
SIAM REVIEW c© 2003 Society for Industrial and Applied Mathematics
Vol. 45, No. 3, pp. 385–482

Optimization by Direct Search: New

Perspectives on Some Classical and

Modern Methods∗

Tamara G. Kolda†

Robert Michael Lewis‡

Virginia Torczon§

Abstract. Direct search methods are best known as unconstrained optimization techniques that do
not explicitly use derivatives. Direct search methods were formally proposed and widely
applied in the 1960s but fell out of favor with the mathematical optimization community
by the early 1970s because they lacked coherent mathematical analysis. Nonetheless, users
remained loyal to these methods, most of which were easy to program, some of which were
reliable. In the past fifteen years, these methods have seen a revival due, in part, to the
appearance of mathematical analysis, as well as to interest in parallel and distributed
computing.

This review begins by briefly summarizing the history of direct search methods and
considering the special properties of problems for which they are well suited. Our focus
then turns to a broad class of methods for which we provide a unifying framework that
lends itself to a variety of convergence results. The underlying principles allow general-
ization to handle bound constraints and linear constraints. We also discuss extensions to
problems with nonlinear constraints.

Key words. nonlinear programming, nonlinear optimization, direct search, pattern search, simplex
search, positive bases, global convergence analysis, local convergence analysis, generating
set search

AMS subject classifications. 90C56, 90C30, 65K05

DOI. 10.1137/S0036144502428893

Contents.

1 Introduction 387
1.1 An Early, Simple Direct Search Method 389
1.2 Applicability of Direct Search . 390

∗Received by the editors December 20, 2002; accepted for publication (in revised form) July 8,
2003; published electronically August 11, 2003. The U.S. Government retains a nonexclusive, royalty-
free license to publish or reproduce the published form of this contribution, or allow others to do so,
for U.S. Government purposes. Copyright is owned by SIAM to the extent not limited by these rights.

http://www.siam.org/journals/sirev/45-3/42889.html
†Computational Sciences and Mathematics Research Department, Sandia National Laboratories,

Livermore, CA 94551-9217 (tgkolda@sandia.gov). The work of this author was supported by the
Mathematical, Information, and Computational Sciences Program of the U.S. Department of Energy
under contract DE-AC04-94AL85000 with Sandia Corporation.

‡Department of Mathematics, College of William & Mary, P.O. Box 8795, Williamsburg, VA
23187-8795 (buckaroo@math.wm.edu). The work of this author was supported by the Computer
Science Research Institute at Sandia National Laboratories, by the National Science Foundation
under grant DMS-0215444, and by the National Aeronautics and Space Administration under grant
NCC-1-02029.

§Department of Computer Science, College of William & Mary, P.O. Box 8795, Williamsburg,
VA 23187-8795 (va@cs.wm.edu). The work of this author was funded by the Computer Science
Research Institute at Sandia National Laboratories and by the National Science Foundation under
grant CCR-9734044.

385

386 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

1.2.1 Simulation-Based Optimization 391
1.2.2 Nonnumerical Functions . 392

1.3 Issues When Using Direct Search Methods 393
1.3.1 Slow Asymptotic Convergence 393
1.3.2 Limitations on Problem Size 393

1.4 What’s in a Name? . 394
1.5 Objectives of This Review . 395
1.6 Topics Outside the Scope of This Review 395

2 Smooth Unconstrained Minimization 396
2.1 Global Convergence and Local Convergence 396
2.2 Line Search Methods . 397
2.3 Avoiding Poor Choices of Step Lengths 398
2.4 Avoiding Poor Choices of Descent Directions 399
2.5 A Global Convergence Result for Line Search Methods 399

3 Generating Set Search Methods for Unconstrained Minimization 400
3.1 An Example: Compass Search Revisited 401
3.2 Convergence of Compass Search . 402
3.3 Generating Set Search . 404

3.3.1 Bounds on the Lengths of the Directions 406
3.3.2 Update Formulas . 406
3.3.3 Step Acceptance Criteria . 406

3.4 Generating Sets for Rn . 406
3.4.1 Generating Sets and Descent 407

3.5 The Ingredients for Proving Global Convergence 409
3.6 Relating ∆k to the Measure of Stationarity 409
3.7 Globalization Strategies in GSS . 410

3.7.1 Globalization via the Sufficient Decrease Condition 411
3.7.2 Globalization via a Rational Lattice 413
3.7.3 Globalization via Moving Grids 419

3.8 Putting It All Together—Global Convergence Results 421
3.8.1 The General Result . 421
3.8.2 A Stronger Result . 422

3.9 Some Comments on the Convergence of GSS under Simple Decrease . 423
3.10 Stopping Criteria . 424
3.11 Local Convergence of GSS . 424

4 Algorithmic Options 427
4.1 Statistical Design of Experiments . 427
4.2 Exploratory Moves . 431
4.3 Using Oracles . 433

5 Variations on the GSS Requirements 435
5.1 Controlling the Step Length . 436
5.2 Additional Algorithmic Steps . 437
5.3 Independent Directions for Parallel Computing 437

6 The Role of Smoothness in the Robustness of GSS Algorithms 437
6.1 The Effects of Multiple Search Directions and Sampling 438

OPTIMIZATION BY DIRECT SEARCH 387

6.2 Why We Assume f Is Continuous . 440
6.3 Why We Assume ∇f Exists and Is Continuous 440
6.4 GSS Methods and Lipschitz Optimization 441
6.5 The Gap between Theory and Practice 443

7 Some Background on Constrained Optimization 443
7.1 The Effects of Constraints . 444
7.2 The Geometry of Cones . 445
7.3 First-Order Necessary Conditions for a Constrained Minimizer 447
7.4 Measures of Convergence to KKT Points 448

8 Direct Search and Constrained Optimization 449
8.1 The Case of Bound Constraints: Compass Search, Again 450

8.1.1 The Geometry of the Nearby Boundary 451
8.1.2 Obtaining Feasible Descent . 452
8.1.3 A Bound on Stationarity at Unsuccessful Iterations 455

8.2 Direct Search Methods for General Linear Constraints 456
8.2.1 The Geometry of the Nearby Boundary 457
8.2.2 Specifying the Generating Set 457
8.2.3 GSS Algorithms for Linearly Constrained Problems 459
8.2.4 Existence of a Feasible Descent Direction among the Search

Directions . 460
8.2.5 The Situation at Unsuccessful Iterations 464
8.2.6 Global Convergence Results . 465
8.2.7 Stopping Criteria . 466
8.2.8 Constructing the Search Directions 466

8.3 General Nonlinear Constraints . 466
8.3.1 Feasible Direction Methods That Use Constraint Derivatives . 467
8.3.2 An Augmented Lagrangian Approach 468
8.3.3 Other Approaches . 469

9 Summary 470

1. Introduction. Consider the problem of finding a local minimizer of a real-
valued function f(x). If f is differentiable and ∇f(x) can be computed or accurately
estimated by finite-differences, a wide selection of derivative-based optimization meth-
ods is available to solve this problem. Now suppose that explicit information about
∇f(x) is unavailable or untrustworthy. Can this minimization problem still be solved?
The task of minimizing a function without recourse to its derivatives may seem im-
possible since, for a differentiable function, a necessary condition for a minimizer is
that the gradient vanishes. Can such a point be found without explicitly using deriva-
tives? Direct search methods attempt to do just this. An appreciable number of them
succeed.

Direct search methods have been known since at least the 1950s (see [171] for
a historical review). However, by the early 1970s, these methods were largely dis-
missed by the mathematical optimization community and disappeared from most of
its literature for three basic reasons summarized in Swann’s 1971 comments [250]:

. . . [direct search] methods have been developed heuristically, . . . no proofs
of convergence have been derived for them, . . . [and] sometimes the rate of
convergence can be very slow.

388 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

Nevertheless, direct search methods remained popular with practitioners in the scien-
tific and engineering communities. Early direct search methods were based on simple
and appealing heuristics often derived from examples drawn in two dimensions (see,
for example, the development in [227]). In addition, many users preferred to avoid
the calculation of gradients, which was for a long time the single biggest source of
error in applying optimization software libraries [117, p. 297].

In 1991, interest in direct search methods was revived with the publication, in
the context of parallel computing, of a direct search method with an accompanying
convergence analysis [256]. Since then, two things have become increasingly clear.

1. Direct search methods remain an effective option, and sometimes the only
option, for several varieties of difficult optimization problems.

2. For a large number of direct search methods, it is possible to provide rigorous
guarantees of convergence.

Both of these points will be considered in this review, emphasizing the second in great
detail. Ironically, many of the key elements necessary to prove convergence already
had been identified [21, 22, 56, 211] by the time these algorithms were exiled by the
mathematical optimization community.

The lack of a precise definition of a “direct search method” adds complications.
We attempt to clarify the definition in section 1.4. The term appears to have orig-
inated in the 1961 paper by Hooke and Jeeves [139] but since then has become a
catch-all phrase that often is applied to any optimization method that does not re-
quire an explicit representation of the gradient of f . Rather than attempt a complete
survey of what has become a large and disparate class of approaches, we focus on a
particular subclass of direct search methods. Our theme will be the key algorithmic
features that unify this subclass and lead to a variety of convergence results. This
subclass includes the pattern search method first proposed in the direct search paper
by Hooke and Jeeves [139], as well as a variety of more recent developments.

In section 4.1 we briefly discuss the Nelder–Mead simplex algorithm [194], prob-
ably the most widely cited of the direct search methods (the 1965 paper by Nelder
and Mead is officially a Science Citation Classic), but we refer interested readers to
[164] for a comprehensive modern treatment of the original Nelder–Mead simplex al-
gorithm. In the same section we briefly mention the derivative-free methods that rely
on local models of the objective and constraints. These methods have received much
attention of late and show some connections with the ideas presented here, but for
a more thorough treatment we refer interested readers to the reviews [72, 221]. A
related topic that is omitted is the study of unidirectional line searches that do not
require derivatives, such as those in [42, 182, 183]. We mention in passing the use of
purposefully coarse finite-difference derivatives, an idea first developed in [178, 181]
and appearing more recently under the name implicit filtering (see [154] for details).
Finally, since not all the algorithms that now fall under the general term “direct search
methods” fit neatly into any one taxonomy, we have included extensive references (not
all of which are discussed within the text) pointing to additional work that may be
of interest.

