote the set of grid points xt ∈ [a, b] thus obtained for which f(xt) < f(xc).

ii. Update the grid.

(c) Choose x+ ∈ T (+).

(d) Let xc = x+.

Figure 1: Pattern search methods for numerical optimization.

acle, we emphasize that any method whatsoever can be employed to produce points that potentially
decrease the current value of the objective. We might perform an exhaustive search of the current
grid or we might specify a complicated pattern of points at which to search. We might appeal to
our prior knowledge of, or our intuition about, the objective function. It does not matter—the
convergence theory for pattern search methods encompasses all such possibilities.

For the sake of clarity, we describe more fully a specific pattern search algorithm. First, we
construct the grids on which the searches will be conducted. For n = 0, 1, 2, . . ., we define vector
lattices Γ(n) restricted to the feasible set [a, b] as follows: x ∈ Γ(n) if and only if for each i = 1, . . . , p
there exists ji ∈ {0, 1, . . . , 2n} such that

xi = ai +
ji

2n
(bi − ai) .

Thus, Γ(0) comprises the vertices of [a, b] and Γ(n+1) is obtained from Γ(n) by halving the distance
between adjacent grid points (see below). When we update the current grid, say Γ(n), in 2(b)(ii),
we either retain Γ(n) or replace Γ(n) with Γ(n + 1).

Next we specify a core pattern. Given xc ∈ [a, b], we say that xt ∈ [a, b] is adjacent to xc if and
only if there exists k ∈ {1, . . . , p} such that

xtk = xck ±
1

2n
(bk − ak)

and xti = xci for i 6= k. We take as the core pattern the set of grid points adjacent to the current
iterate. (For example, if the current grid is the integer lattice on <2 restricted to [a = (0, 0)′, b =
(8, 8)′], then the core pattern of (2, 0)′ comprises (3, 0)′, (2, 1)′, and (1, 0)′.) We refine the grid, i.e.
we replace Γ(n) with Γ(n + 1), if and only if we have evaluated f at each grid point xt adjacent to
xc and failed to find f(xt) < f(xc).

If f is continuously differentiable, then the theory developed by Lewis and Torczon (1996a)
guarantees that the specified algorithm will produce a sequence {xk} that converges to a Karush-
Kuhn-Tucker point of Problem (1). In practice, of course, the algorithm must terminate in a finite
number of steps. Termination criteria for pattern search methods—indeed, for direct search meth-
ods in general—have not been studied extensively, but that does not concern us here. By definition,
the assumption that Problem (1) is expensive means that we cannot afford enough evaluations of
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report we are concerned with intermediate situations and we borrow ideas from both the numerical
optimization and the computer experiment literatures. We describe a sequential modeling strategy
in which computer experiment models are used to guide a grid search for a minimizer. Our methods
elaborate and extend an important special case of the general model management strategy proposed
by Dennis and Torczon (1996) and developed by Serafini (1997). These efforts are part of a larger
collaboration described by Booker et al. (1995) and Booker et al. (1996).

2 Pattern Search Methods

We require a method of solving Problem (1) that does not require derivative information. For
unconstrained optimization, a popular derivative-free method is the simplex method proposed by
Nelder and Mead (1965). This method is sometimes adapted for constrained optimization by means
of a simple ad hoc device, viz. setting f(x) = ∞ when x 6∈ [a, b]. Unfortunately, the Nelder-Mead
simplex method is suspect even for unconstrained optimization. For example, McKinnon (1996)
has constructed a family of strictly convex, differentiable objective functions on <2 for which there
exist starting points from which Nelder-Mead will fail to converge to a stationary point. Instead,
we rely on a class of methods for which a convergence theory exists, the pattern search methods
explicated by Torczon (1997) for the case of unconstrained optimization and extended by Lewis
and Torczon (1996a) to the case of bound-constrained optimization.

Pattern search methods are iterative algorithms for numerical optimization. Such algorithms
produce a sequence of points, {xk}, from an initial point, x0, provided by the user. To specify an
algorithm, one must specify how it progresses from the current iterate, xc, to the subsequent iterate,
x+. One of the distinguishing features of pattern search methods is that they restrict their search
for x+ to a grid (more formally, a lattice) that contains xc. The grid is modified as optimization
progresses, according to rules that ensure convergence to a stationary point.