For our part, we will stick most closely to the spirit of Hooke and Jeeves’ original
definition of direct search (see section 1.4). To illustrate what we mean by direct
search, and to show the appealing simplicity of early approaches, in the next subsec-
tion we present the most straightforward, and probably the best known, direct search
method.

OPTIMIZATION BY DIRECT SEARCH 389

(a) Initial pattern (b) Move North (c) Move West

(d) Move North (e) Contract (f) Move West

Fig. 1.1 Compass search applied to the modified Broyden tridiagonal function.

1.1. An Early, Simple Direct Search Method. In his belated preface [83] for
ANL 5990 [82], Davidon describes what is one of the earliest examples of a direct
search method used on a digital computer to solve an optimization problem:

Enrico Fermi and Nicholas Metropolis used one of the first digital comput-
ers, the Los Alamos Maniac, to determine which values of certain theoret-
ical parameters (phase shifts) best fit experimental data (scattering cross
sections) [105]. They varied one theoretical parameter at a time by steps
of the same magnitude, and when no such increase or decrease in any one
parameter further improved the fit to the experimental data, they halved
the step size and repeated the process until the steps were deemed suffi-
ciently small. Their simple procedure was slow but sure, and several of us
used it on the Avidac computer at the Argonne National Laboratory for
adjusting six theoretical parameters to fit the pion-proton scattering data
we had gathered using the University of Chicago synchrocyclotron [7].

While this basic algorithm undoubtedly predates Fermi and Metropolis, it has re-
mained a standard in the scientific computing community for exactly the reason ob-
served by Davidon: it is slow but sure.

Davidon’s description can be made more concrete with a simple illustration of the
algorithm, which we call compass search. Variations of this basic algorithmic strategy
can be found under numerous names, including alternating directions, alternating
variable search, axial relaxation, coordinate search, and local variation [257]. For a
minimization problem with only two variables, the algorithm can be summarized as
follows: Try steps to the East, West, North, and South. If one of these steps yields
a reduction in the function, the improved point becomes the new iterate. If none of
these steps yields improvement, try again with steps half as long.

390 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

Figure 1.1 illustrates the first five iterations of compass search applied to the
problem

minimize
x∈R2

f(x(1), x(2)) =
∣

∣

∣
(3 − 2x(1))x(1) − 2x(2) + 1

∣

∣

∣

7
3

+
∣

∣

∣
(3 − 2x(2))x(2) − x(1) + 1

∣

∣

∣

7
3

.

The function f is the two-dimensional modified Broyden tridiagonal function [48, 185].
Level curves of f are shown in the background using shades of gray. Here x(1) and
x(2) refer to the first and second components of x ∈ R2; henceforth, xk denotes the
point that is the current iterate. In each figure, a magenta dot denotes xk. The
current iterate is the best point, i.e., the one with the lowest value of f found so
far. In subfigure (a), the search commences from the initial iterate x0 = (−0.9,−1.0)
and the solution to the problem is marked with a red star. Each of the six subfigures
represents one iteration of compass search. The four dark blue dots represent the trial
points under consideration at that iteration. Taking a step of a given length along
each of the four search directions yields the trial points. Initially, the length of each
step is 0.3. The trial points from the previous iteration are shown in light blue for
comparison.

Note that as xk approaches the solution, the algorithm reduces the length of
the steps taken. This turns out to be central to the convergence proofs. Typically,
in practice, the algorithm is terminated when the step length falls below a certain
tolerance.

Already the appeal of these methods, and some potential limitations, are clear.
On the positive side, compass search is easy to describe and easy to implement. Also,
in this example, compass search initially makes rapid progress toward the solution.
On the negative side, the fact that the iterates are near a minimizer will only become
apparent as the algorithm reduces the length of the trial steps. That is, the algorithm
may quickly approach a minimizer, but may be slow to detect this fact. This is
the price of not explicitly using gradient information. Another limitation that is not
evident from this example is that the algorithm may be slow to converge if the level sets
of f are extremely elongated. This is because the method makes no use of curvature
(i.e., second derivative) information. The search may make good progress initially,
but in the absence of higher-order information, the asymptotic rate of convergence
will be slow.

1.2. Applicability of Direct Search. As mentioned earlier, direct search methods
were popular in the early years of numerical optimization in large part because they
are straightforward to implement and do not require derivatives. Neither of these
reasons is necessarily compelling today. Sophisticated implementations of derivative-
based methods, with line search or trust region globalization strategies and options
to generate approximations to the gradient (the vector of first partial derivatives)
and/or the Hessian (the matrix of second partial derivatives), are widely available
and relatively easy to use. Furthermore, today there are automatic differentiation
tools ([25, 26, 27, 28, 126]; see also section 1.2.1) as well as modeling languages
[45, 111] that compute derivatives automatically. Thus, a user only needs to provide
a procedure that calculates the function values. Today, most people’s first recom-
mendation (including ours) to solve an unconstrained problem for which accurate
first derivatives can be obtained would not be a direct search method, but rather a
gradient-based method. If second derivatives were also available, the top choice would
be a Newton-based method. (For more details, see [69, 192, 197].)

But this does not mean that direct search methods are no longer needed. They still

OPTIMIZATION BY DIRECT SEARCH 391

have their niche. In particular, the maturation of simulation-based optimization has
led to optimization problems with features that make it difficult to apply methods that
require derivative information. There are also optimization problems where methods
based on derivatives cannot be used because the objective function being optimized
is not numerical in nature.

1.2.1. Simulation-Based Optimization. The term simulation-based optimization
is currently applied to the methodology in which complex physical systems are de-
signed, analyzed, and controlled by optimizing the results of computer simulations.
For instance, optimization might be used to determine the worst-case radiation ex-
posure in the interior of a space vehicle subjected to solar winds, to control the heat
settings for chemical vapor deposition in a hot-wall tubular reactor, or to estimate
the values of physical parameters, as in the examples described by Davidon.

In the simulation-based optimization setting, a computer simulation must be run,
repeatedly, in order to compute the various quantities needed by the optimization al-
gorithm. Each simulation may in turn involve executing several independent programs
in sequence, such as a geometry generator, a mesh generator, and a partial differential
equations solver. Furthermore, the resulting simulation output must then be post-
processed to arrive finally at values of the objective and constraint functions. These
complications can make obtaining derivatives for gradient-based methods at the very
least difficult, even when the underlying objective and constraint functions are smooth
(i.e., continuously differentiable).

For complex simulations such as those just described, the investment to obtain
analytical derivatives typically is substantial. Though automatic differentiation tools
have been shown to be quite effective for some types of simulation-based problems,
they are not always applicable or appropriate, as discussed by Hovland [143]. For
example, although possible in theory, automatic differentiation tools cannot yet be
applied to codes that mix C, C++, and Fortran procedures, a common feature in
simulations. In addition, automatic differentiation currently cannot be applied when
the source code is unavailable, which can be the case when using proprietary or
commercial simulation codes.

A standard option, when the function to be optimized is smooth and its calcu-
lated values have full precision, is to use finite-differences (with a small interval) to
obtain derivative estimates that are accurate enough to be treated as exact gradi-
ents in a quasi-Newton method [117]. This brings us to the problems of noise and
nonsmoothness.

The term nonsmooth optimization typically is used in connection with functions
like |x| or the largest eigenvalue of a symmetric matrix, which are Lipschitz continuous
but not differentiable in the usual sense at some points. Other functions are even more
nonsmooth in the sense that they also are discontinuous—for example, in simulating
a system that undergoes a discrete change of state. We discuss such functions and
the application of direct search methods to them in sections 6.2 and 6.3.

But the problems that interest us here, and the problems to which direct search
methods are most often applied, are those just discussed. A serious complication that
arises in optimization using complex situations is that, since the associated functions
are not expressed in algebraic or analytical form, the computed results may resemble
the plot in Figure 1.2, which was modified from [32]. The example involved is a shape
optimization problem for viscous channel flow, introduced in [50] to study spurious
local minima. The objective is to find a shape parameter to minimize the difference
between straight channel flow and obstructed channel flow. The underlying infinite-

392 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

x

f(
x)

x

f(
x)

Fig. 1.2 An objective afflicted with numerical noise deriving from an adaptive finite element
scheme. Two adaptations are depicted. Modified from [32].

dimensional problem is smooth. The low-amplitude, high-frequency oscillations seen
in Figure 1.2 are due to the adaptive finite element scheme used to solve the stationary
Navier–Stokes equations. The oscillations diminish with successive adaptations, but
the computed objective never becomes smooth, even near the minimizer.

It is widely appreciated in the simulation-based optimization community that the
results of complex calculations like those shown in Figure 1.2 may fail to have the
level of precision necessary for a reliable finite-difference approximation to the gradi-
ent, ruling out an off-the-shelf finite-difference quasi-Newton code. In this example,
derivative estimates with a small finite-difference interval are wildly inaccurate.

In general, features such as adaptive algorithms, if-then-else logic, stopping
tests in iterative schemes inside the simulation, and the inevitable effects of floating
point arithmetic are among the culprits that cause smooth problems to appear to be
nonsmooth. In fact, many of the approaches employed to improve simulation codes
solely for the purposes of simulation, such as mesh adaptivity, contribute to the noise
when these simulations are used in connection with optimization. In such a setting
the noise is not stochastic in nature. When the simulation is rerun with the same
input values, the same output values are returned. Instead, the noise is numerical in
nature; it is an inherent feature of the computational problem.

Other forms of noise occur when the function involves limited-precision in the
observed data, stochastic variation, or unpredictable, unrepeatable fluctuations from
(for example) physical experiments. (Direct search methods trace their origins to
such problems; for instance, see the discussion of chemical plant management in
[35].) While there has been some analysis of direct search methods for problems
with stochastic error [6, 173, 260], we focus on problems with noise that is numerical
in nature.

Thus, while in principle it may be possible to obtain derivatives analytically, using
either automatic differentiation or finite-difference approximations, certain inherent
qualities of simulation-based optimization problems can still make such attempts im-
practical.

1.2.2. Nonnumerical Functions. Another class of problems to which direct
search methods can be applied (and derivative-based methods cannot) involves func-

OPTIMIZATION BY DIRECT SEARCH 393

tions that are not numerical in nature. Instead, the user can only compare objective
values to decide which are better and which are worse than the best previously seen.
A unique merit of direct search methods—in fact, a motivation for some of the early
methods [35]—is their usefulness in these circumstances.

An example arises in the design of digital hearing aids described by Bas Franck of
the Department of Experimental and Clinical Audiology, Academic Medical Centre,
Amsterdam [112]. There are three variables whose settings are controlled: noise re-
duction, phonemic compression, and spectral enhancement. In this three-dimensional
design space, the goal is to find an optimal setting based on listening comfort and
speech intelligibility. These criteria are evaluated and compared for different settings
by human beings listening to spoken sentences. Direct search methods are useful for
such problems because they need only to identify better and worse points.

1.3. Issues When Using Direct Search Methods. As just discussed, direct
search methods have a special niche in modern optimization. In this section we note
two issues often cited as unavoidable concerns for any direct search method.

1.3.1. Slow Asymptotic Convergence. No one would disagree with Davidon’s com-
ment (quoted in section 1.1) that compass search is slow. As we shall see later (sec-
tion 3.11), direct search methods are, in a precise sense, asymptotically slower than the
steepest descent method. Nonetheless, asymptotic convergence rates do not tell the
whole story, especially in the context of the problems to which direct search methods
are most applicable.

A common situation in practice is that one wants “improvement” rather than
full-blown optimality. The user’s goal may be only one or two correct digits, either
because this is good enough for the application, or else because the values that can
be obtained for the function to be optimized are sufficiently inaccurate that seeking
higher accuracy from a solution would be pointless. The function illustrated in Fig-
ure 1.2 shows just such an example. In this and other similar situations, the better
asymptotic convergence rate of a quasi-Newton method provides no assurance that it
will reach a suitable low-accuracy solution more quickly (i.e., with fewer function eval-
uations) than a direct search method. In fact, the point of the example in Figure 1.2
is that it is quite possible that a quasi-Newton method with finite-difference gradi-
ents may converge quickly—to one of the spurious local minimizers, thus returning a
meaningless “solution.”

A further point to be considered in assessing “slowness” is whether this means
only the elapsed time for a computer run, or the total time needed by the user to
formulate the problem, write code, and obtain an answer. If human time counts as
much as or more than computer time, if the user cannot apply a modeling language or
automatic differentiation, and if a modest improvement in the function is acceptable,
a direct search method may well produce the desired result more quickly than any
alternative. The point here is to note the need, in practical settings, to account for
the wall-clock or calendar time that elapses from the time a project is begun to the
time usable solutions are obtained.

1.3.2. Limitations on Problem Size. Even in the early days of direct search meth-
ods, it was asserted that they were best suited for problems with a small number
of variables. We now have some clues as to why performance could deteriorate as
the number of variables increases (see section 3.4.1). Even so, direct search methods
have been used successfully on problems with a few hundred variables (e.g., [180]).
Regardless of dimensionality, they may be the only option in some cases. An obvious

394 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

topic for further investigation is the development of approaches to ameliorate this
inefficiency.

1.4. What’s in a Name?. Thus far we have avoided defining what, precisely, is
meant by direct search. For reasons that will soon become apparent, it is not easy to
give an exact definition of this term. We have long been partial to the description
given in the 1961 paper by Hooke and Jeeves [139] which, to the best of our knowledge,
is where the term “direct search” first appeared:

We use the phrase “direct search” to describe sequential examination of
trial solutions involving comparison of each trial solution with the “best”
obtained up to that time together with a strategy for determining (as a
function of earlier results) what the next trial solution will be. The phrase
implies our preference, based on experience, for straightforward search
strategies which employ no techniques of classical analysis except where
there is a demonstrable advantage in doing so.

In keeping with the spirit of this passage, we agree with a necessary condition proposed
by M. Wright [272], which says, “A direct search method does not ‘in its heart’ develop
an approximate gradient.” This excludes finite-difference quasi-Newton schemes, for
instance.

The reader might rightly ask for a definition of a mathematical nature. Let us
return to Hooke and Jeeves, who give a more formal definition of direct search. The
salient features are the following:

1. There is assumed to be an order relation ≺ between any two points x and y.
For instance, in unconstrained minimization, points x and y may be compared
as follows: x ≺ y if f(x) < f(y). That is, x is “better” than y because it
yields a lower objective function value.

2. At any iteration, only a finite number of possible new iterates exists and the
possibilities can be enumerated in advance.

The first requirement insists upon discernible improvement; it is not sufficient merely
to match the current value of f(y) (i.e., if f(x) = f(y), then x is not “better” than y
and so x 6≺ y). Revisiting the illustration of compass search in Figure 1.1 helps make
the essence of the second requirement clearer. At each iteration of compass search
(in two dimensions), there are exactly four possible steps to consider: one each to the
East, West, North, and South. This is true regardless of the function f . Hooke and
Jeeves contrast this with steepest descent or Newton’s method, where a priori there is
a continuum of possible steps. Given an enumeration of possible new iterates, direct
search looks among them for a “better” point. So, if our current best point is the
iterate xk, then we want to find a new iterate xk+1 for which xk+1 ≺ xk.

Hooke and Jeeves do not assume that the order relation ≺ necessarily involves the
comparison of numerical function values. This leads to another take on the meaning
of direct search. In Gill, Murray, and Wright [117], the authors remark that, “Meth-
ods based on function comparison are often called direct search methods.” Likewise,
Trosset [259] gives the provisional definition, “A direct search method for numerical
optimization is any algorithm that depends on the objective function only through
the ranks of a countable set of function values.” A salient feature of many of the
direct search algorithms is the fact that they can be used in the absence of numerical
function values, as we saw in the hearing aid example in section 1.2.2. The ability to
compare and rank alternatives suffices.

However, the preceding attempts to define direct search have their limitations.
For instance, Trosset found his definition did not accommodate stochastic variants
of direct search, which led him to a more elaborate definition in [260]. It also is not

OPTIMIZATION BY DIRECT SEARCH 395

clear how one can extend such a simple characterization of direct search algorithms
to problems with nonlinear constraints if one wishes to use a merit function such as
the augmented Lagrangian (e.g., see section 8.3.2).

To further confuse matters, recently the term “derivative-free optimization” has
been used with some frequency in the nonlinear programming literature to mean a
number of methods that rely on derivative-free local models of the objective and
constraints [71, 74, 177]. These models are derivative-free in the sense that they are
not Taylor’s series models constructed using analytical or accurate finite-difference
estimates of derivatives. Instead, the models are constructed via least-squares fits
[121] or interpolation techniques [72, 74, 220]. As if this were not confusing enough,
the term “derivative-free” appears in the titles of other papers [115, 173, 174, 175] in
reference to algorithms that do not explicitly construct a local model of the functions
involved.

A precise definition of “direct search” eludes us. Rather than puzzling further
over what does, or does not, constitute a direct search method, we move on to a
discussion of the objectives of this review.

1.5. Objectives of This Review. We have argued—convincingly, we hope—that
direct search methods provide a respectable choice for solving difficult, important
optimization problems. Now let us recall why direct search methods were exiled by
the mathematical optimization community, as summarized by the quotation from
Swann in section 1: the search techniques were based on heuristics, the methods were
slow to converge, and there was no mathematical analysis to accompany them. In the
course of this review we address each of these points.

Our main goal is a unified presentation of a large number of direct search methods
and an explanation of how and why they have the same sorts of theoretical guarantees
of convergence as methods that rely explicitly on derivatives. The analysis identifies
those heuristics that rest on solid mathematical principles. The analysis also points
toward the features of direct search methods that may help explain the slow asymp-
totic convergence behavior as well as the limitations on the size of the problems these
methods can tackle. Furthermore, the analysis hints at why other direct search meth-
ods sometimes fail in practice.

Once we have established the basic analytic features of these methods, and dis-
cussed some of the interesting algorithmic options, we consider the effects of smooth-
ness (and its lack) on convergence properties.

At the end, we present extensions to problems with bound, linear, and nonlin-
ear constraints. Effective techniques for handling linear and nonlinear constraints
remain one of the most active research areas for direct search methods since most
simulation-based optimization problems are defined with constraints. Analytically
sound methods and good software implementations are now of particular interest.

We have tried to present the material in a way that does not presume a familiarity
with optimization on the part of the user. In particular, we try to sketch those
elements of nonlinear programming that are needed as background. We also admit to
a fondness for pictures; many of the heuristics and intuitions of the original papers on
direct search methods derive from pictures of how an optimization algorithm might
operate.

1.6. Topics Outside the Scope of This Review. This review will make only passing
references to software for direct search methods, though this obviously is an important
topic. Except in passing, we do not discuss the parallel implementation of direct
search methods. Many direct search methods are amenable to parallelization [93,

396 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

115, 140, 256], but it takes considerable effort to construct implementations that
effectively handle load-balancing [140], which can be a serious consideration when
either solving simulation-based optimization problems or introducing some of the
strategies we discuss in section 8 for handling constraints. Analysis of at least one
parallel method [161] introduces some interesting perturbations on the ideas developed
here, but we refer the reader to the discussion in [162].

We mention here only briefly work that creates hybrid algorithms containing fea-
tures of direct search methods. In particular, suggestions have been made to combine
direct search methods with a trust region approach [141] and to use direct search
methods to obtain convergence in evolutionary algorithms [131, 132, 133]. Various
acceleration techniques based on modeling also have appeared [30, 31, 91, 100, 261].

All of these ideas touch in interesting ways on the ideas discussed here, but
limitations on length prevent us from giving them a full treatment.

2. Smooth Unconstrained Minimization. For future reference, we give a formal
statement of the unconstrained minimization problem. Constrained optimization is
discussed in sections 7 and 8. The unconstrained problem is

minimize f(x),

where f : Rn → R. The function f is the objective function. The variables x are those
directly manipulated by an optimization algorithm. The dimension of the problem is
n, the number of variables.

2.1. Global Convergence and Local Convergence. In optimization, order gener-
ally refers to the order of associated derivatives. Hence methods that use only function
values (e.g., compass search) are referred to as zeroth-order methods, while methods
that also use gradients (e.g., steepest descent) are referred to as first-order methods.