The essential logic of a pattern search is summarized in Figure 1. The reader is advised that this
description of pattern search methods differs from the presentation in Torczon (1997) and Lewis
and Torczon (1996a, 1996b). For example, the choice of a starting point is usually not restricted
and the initial grid is constructed so that it contains the starting point. More significantly, pattern
search methods are usually specified by rules that prescribe where the algorithm is to search for
the subsequent iterate and the notion of an underlying grid is implicit in these rules. In this report,
the grid is explicit and the search for a subsequent iterate is not restricted to a specific pattern of
points. What should be appreciated is that the present description preserves all of the elements
of pattern search methods required by their convergence theory. A detailed explication of the
connection between these perspectives will be provided by Serafini (1997).

It is evident that the crucial elements of a pattern search algorithm are contained in the speci-
fication of 2(b) in Figure 1. The fundamental idea is to try to find a point on the current grid that
strictly decreases the current value of the objective function. Any such point can be taken to be
the subsequent iterate. If one fails to find such a point, then one replaces the current grid with a
finer one and tries again.

Torczon (1997) described the search in 2(b)(i) as an exploratory moves algorithm. Here we
distinguish two components of an exploratory moves algorithm: an oracle that produces a set of
trial points on the current grid and a core pattern of trial points on the grid at which the objective
function must be evaluated before the algorithm is permitted to refine the grid. The convergence
theory requires that the core pattern satisfy certain hypotheses; no hypotheses are placed on the
oracle.

Because the methods proposed in this report critically depend on the arbitrary nature of the or-
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1 Introduction

We consider the problem of minimizing an objective function f : <p → < subject to bound con-
straints, i.e.

minimize f(x)
subject to x ∈ [a, b],

(1)

where a, x, b ∈ <p and we write x ∈ [a, b] to denote ai ≤ xi ≤ bi for i = 1, . . . , p. We are
concerned with special cases of Problem (1) for which evaluation of the objective function involves
performing one (or more) complicated, deterministic computer simulation(s). Many such problems
arise as engineering design problems and are often distinguished by two troubling characteristics
that preclude solution by traditional algorithms for bound-constrained optimization.

First, the output of a complicated computer simulation is usually affected by a great many
approximation, rounding and truncation errors. These errors are not stochastic—repeating the
simulation will reproduce them—but their accumulation introduces high-frequency, low-amplitude
distortions of the idealized objective that we would have liked to optimize. In consequence, opti-
mization algorithms that compute or approximate (by finite differencing) derivatives of f often fail
to exploit general trends in the objective function and become trapped in local minimizers created
by high-frequency oscillations. In order to develop effective algorithms for such applications, we
restrict attention to derivative-free methods for numerical optimization.

Second, complicated computer simulations are often expensive to perform. Frank (1995) sug-
gested that one must address problems in which a typical function evaluation costs several hours of
supercomputer time. For example, Booker (1996) and Booker et al. (1996) studied an aeroelastic
and dynamic response simulation of a helicopter rotor blade for which a single function evaluation
requires approximately six hours of cpu time on a Cray Y-MP. We formalize the notion that the
objective function is expensive to evaluate by imposing an upper bound V on the number of eval-
uations of f that we are allowed to perform. The severity of this restriction will depend (in part)
on the relation between V and p.

When attempting to minimize an objective function f that is too expensive for standard numer-
ical optimization algorithms to succeed, it has long been a standard engineering practice, described
by Barthelemy and Haftka (1993), to replace f with an inexpensive surrogate f̂ and minimize f̂
instead. (For example, one might evaluate f at V − 1 carefully selected sites, construct f̂ from
the resulting information, use a standard numerical optimization algorithm to minimize f̂ , and
evaluate f at the candidate minimizer thus obtained.) This practice may also have the salutory
effect of smoothing high-frequency oscillations in f . The rapidly growing literature on computer
experiments offers new and potentially better ways of implementing this traditional practice. The
prescription that seems to be gaining some currency in the engineering community was proposed by
Welch and Sacks (1991); following current convention, we refer to it as DACE (Design and Analysis
of Computer Experiments). Frank (1995) offered an optimizer’s perspective on this methodology,
suggested that the “minimalist approach” of minimizing a single f̂ is not likely to yield satisfactory
results, and proposed several sequential modeling strategies as alternatives. Booker (1996) studied
several industrial applications of DACE and two alternative approaches.

It is not our purpose in this report to provide a thorough critique of DACE as a method for
minimizing expensive objective functions. We regard DACE and traditional iterative methods for
numerical optimization as occupying opposing ends of a spectrum. When V is large relative to
p, say p = 2 and V = 500, then the expense of function evaluation is not an issue and we are
content to rely on traditional iterative methods. When V is not large relative to p, say p = 2
and V = 5, then the expense of function evaluation is completely crippling and we are content to
rely on DACE. (If V < p, then the methodologies that we consider are not appropriate.) In this
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