Similarly, a first-order optimality condition is one that involves the gradient. In
the case of the unconstrained minimization of a differentiable function f , a necessary
(and first-order) condition for a point x∗ to be a local minimizer is that ∇f(x∗) =
0, i.e., x∗ is a stationary point of the function f . First-order convergence of an
optimization method means that one (or some, or all) of the limit points of the
iterates is a stationary point of f .

In the nonlinear programming literature, global convergence is used to mean first-
order convergence from an arbitrary starting point. In contrast, local convergence is
used to mean convergence when the initial point is close enough to a minimizer. In
addition, local convergence is normally associated with a rate of convergence.

Our concern will be mostly with first-order global convergence of direct search
methods, though we will obtain a rate of convergence result as a by-product of the
analysis. We emphasize that first-order convergence does not imply convergence to a
point satisfying second-order conditions, such as that the Hessian matrix is positive
definite or semidefinite. Nor does global convergence mean convergence to a global
minimizer (i.e., a point x∗ such that f(x∗) ≤ f(x) for all x ∈ Rn).

In general, it is impossible to prove second-order convergence results (i.e., conver-
gence to a minimizer) for first-order methods like quasi-Newton. Though in practice
these algorithms reliably find local minimizers, the global convergence analysis of
such methods only establishes first-order convergence. A major point of this review is
that similar first-order convergence results hold for a particular class of zeroth-order
methods.

OPTIMIZATION BY DIRECT SEARCH 397

(a) Steps are too long. (b) Steps are too short.

−∇ f(x)

(c) Bad search direction.

Fig. 2.1 The ways that a line search algorithm can fail.

2.2. Line Search Methods. Since there will be useful comparisons with what is to
follow, a brief sketch of line search methods is included for readers not familiar with
them. For further discussion, see texts such as [192, 197] or the survey article [196].

If f is differentiable at x, then a vector d ∈ Rn is a descent direction for f at x if
it is within 90◦ of −∇f(x), i.e.,

−∇f(x)T d > 0.(2.1)

The definition of the derivative says that

f(x + αd) = f(x) + α∇f(x)T d + o(α).

If d is a descent direction, and α > 0 is sufficiently small, then x+ = x + αd reduces
the value of the objective f . This observation forms the basis of line search methods:
at the iterate xk, choose a descent direction dk and search along this direction for a
point xk+1 = xk + αkdk, with αk > 0, that has a smaller objective value.

In the method of steepest descent, the search direction is dk = −∇f(xk). One
can also incorporate curvature information. Given a positive definite matrix Bk, let

dk = −B−1
k ∇f(xk).(2.2)

Newton’s method corresponds to the choice Bk = ∇2f(xk), while approximations to
the Hessian lead to a variety of secant update quasi-Newton methods.

It would be satisfying to say that the iterates in the algorithm sketched above
are guaranteed, at the very least, to converge to a stationary point of f . However,
this is not the case. A (perhaps counterintuitive) fact is that simple decrease in the
objective, i.e.,

f(xk+1) < f(xk),(2.3)

is not enough to ensure convergence to a stationary point of f .
Two reasons for this are illustrated by the following example from [92]. Fig-

ure 2.1(a)–(b) shows two sequences of iterates for which f(xk+1) < f(xk), where
f(x) = x2. However, neither sequence converges to 0, the only stationary point of
f . In (a), the sequence is xk = (−1)k(1 + 2−k), with limit points at ±1. In (b), the
sequence is xk = 1 + 2−k, which converges to 1. In (a), the problem is that the steps

398 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

are “too long” relative to the amount of decrease seen from one iterate to the next.
In (b), the steps are “too short” relative to the linear rate of decrease in the function.

Figure 2.1(c) illustrates yet another potential problem. The level curve of the
function at xk is shown in black. The direction of steepest descent from xk is indi-
cated by the red arrow; the tangent plane at xk is indicated by the red line. The
direction dk, indicated by the blue line segment, satisfies the descent condition (2.1),
but just barely, as it nearly forms a right angle with the direction of steepest de-
scent. As a consequence, only short steps along dk will yield improvement; in the
picture, only the region indicated by the blue line segment. If the angle between dk

and −∇f(xk) approaches 90◦, the iterates may converge prematurely to a point that
is not a stationary point.

These examples may seem terribly contrived. But it turns out that the only two
pathologies to guard against in order to be assured of convergence to a stationary
point are poor choices of step length and poor choices of descent directions.

2.3. Avoiding Poor Choices of Step Lengths. In Figure 2.1(a)–(b), each step is
along a direction of descent, but the steps yield an ever decreasing fraction of the
total improvement in f(x) promised by the derivative. Traditionally, this has been
corrected by imposing acceptance criteria that tie the step-length control parameter
αk to the expected decrease as estimated by the initial rate of decrease −∇f(xk)T dk.
Specifically, the condition

f(xk + αkdk) ≤ f(xk) + c1αk∇f(xk)T dk(2.4)

prevents steps that are too long via a sufficient decrease criterion, while the condition

∇f(xk + αkdk)T dk ≥ c2∇f(xk)T dk(2.5)

prevents steps that are too short via a curvature criterion, with 0 < c1 < c2 < 1.
The first criterion (2.4) is sometimes called the Armijo condition [9, 192]. A related
criterion is the Goldstein condition [125, 197]. The second criterion (2.5) is sometimes
called the Wolfe condition [192, 269]. Collectively, (2.4) and (2.5) may be referred to
as the Armijo–Goldstein–Wolfe conditions.

To see how (2.4) prevents steps that are too long, consider the example in Fig-
ure 2.2. Rewriting (2.4) yields

f(xk + αkdk) − f(xk) ≤ −c1αk|∇f(xk)T dk|.(2.6)

Each side of the inequality can be parameterized, in terms of the step length α ≥ 0,
as

g(α) = f(xk + αdk) − f(xk) and h(α) = −c1α|∇f(xk)T dk|.

In Figure 2.2, any choice of αk < ᾱ will satisfy (2.6). The requirement on αk is
that it produces decrease in the value of f at xk that is at least some fraction of the
decrease predicted by the linear approximation. When c1 is chosen to be near zero
(i.e., much less than 1), the sufficient decrease condition is easier to satisfy since only
a small decrease in the function value is required.

Now observe that g(0) = h(0) = 0. If f is continuously differentiable in a neigh-
borhood of xk and dk is a descent direction, then g′(0) = ∇f(xk)T dk < 0. Further-
more, h′(0) = c1∇f(xk)T dk < 0. Since c1 < 1, there is guaranteed to be a range of
choices for α for which g(α) < h(α) holds. The important observation here is that

OPTIMIZATION BY DIRECT SEARCH 399

0

0
h(α) = −c

1
 α | ∇ f(x

k
)T d

k
 |

g(α) = f(x
k
+αd

k
) − f(x

k
)

α
_

Fig. 2.2 Illustration that suitably small step lengths will satisfy the sufficient decrease condition.

(2.4) ensures that when f is continuously differentiable and dk is a descent direction,
then there exists a nonempty interval (0, ᾱ) of acceptable αk values.

Condition (2.5), which guards against steps that are “too short,” is frequently
not enforced directly in practice. Instead, this condition is satisfied automatically
using a technique known as backtracking. In a backtracking line search, the search
begins with a relatively long step and only tries shorter steps, as needed, to find an
acceptable step (i.e., one satisfying (2.4)).

2.4. Avoiding Poor Choices of Descent Directions. The direction dk is a descent
direction at xk if it satisfies (2.1). However, as seen in Figure 2.1(c), the algorithm
can stall if dk is almost orthogonal to the direction of steepest descent. This can be
prevented by enforcing a uniform lower bound on the angle between −∇f(xk) and
dk:

−∇f(xk)T dk

‖∇f(xk) ‖ ‖ dk ‖
≥ c > 0,(2.7)

where c is independent of k. Methods for which condition (2.7) holds often are referred
to as gradient-related [202]. Alternatively, (2.7) may be referred to as the angle
condition [192] since it also can be written as cos θ ≥ c > 0, where θ is the angle
between the search direction dk and the direction of steepest descent −∇f(xk). Note
that if dk and −∇f(xk) are orthogonal, then cos θ = 0. Condition (2.7) automatically
holds in the method of steepest descent.

2.5. A Global Convergence Result for Line Search Methods. The following is a
standard first-order global convergence result for line search methods [92, 192, 197].

Theorem 2.1. Let f : Rn → R be continuously differentiable on Rn and be
bounded below. Furthermore, suppose that ∇f is Lipschitz continuous with constant
M ; that is,

‖∇f(y) −∇f(x) ‖ ≤ M‖ y − x ‖ for all x, y ∈ Rn.

400 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

If the sequence {xk} satisfies the step-length conditions (2.4)–(2.5) and the search
direction condition (2.7), then

lim
k→∞

‖∇f(xk) ‖ = 0.

Note that this result does not say that the sequence necessarily converges to a
stationary point. Rather, it says that any limit point of the sequence of iterates is
a stationary point. Further assumptions are required in order to obtain a guarantee
of convergence of the entire sequence. Typically, one assumes that one of the limit
points x∗ is a point satisfying the second-order sufficiency condition ∇2f(x∗) > 0.
Then f is convex near x∗, i.e., its graph is bowl-shaped. One then shows that once
xk enters some neighborhood of x∗, further iterates will not leave this neighborhood,
and hence the entire sequence will converge to x∗.

3. Generating Set Search Methods for Unconstrained Minimization. As intimated
in the introduction, not all direct search methods reliably find solutions. Some algo-
rithms, such as the simplex algorithm of Nelder and Mead, sometimes find minimizers
very efficiently, but they can also fail unpredictably. On the other hand, other algo-
rithms, such as compass search or the pattern search method of Hooke and Jeeves,
have been observed to be very reliable, if sometimes slow, in practice.

For this reason, much of this review focuses on identifying a class of direct search
methods which can be shown to have a mathematical foundation as sound as that for,
say, derivative-based line search methods. Of particular interest is the articulation
of the features that make some direct search methods reliable, in the sense of having
attendant convergence results similar to those for line search methods. Such an ex-
amination sheds light on why direct search methods behave as they do, in terms of
their robustness, dependence of performance on dimension, local rate of convergence,
and the like. It also shows the rich algorithmic possibilities for new classes of direct
search methods.

Because there is no name for the particular class of direct search methods that
is our focus, we introduce the name generating set search (GSS). We hope that the
benefits of a clearly defined class outweigh the annoyance of introducing yet another
name to the nomenclature.

As we shall see, in unconstrained optimization it is crucial for the set of search
directions to be a positive spanning set for Rn, meaning that every vector in Rn can
be written as a linear combination of these directions with nonnegative weights. This
is made formal in Definition 3.1 of section 3.4. This suggests the name “positive
spanning set methods.” While this description is valid in the case of unconstrained
optimization, it does not convey the properties needed by the set of search directions
when optimizing subject to bounds and general linear (or linearized) constraints.
In these cases, as discussed in section 8, the search directions need to generate a
cone defined by the “almost active” constraint normals, and thus we propose the
name “generating set search methods.” This name applies as well for unconstrained
problems, where the search directions must be the generators for Rn, interpreted as
a cone. Generalization to the constrained case is covered in section 8.

GSS includes the generalized pattern search methods previously analyzed by
Torczon [257], which cover as special cases the pattern search algorithm of Hooke
and Jeeves [139], multidirectional search [256], variants of the EVOP technique intro-
duced by Box [35], our old friend compass search, as well as the extensions introduced
by Lewis and Torczon [166] to handle positive bases. Additionally, GSS includes
a subset of the algorithms encapsulated in the grid-based framework of Coope and

OPTIMIZATION BY DIRECT SEARCH 401

Price [76, 77]. All of the preceding methods enforce only the simple decrease con-
dition (2.3). GSS also includes methods based on sufficient decrease conditions sim-
ilar to (2.4), but which do not use derivative information. Algorithms of this sort
include those of Yu [278], Lucidi and Sciandrone [174], and Garćıa-Palomares and
Rodŕıguez [115].

The goal here is to design GSS so that it is generic enough to capture many of the
algorithmic variations in the literature while at the same time being simple enough to
discuss with a minimum of notation and without handling a variety of special cases.
Thus, for now, we deliberately suppress some of the algorithmic possibilities allowed
in the work just mentioned. In section 5, we will discuss a few of the interesting
variations that are not neatly covered by our abstraction.

The discussion of derivative-based line search methods in section 2.2 introduced
the principles that will be used in proving convergence for GSS methods. First, the
algorithm must have a search direction that is a descent direction, as defined in (2.1).
Second, GSS methods must avoid poor search directions; i.e., there must be a search
direction that is not “too orthogonal” to the direction of steepest descent, as in (2.7).
GSS methods use multiple search directions—specifically a generating set—to ensure
that (2.1) and (2.7) are satisfied by at least one direction in the set, even without
explicit knowledge of the gradient. Finally, GSS methods must avoid poor choices of
step lengths. Since all the GSS methods employ a backtracking strategy, there is no
need to enforce (2.5). The novelty in the analysis of GSS methods lies in the way in
which they replace (2.4)—since they do not have an explicit representation of ∇f(xk)
to use—and yet still manage to avoid taking steps that are too long. Once it is clear
that GSS methods satisfy these basic conditions, the necessary ingredients will be
available to prove results analogous to Theorem 2.1.

3.1. An Example: Compass Search Revisited. Returning to the discussion of
compass search from section 1.1, we formalize the terminology and notation. The
method is stated in Algorithm 3.1. Let k serve as the index for each iteration. Let
xk ∈ Rn denote the kth iterate, with x0 denoting the initial guess. Let D⊕ denote the
set of 2n coordinate directions, defined as the positive and negative unit coordinate
vectors

D⊕ = {e1, e2, . . . , en,−e1,−e2, . . . ,−en}.

Let ∆k denote the step-length control parameter that controls the lengths of the
steps taken. Initialization of the algorithm includes choosing a starting value ∆0. In
Figure 1.1 we use ∆0 = 0.3.

For applications where the objective value is expensive to compute, the majority
of the work occurs in Step 2, the evaluation of the objective at trial points of the form
xk + ∆kd for each d ∈ D⊕.

There is tremendous latitude in exactly how one does the evaluations to determine
if there exists a dk ∈ D⊕ satisfying the simple decrease condition (2.3). For example,
one may evaluate f at each of the 2n trial points in sequence and choose the trial point
that yields the greatest decrease in f . Alternatively, if a parallel computer is available,
one may perform the 2n objective evaluations simultaneously, and then choose the
trial point that yields the most decrease. Another option is to evaluate each trial point
in sequence but stop at the first one, if any, that satisfies the decrease condition (2.3).
Whenever a direction satisfying (2.3) is found, we say that the iterate is successful. The
direction that produced success is denoted by dk, and the subsequence of successful
iterations is denoted by S.

402 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

Initialization.

Let f : Rn → R be given.

Let x0 ∈ Rn be the initial guess.

Let ∆tol > 0 be the tolerance used to test for convergence.

Let ∆0 > ∆tol be the initial value of the step-length control parameter.

Algorithm. For each iteration k = 1, 2, . . .

Step 1. Let D⊕ be the set of coordinate directions
{±ei | i = 1, . . . , n}, where ei is the ith unit coordinate vector
in Rn.

Step 2. If there exists dk ∈ D⊕ such that f(xk + ∆kdk) < f(xk), then
do the following:

– Set xk+1 = xk + ∆kdk (change the iterate).

– Set ∆k+1 = ∆k (no change to the step-length control
parameter).

Step 3. Otherwise, f(xk + ∆kd) ≥ f(xk) for all d ∈ D⊕, so do the
following:

– Set xk+1 = xk (no change to the iterate).

– Set ∆k+1 = 1
2∆k (contract the step-length control

parameter).

– If ∆k+1 < ∆tol, then terminate.

Algorithm 3.1 Compass search: an example of a generating set search method.

Regardless of the procedure chosen for evaluating the trial points, the value of ∆k

is not reduced unless every trial point has been evaluated and found unacceptable.
In this case, none of the 2n trial points xk + ∆kd, d ∈ D⊕, produces decrease. Such
an iteration is called unsuccessful and the algorithm proceeds to Step 3, where the
step-length control parameter is halved. The subsequence of unsuccessful iterations
is denoted by U .

Furthermore after any unsuccessful iteration (i.e., where ∆k is reduced), ∆k is
compared to the preset stopping tolerance ∆tol to test for convergence. Once the step-
length control parameter falls below ∆tol, the search terminates with x∗ = xk+1. Note
that ∆k is only shortened after unsuccessful steps; thus the search will not stop after
a successful step. There are good reasons for enforcing this particular convention,
as the discussion of convergence in section 3.6 will make clear. Relaxations of this
convention are possible, as discussed in section 5.1.

3.2. Convergence of Compass Search. Consider the coordinate directions in D⊕.
As depicted for two dimensions in Figure 1.1, it is easy to see that at each iteration,
at least one of the four coordinate directions must be a descent direction. In fact,
one of the four coordinate directions must be within 45◦ of the direction of steepest
descent, no matter what the direction of steepest descent might be. Something similar
is true for any dimension n: given any x ∈ Rn for which ∇f(x) 6= 0, at least one of

OPTIMIZATION BY DIRECT SEARCH 403

the coordinate directions must be a descent direction. Looking in multiple directions
implicitly ensures a descent direction, so long as the current iterate is not a stationary
point of f .

Now suppose at iteration k, a step ∆k > 0 along each of the coordinate directions
was taken but none of those steps produced decrease; i.e.,

f(xk) ≤ f(xk + ∆k d) for all d ∈ D⊕.(3.1)

This is an unsuccessful iteration. What occurs at unsuccessful iterations is key to
proving convergence results for compass search and, more generally, GSS methods.

In the case of the coordinate directions in compass search, the cosine of the largest
angle between an arbitrary vector v and the closest coordinate direction is bounded
below by 1√

n
[257]. This means that no matter the value of ∇f(x) there is at least

one d ∈ D⊕ for which

1√
n

‖∇f(xk) ‖ ‖ d ‖ ≤ −∇f(xk)T d.(3.2)

This is nothing other than (2.7) from our discussion of line search methods, with
c = 1/

√
n.

If iteration k is unsuccessful as in (3.1), then the mean value theorem says

0 ≤ f(xk + ∆k d) − f(xk) = ∇f(xk + αk∆kd)T ∆kd

for some αk ∈ [0, 1]. Subtracting ∆k∇f(xk)T d from both sides leads to

−∆k∇f(xk)T d ≤ ∆k(∇f(xk + αk∆kd) −∇f(xk))T d.

Applying (3.2) yields

1√
n

‖∇f(xk) ‖ ‖ d ‖ ≤ (∇f(xk + αk∆kd) −∇f(xk))T d.

Now suppose f is continuously differentiable and, to keep things simple, that ∇f is
Lipschitz with constant M (uniform continuity would do). The role of differentiability,
and the degree to which it is (and is not) restrictive with regard to nonsmooth or noisy
objectives in theory and in practice, is discussed at length in section 6.

Under these assumptions,

1√
n

‖∇f(xk) ‖ ‖ d ‖ ≤ M ‖αk∆kd ‖ ‖ d ‖ ≤ M ∆k‖ d ‖2,

or, since ‖ d ‖ = 1,

‖∇f(xk) ‖ ≤ √
n M ∆k.(3.3)

Thus, even though there is no explicit knowledge of the gradient, at unsuccessful
iterations there is an implicit bound on the norm of the gradient in terms of the
step-length control parameter ∆k.

If, in addition, it could be shown that

lim
k→+∞

k∈U

∆k = 0,

404 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

then it would be possible to conclude that

lim
k→+∞

k∈U

‖∇f(xk)‖ ≤ lim
k→+∞

k∈U

√
n M ∆k = 0.

Thus, any convergent sequence of unsuccessful iterates must converge to a point where
the gradient vanishes. This is a convergence result analogous to Theorem 2.1 for line
search methods, which explicitly use the gradient.

The crux of the convergence analysis for GSS methods will be to show that, in
fact,

lim
k→+∞

k∈U

∆k = 0.

Even though it is at successful iterations that f is reduced, it is the unsuccessful
iterations that are key to proving convergence.

3.3. Generating Set Search. The ideas underlying compass search are expanded
in the generic GSS method given in Algorithm 3.2. Our goal is to state the algorithm
broadly enough to encompass many of the methods in the literature so that we can
identify the common elements. Significant changes from the compass search algorithm
given in Algorithm 3.1 are highlighted in red. There are three major changes to note.

The first major change regards the set of search directions used in Step 1. Previ-
ously the coordinate directions were the only search directions. This is replaced by a
set of search directions Dk which contains a generating set Gk for Rn. Generating sets
are defined formally in Definition 3.1 in section 3.4; the set of coordinate directions is
one example of a generating set. It is also possible to include additional directions for
the search in Hk. For compass search, Hk = ∅ and Gk = D⊕. The set of directions
Dk may change at each iteration (hence the introduction of the subscript k on the set
D). However, the cosine measure for the generating set Gk, which is defined formally
in (3.10) in section 3.4.1 and denoted by κ(Gk), must be bounded below. The cosine
measure plays the role of (2.7) in line search methods.

While the generating set Gk and the cosine measure κ(Gk) are key to the analysis,
the set Hk is tangential to the analysis. Thus it is acceptable for Hk to be empty, but
it opens up the possibility for interesting heuristic strategies designed to accelerate
the progress of the search. We discuss some of these possibilities in section 4.

The second major change concerns the update to the step-length control param-
eter ∆k in Steps 2 and 3. For coordinate search, the traditional choices are φk = 1
for all k ∈ S and θk = 1

2 for all k ∈ U . However, at a successful iteration it is possible
to expand the length of the step by increasing ∆k (i.e., by allowing φk > 1). At
unsuccessful iterations it is necessary to contract the length of the step by reducing
∆k (i.e., by requiring θk ∈ (0, 1)), but now there is more flexibility in the choice of θk.
Note, however, that θk is required to be bounded below by 0 and above by some value
θmax < 1, which the user is free to choose during the initialization of the algorithm.
Finally, the expansion factor φk and the contraction factor θk may be changed at
each iteration.

The third major change is a modification of the criterion used to accept an iterate
(i.e., the way in which “success” is defined). In the definition of compass search given
in section 3.1, any step that produces simple decrease in f(xk) is acceptable. In other
words, in Step 2, so long as there exists dk ∈ Dk such that f(xk + ∆kdk) < f(xk),
the iteration is judged a success. The introduction of a forcing function ρ(·) now also
allows the possibility of enforcing sufficient decrease by establishing a threshold for

OPTIMIZATION BY DIRECT SEARCH 405

Initialization.

Let f : Rn → R be given.

Let x0 ∈ Rn be the initial guess.

Let ∆tol > 0 be the step-length convergence tolerance.

Let ∆0 > ∆tol be the initial value of the step-length control parameter.

Let θmax < 1 be an upper bound on the contraction parameter.

Let ρ : [0,+∞) → R be a continuous function such that ρ(t) is decreasing as
t → 0 and ρ(t)/t → 0 as t ↓ 0. The choice ρ ≡ 0 is acceptable.

Let βmax ≥ βmin > 0 be upper and lower bounds, respectively, on the
lengths of the vectors in any generating set.

Let κmin > 0 be a lower bound on the cosine measure of any generating set.

Algorithm. For each iteration k = 1, 2, . . .

Step 1. Let Dk = Gk ∪Hk. Here Gk is a generating set for Rn satisfying
βmin ≤ ‖d‖ ≤ βmax for all d ∈ Gk and κ(Dk) ≥ κmin, and Hk is a
finite (possibly empty) set of additional search directions such
that βmin ≤ ‖d‖ for all d ∈ Hk .

Step 2. If there exists dk ∈ Dk such that f(xk + ∆kdk) < f(xk) − ρ(∆k),
then do the following:

– Set xk+1 = xk + ∆kdk (change the iterate).

– Set ∆k+1 = φk∆k, where φk ≥ 1 (optionally expand the
step-length control parameter).

Step 3. Otherwise, f(xk + ∆kd) ≥ f(xk)− ρ(∆k) for all d ∈ Dk, so do the
following:

– Set xk+1 = xk (no change to the iterate).

– Set ∆k+1 = θk∆k where 0 < θk < θmax < 1 (contract the
step-length control parameter).

– If ∆k+1 < ∆tol, then terminate.

Algorithm 3.2 A GSS method.

the amount of decrease that must be realized for the iteration to be deemed a success.
This generalization allows for the use of either the simple decrease criterion or the
sufficient decrease criterion. In the first case, simply continue with ρ ≡ 0. In the
second case, use a forcing function that satisfies the condition ρ(t)/t → 0 as t → 0.
(A simple choice is ρ(t) = at2 for some a > 0.) In either case, global convergence
results can be derived, but the choice of decrease criterion has significant bearing on
the conditions that must be placed on Dk, φk, and θk. This is discussed in more detail
in section 3.7

The statement of the GSS algorithm given in Algorithm 3.2 by no means captures
every useful variation on GSS methods. But it captures the essence of the classical

406 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

pattern search methods [257] while encompassing many of the more recent ideas found
in the nonlinear optimization literature (e.g., [5, 13, 76, 77, 115, 166, 174]).

3.3.1. Bounds on the Lengths of the Directions. Uniform bounds are imposed on
the lengths of the directions in the sets of search directions:

βmin ≤ ‖d‖ ≤ βmax for all d ∈ Gk, and
βmin ≤ ‖d‖ for all d ∈ Hk,

for k = 1, 2,(3.4)

The length of the step is controlled by the step-length control parameter ∆k.

3.3.2. Update Formulas. For later reference, we explicitly state the rules for up-
dating the iterate xk and the step-length control parameter ∆k. First,

xk+1 =

{

xk + ∆kdk, k ∈ S,
xk, k ∈ U .

(3.5)

Note that dk is only defined for successful iterations; i.e., k ∈ S. Second,

∆k+1 =

{

φk∆k, k ∈ S,
θk∆k, k ∈ U ,

(3.6)

with φk ≥ 1 and 0 < θk ≤ θmax < 1.

3.3.3. Step Acceptance Criteria. Recall that an iteration k is successful, i.e., k ∈
S, if it satisfies the decrease condition. That is, there exists a dk ∈ Dk for which

f(xk + ∆kdk) < f(xk) − ρ(∆k).(3.7)

The nonnegative function ρ defined on [0,+∞) is called the forcing function and must
satisfy one of the following two requirements. Either

ρ(t) ≡ 0(3.8)

or

ρ is continuous, ρ(t) = o(t) as t ↓ 0, and ρ(t1) ≤ ρ(t2) for t1 < t2.(3.9)

Choosing ρ to be identically zero as in (3.8) imposes a simple decrease condition on
the acceptance of the step. Otherwise, choosing ρ as in (3.9) imposes a sufficient
decrease condition.

Though similar, this usage of “forcing function” should not be confused with other
definitions of the same term, such as that of Ortega and Rheinboldt [202].

3.4. Generating Sets for Rn. Each iteration of the GSS method given in Algo-
rithm 3.2 requires a set Gk that is a generating set for Rn.

Definition 3.1. Let G = {d(1), . . . , d(p)} be a set of p ≥ n + 1 vectors in Rn.
Then the set G generates (or positively spans) Rn if for any vector v ∈ Rn, there
exist λ(1), . . . , λ(p) ≥ 0 such that

v =

p
∑

i=1

λ(i) d(i).

A generating set for Rn is the same as a positive spanning set [86]. Any vector
in Rn can be written as a linear combination of the generators, so a generating set is

OPTIMIZATION BY DIRECT SEARCH 407

Fig. 3.1 Examples of generating sets for R
2 with n + 1 and 2n vectors.

like a spanning set, except for the additional requirement that all the coefficients be
nonnegative.

A generating set must contain a minimum of n + 1 vectors. In two dimensions, a
minimal generating set with n + 1 = 3 vectors is

G =

{[

1
0

]

,

[

−1
−1

]

,

[

−1
1

]}

.

The coordinate directions also form a generating set with 2n vectors. In two dimen-
sions, these are the 2n = 4 vectors in the set

G =

{[

1
0

]

,

[

−1
0

]

,

[

0
1

]

,

[

0
−1

]}

.

Figure 3.1 illustrates both these examples.

3.4.1. Generating Sets and Descent. Having a set guaranteed to include a descent
direction was one of the ingredients in the discussion in section 3.2 of why compass
search should work. The generalization to arbitrary generating sets maintains this
key feature, as the following result [86] shows.

Lemma 3.2. The set G generates Rn if and only if for any vector v ∈ Rn such
that v 6= 0, there exists d ∈ G such that

vT d > 0.

Geometrically, Lemma 3.2 says that G generates Rn if and only if the interior of
every half-space contains a member of G. The significance of Lemma 3.2 to GSS is
that at every iteration k, there must be some d ∈ Gk such that

−∇f(xk)T d > 0.

This means Gk is guaranteed to contain a descent direction whenever ∇f(xk) 6= 0.
Recall also from the discussion of compass search that a bound on the cosine of the

maximum angle between any arbitrary vector v and the set of coordinate directions
played a role in the analysis. In the case of a general generating set G, we refer to
that value as the cosine measure of G and denote it by κ(G). Formally, the cosine
measure is defined as

κ(G) ≡ min
v∈Rn

max
d∈G

vT d

‖v‖ ‖d‖ .(3.10)

Clearly, if G is a generating set, κ(G) > 0. The cosine measure captures how far the
steepest descent direction can be, in the worst case, from the vector in G making the

408 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

−∇ f(x) −∇ f(x)

Fig. 3.2 How far the negative gradient can be from the vectors in these two generating sets for R
2.

−∇ f(x)

Fig. 3.3 A generating set with a very small cosine measure.

smallest angle with v = −∇f(x). This worst-case behavior is illustrated in Figure 3.2
for the two generating sets shown in Figure 3.1.

In terms of descent, this means that for any generating set G, there must exist a
d ∈ G such that

κ(G) ‖∇f(x)‖ ‖d‖ ≤ −∇f(x)T d.(3.11)

Why is the cosine measure important? Suppose that the sequence of generating
sets is defined by

Gk =

{[

1
0

] [

− 1
k

−1

]

,

[

− 1
k
1

]}

.

Then as k → +∞, the cosine measure of this set goes to zero; specifically, κ(Gk) =
1/
√

1 + k2. If −∇f(x) = −e1, as shown in Figure 3.3, then the quality of the descent
directions in Gk is poor and the lower bound in (3.11) is small relative to ‖∇f(x)‖.

To prevent pathologies such as this, the cosine measure must be bounded below;
that is,

κ(Gk) ≥ κmin for all k = 1, 2,(3.12)

This limits how “bad” the search directions can be, which is important to the analysis
that follows.

This also helps explain why the performance of GSS methods may deteriorate as
n grows. Recall that the cosine measure of the coordinate directions, D⊕, decreases
as n grows; i.e., κ(D⊕) = 1/

√
n.

The concept of a generating set is helpful—both in the analysis and in practice—
because using a generating set guarantees a direction of descent, even when ∇f(xk)
is unknown. The drawback, though, is that without an explicit representation of
∇f(xk), there is no way to identify which of the vectors in the generating set are
guaranteed to be directions of descent, and thus the algorithm may have to search
along each of the vectors in the generating set to find decrease in f .

OPTIMIZATION BY DIRECT SEARCH 409

Imposing the condition (3.12) is but one technique to guarantee that the search
directions are, in a sense, well conditioned. Another possibility is to impose conditions
on the determinants of certain subsets of the generating set, as is done by Yu [278] and
Coope and Price [77]. Yet another possibility is to impose a condition on a particular
limit involving the search directions, as is done by Lucidi and Sciandrone [174].

3.5. The Ingredients for Proving Global Convergence. The stage is now set for a
discussion of the two basic ingredients for proving global convergence for GSS meth-
ods.

The first ingredient is showing that for any subsequence K of unsuccessful itera-
tions (i.e., K ⊆ U),

lim
k→+∞
k∈K⊆U

∆k = 0 ⇒ lim
k→+∞
k∈K⊆U

‖∇f(xk) ‖ = 0.

In compass search, this was accomplished by showing that at any unsuccessful iter-
ation, ‖∇f(xk)‖ was O(∆k); see (3.3). Theorem 3.3 states a general result for GSS
methods.

The second ingredient is showing there is indeed a subsequence of step-length
control parameters going to zero. We refer to this as globalization since this ingredient
plays much the same role as a line search in gradient-based methods. Three examples
of globalization techniques are analyzed in section 3.7.

In section 3.8, these ingredients are brought together to establish both weak and
strong convergence results.

3.6. Relating ∆k to the Measure of Stationarity. For compass search, (3.3) gave
a bound on the norm of the gradient at unsuccessful iterations in terms of the step-
length control parameter ∆k. Theorem 3.3, which follows, gives a general bound for
GSS methods.

The following theorem leads not only to first-order convergence results but also to
local convergence results and to the validation of a long-standing practical stopping
criterion for GSS methods (see section 3.10). For simplicity, we assume ∇f(x) is
Lipschitz, but this is not essential, as noted after the proof.

Theorem 3.3. Let f : Rn → R be continuously differentiable, and suppose ∇f is
Lipschitz continuous with constant M . Then GSS produces iterates such that for any
k ∈ U , we have

‖∇f(xk) ‖ ≤ κ(Gk)−1

[

M∆kβmax +
ρ(∆k)

∆kβmin

]

.

Proof. Choose d̂k ∈ Gk ⊆ Dk satisfying (3.11). Such a d̂k exists because Gk

generates Rn; so,

κ(Gk) ‖∇f(xk) ‖ ‖ d̂k ‖ ≤ −∇f(xk)T d̂k.

By the mean value theorem, for some αk ∈ [0, 1],

f(xk + ∆kd̂k) − f(xk) = ∆k∇f(xk + αk∆kd̂k)T d̂k.

Because k is an unsuccessful iteration,

0 ≤ f(xk + ∆kd̂k) − f(xk) + ρ(∆k).

410 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

Putting the last two relations together, dividing through by ∆k, and subtracting
∇f(xk)T d̂k from both sides yields

−∇f(xk)T d̂k ≤
(

∇f(xk + αk∆kd̂k) −∇f(xk)
)T

d̂k + ρ(∆k)/∆k.

From this we obtain

κ(Gk) ‖∇f(xk) ‖ ‖ d̂k ‖ ≤
(

∇f(xk + αk∆kd̂k) −∇f(xk)
)T

d̂k + ρ(∆k)/∆k,

whence

κ(Gk) ‖∇f(xk) ‖ ≤ ‖∇f(xk + αk∆kd̂k) −∇f(xk) ‖ + ρ(∆k)/(∆k‖ d̂k ‖)
≤ M∆k‖ d̂k ‖ + ρ(∆k)/(∆k‖ d̂k ‖),

and the result follows from (3.4).
A similar bound can be obtained assuming only continuous differentiability of f .

Let ω denote the following modulus of continuity of ∇f(x); i.e., given r > 0,

ω(x, r) = max { ‖∇f(y) −∇f(x) ‖ | ‖ y − x ‖ ≤ r } .

Then the proof of Theorem 3.3 yields the bound

‖∇f(xk) ‖ ≤ κ(Gk)−1

[

ω(xk,∆kβmax) +
ρ(∆k)

∆kβmin

]

.

3.7. Globalization Strategies in GSS. In light of Theorem 3.3, the globalization
strategies for GSS may be viewed as techniques that ensure

lim
k→+∞
k∈K⊆U

∆k = 0.(3.13)

Recall that U is the set of unsuccessful iterations.
With time and imagination, one could concoct an endless variety of GSS algo-

rithms for which (3.13) holds. In fact, that is part of the charm of GSS methods.
Here we present three globalization strategies to ensure (3.13):

1. Sufficient decrease, used by Yu [278], Lucidi and Sciandrone [174], and Garćıa-
Palomares and Rodŕıguez [115], is discussed in section 3.7.1.

2. Rational lattices, used by Berman [21, 22], Céa [56], Polak [211], Torczon
[257], and Lewis and Torczon [166], are discussed in section 3.7.2.

3. Moving grids, which were motivated by the work of Coope and Price [77], are
discussed in section 3.7.3.

A few comments are in order concerning the relationship between the globalization
strategies used in GSS methods and the globalization strategies used in line search
methods. As discussed in section 2.2, having a direction of descent at each iteration is
not enough to guarantee convergence. One must also safeguard the length of the step.
Recall the step-length pathology that must be prevented: taking too few steps of the
appropriate length, relative to the amount of improvement that otherwise could be
realized.

First consider the problem of preventing steps that are too short. As noted in
section 2.2, it is well known in line search methods for gradient-based optimization
that backtracking eliminates this problem [192, 197]. But GSS algorithms are, in a

OPTIMIZATION BY DIRECT SEARCH 411

sense, doing a backtracking line search along the directions in Dk. At each unsuccessful
iteration—and only at unsuccessful iterations—GSS methods reduce the step-length
control parameter and try again. This ensures that GSS methods take shorter steps
only when absolutely necessary to make progress, providing a built-in “derivative-free”
safeguard for GSS that has the same effect as enforcing (2.5).

Next consider the problem of preventing steps that are too long. For a conven-
tional gradient-based line search method, this is accomplished by enforcing a sufficient
decrease condition such as (2.4). However, GSS methods do not explicitly compute or
estimate derivatives, so a step acceptance criterion such as (2.4) is not appropriate.

Failure due to infinitely many steps that are too long is pathological, and this
possibility is prevented within GSS methods by simple techniques that do not require
knowledge of derivatives. In connection with GSS, we discuss three mechanisms for
avoiding steps that are too long. The first is a sufficient decrease condition that does
not require derivatives. The other globalization techniques, in the rational lattice and
moving grid approaches, prevent steps that are too long by restricting the types of
steps that can be taken.

3.7.1. Globalization via the Sufficient Decrease Condition. Of the globalization
approaches mentioned in section 3.7, sufficient decrease will be most familiar to those
who have seen derivative-based methods. The earliest reference we have found to a
sufficient decrease condition for a GSS method is by Yu [278]. Derivative-free suffi-
cient decrease conditions for line search methods were later introduced by De Leone,
Gaudioso, and Grippo [87]. The ideas in [87], as well as the further developments in
[127], were adapted by Lucidi and Sciandrone [174] within the context of direct search
methods. Shortly afterward, similar ideas were proposed by Garćıa-Palomares and
Rodŕıguez [115].

The sufficient decrease criterion says that GSS methods accept a new iterate only
if it satisfies f(xk + ∆kdk) < f(xk) − ρ(∆k) where the forcing function ρ(t) has the
properties given in (3.9).

It is worth comparing this step acceptance condition with the the first of the
Armijo–Goldstein–Wolfe conditions (2.4). Define

g(∆) = f(xk + ∆dk) − f(xk) and h(∆) = −ρ(∆).

Observe that g(0) = h(0) = 0. If f is continuously differentiable and d is a descent
direction, then g′(0) < 0. Because of assumption (3.9), it follows that h′(0) = 0. Thus,
the situation illustrated in Figure 3.4, which is analogous to the situation illustrated
in Figure 2.2, is that there exists a range of ∆ values for which g(∆) < h(∆) and,
consequently,

f(xk + ∆dk) − f(xk) < −ρ(∆).

To show that the sufficient decrease condition forces a subsequence of ∆k’s to 0,
the only requirement is that f be bounded below. The theorem and its proof are very
similar to results for line search methods.

Theorem 3.4. Let f be bounded below. Suppose that ρ(t) is as specified in (3.9).
Then GSS produces iterations satisfying

lim inf
k→+∞

∆k = 0.

Proof. Suppose not. Then there exists ∆∗ > 0 such that ∆k ≥ ∆∗ for all k.
The updating rule for ∆k, given in (3.6), implies that the number of successful iter-
ations must be infinite; i.e., S is infinite. From the assumption in (3.9) that ρ(·) is

412 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

0

0

h(∆) = −ρ(∆)

g(∆) = f(x
k
+∆d

k
) − f(x

k
)

∆
_

Fig. 3.4 Suitably small step lengths will satisfy the sufficient decrease condition.

a nondecreasing function and the lower bound on ∆k, there exists ρ∗ > 0 such that
ρ∗ ≤ ρ(∆k) for all k. Now, for every k ∈ S,

f(xk+1) − f(xk) ≤ −ρ(∆k) ≤ −ρ∗ < 0,

while for all other iterations (i.e., k ∈ U), f(xk+1) − f(xk) = 0. Thus, f(xk) → −∞,
which contradicts the assumption that f is bounded below. Hence, the claim.

This lemma can be furthered improved to show that the entire sequence of ∆k’s
goes to zero by assuming that the expansion parameter φk is bounded above.

The methods proposed by Lucidi and Sciandrone [174] and Garćıa-Palomares
and Rodŕıguez [115], which have motivated the current discussion of a derivative-
free sufficient decrease condition, include additional interesting algorithmic features.
These are discussed in section 5.

For the Connoisseur. Note that Theorem 3.4 depended on the updating rule for
∆k in (3.6). Specifically, if there were only finitely many successful iterations, the
∆k’s would be forced to go to zero since every contraction satisfies

0 < θk ≤ θmax < 1.

The upper bound on the contraction parameter plays a critical role. If this requirement
were omitted, the following pathology could arise, where θk < 1 is always chosen but
∆k is never reduced to less than 1

2∆0.
Suppose x0 = x∗ = min f(x), so that every GSS iteration is unsuccessful. For

each iteration k, define the contraction parameter θ as

θk =
k + 3

k + 2
· k + 1

k + 2
=

k2 + 4k + 3

k2 + 4k + 4
∈ (0, 1).

Recall that at unsuccessful iterations, θ is used in the update ∆k+1 = θk∆k (see
(3.6)). In this example, every iteration is unsuccessful, so

∆k =

(

k
∏

i=1

θi

)

∆0.

OPTIMIZATION BY DIRECT SEARCH 413

Observe that

k
∏

i=1

θi =

(

k + 3

k + 2
· k + 1

k + 2

)(

k + 2

k + 1
· k

k + 1

)

· · ·
(

4

3
· 2

3

)(

3

2
· 1

2

)

=
1

2

(

k + 3

k + 2

)

.

Therefore,

lim
k→∞

∆k = lim
k→∞

1

2

(

k + 3

k + 2

)

∆0 =
1

2
∆0.

In other words, the step length will never be less than 1
2∆0.

3.7.2. Globalization via a Rational Lattice. GSS algorithms also can accept
steps that yield only simple decrease. In this case, convergence can be ensured by
restricting the types of steps GSS is allowed to take. The lattice-based methods
discussed in this section, and the grid-based methods discussed in the next section,
restrict iterates to lie on meshes that are controlled implicitly. The earliest observa-
tions of which we are aware on the connection between simple decrease and the use of
lattices as a step-length control mechanism are due to Berman [22] and Polak [211].
The lattice approach as a general globalization technique was later formalized by
Torczon in [257].

The basic idea is quite simple. Consider compass search. The choice of step
lengths and directions means that the iterates lie on an ever-shrinking mesh of fixed
orientation (actually, uniform Cartesian grids). (We discuss lattices whose orienta-
tions are not fixed, which we call moving grids, in section 3.7.3.) The spacing of the
mesh elements depends on ∆k, so the lattice is refined only when ∆k is reduced. The
additional structure these features provide suffices to prevent the pathological steps
of Figure 2.1(a).

Imposing some minor requirements on the search directions and the update rules
for the step-length control parameter ensures that every iterate lies on a rational
lattice. From this fact, together with the simple decrease criterion for accepting
steps, it will follow that (3.13) holds; i.e., some subsequence of the step lengths goes
to zero.

First consider the structure of the step-length control parameter under two simple
conditions:

θk = Λmk , mk ∈ {−1,−2, . . .}, for all k ∈ U ,(3.14)

φk = Λ`k , `k ∈ {0, 1, 2, . . .}, for all k ∈ S,(3.15)

where Λ > 1 is an integer that does not change with k. In other words, the contraction
factor is a negative integral power of Λ and the expansion factor is a nonnegative
integral power of Λ. For simplicity, it helps to assume that all choices look something
like

θk =
1

2
for all k ∈ U , φk = 1 for all k ∈ S.

These were the values used in the description of compass search in section 1.1 and
have been the conventional choice for decades.

Using (3.14) and (3.15), the following lemma is straightforward.
Lemma 3.5. In GSS, updating ∆k according to (3.6) with contraction and expan-

sion parameters satisfying (3.14) and (3.15),

∆k+1 = ΛΓk∆0 with Γk ∈ Z.(3.16)

414 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

Next, consider the search directions. Each generating set Gk should be drawn
from a finite set; i.e.,

Gk ⊆ G for all k = 1, 2, . . . ,(3.17)

where

G = {d(1), . . . , d(p)}.(3.18)

An incidental consequence of this assumption is that the lower bound κmin > 0 is
implicit. Because the number of possible subsets of G is finite, κmin is the least cosine
measure of any subset that is also a generating set.

Structure is also imposed on the set Hk. It consists of vectors that are nonnegative
integer combinations of the vectors in G:

Hk ⊂
{

p
∑

i=0

ξ(i)d(i) | ξ(i) ∈ {0, 1, 2, . . .}
}

.(3.19)

Now consider the update of xk at the end of each iteration k. If k is unsuccessful
(i.e., k ∈ U), then xk+1 = xk. If k is successful (i.e., k ∈ S), then xk+1 = xk + ∆kdk

for some dk ∈ Dk. This leads to the following observation.
Lemma 3.6. In GSS, updating xk according to (3.5) and assuming each Gk satis-

fies (3.17) and each Hk satisfies (3.19), there exist nonnegative integers α
(i)
k for each

i = 1, . . . , p and k = 0, 1, 2, . . . such that

xk+1 = x0 +

p
∑

i=1

δk(i) d(i), where δk(i) =

k
∑

j=0

α
(i)
j ∆j .(3.20)

Proof. The proof is by induction. For k = 0, there are three possible outcomes:
1. k ∈ U (i.e., the step is unsuccessful),
2. k ∈ S and dk ∈ Gk (i.e., the step is successful and (3.17) and (3.18) hold),

and
3. k ∈ S and dk ∈ Hk (i.e., the step is successful and (3.19) holds).

In case 1, (3.5) says that x1 = x0, so simply choose α
(i)
0 = 0, so that δ0(i) = 0 for

i = 1, . . . , p. In case 2, (3.5) says that x1 = x0 + ∆0d0; (3.17) and (3.18) say that

d0 = d(`) ∈ G for some ` ∈ {1, . . . , p}. So choose α
(`)
0 = 1, so that δ0(`) = ∆0, and

α
(i)
0 = 0, so that δ0(i) = 0 for all i ∈ {1, . . . , p} \ {`}. In case 3, again (3.5) yields

x1 = x0 +∆0d0; (3.19) says that there exist ξ(i) such that d0 =
∑p

i=1 ξ(i)d(i). Choose

α
(i)
0 = ξ(i), so that δ0(i) = ∆0ξ

(i) for i = 1, . . . , p.
Now assume that (3.20) holds for xk and consider xk+1. Again there are three pos-

sible outcomes. If k ∈ U , then choose α
(i)
k = 0, so that δk(i) = δk−1(i) =

∑k−1
j=0 α

(i)
j ∆j

for all i ∈ {1, . . . , p}. On the other hand, if k ∈ S and dk ∈ Gk, so that dk = d(`) ∈ G

for some ` ∈ {1, . . . , p}, then choose α
(`)
k = 1, so that δk(`) = ∆k +

∑k−1
j=0 α

(`)
j ∆j , and

α
(i)
k = 0, so that δk(i) = δk−1(i) =

∑k−1
j=0 α

(i)
j ∆j for all i ∈ {1, . . . , p} \ {`}. Finally,

if k ∈ S and dk ∈ Hk, then (3.19) says there exist ξ(i) such that dk =
∑p

i=1 ξ(i)d(i).

Choose α
(i)
k = ξ(i), so that δk(i) = ∆kξ(i) +

∑k−1
j=0 α

(i)
j ∆j for i = 1, . . . , p. Hence, the

claim.
So, there are two pieces here—we know something about the structure of each

∆k and something about the structure of each xk. One more assumption is needed

OPTIMIZATION BY DIRECT SEARCH 415

to show that every iterate lies on a lattice. Assume that each search direction d ∈ G

is integral, i.e.,

d ∈ Zn for each d ∈ G.(3.21)

Combining Lemmas 3.5 and 3.6 with (3.21) leads to the following theorem from
[257].

Theorem 3.7. Suppose that conditions (3.14), (3.15), (3.17), (3.19), and (3.21)
hold. Let Γk be defined as in Lemma 3.5, and let Γ > 0 be a constant. Then GSS
produces iterates such that for any k with

Γ ≤ Γj for all j ≤ k,

the following holds:

xk+1 = x0 + ΛΓ ∆0

p
∑

i=1

ζk(i,Γ) d(i),(3.22)

where

ζk(i,Γ) =
k
∑

j=0

α
(i)
j ΛΓj−Γ ∈ Z,(3.23)

and α
(i)
j , for each i = 1, . . . , p and k = 0, 1, 2, . . ., is defined in Lemma 3.6.

The significance of this result is that, since ζk(i,Γ) and d(i) are integral, xk lies
on an integral lattice scaled by ΛΓ ∆0 and translated by x0; we denote the lattice by

M(x0,∆0,G,Λ,Γ) =

{

x0 + ΛΓ∆0

p
∑

i=1

ζ(i)d(i) | ζ(i) ∈ Z

}

.(3.24)

Consider again the example of compass search applied to the two-dimensional
function in Figure 1.1. That example is revisited in Figure 3.5, but this time the
corresponding lattices rather than the level curves of the objective function are shown.
Figure 3.6 depicts the lattice at iteration k = 5. Here Γ = −1 defines the scale of the
lattice. The other parameters that define the lattice are

x0 =

[

−0.9
−1.0

]

, ∆0 = 0.3, G = {e1,−e1, e2,−e2}, Λ = 2.

As can be seen from the figure,

x5 = x0 + 2−1∆0

(

3d(1) + 4d(3)
)

.

Thus, to reach x5 from x0, take seven “hops” across the lattice M(x0,∆0,G,Λ,Γ):
three to the East and four to the North. This means that the values for the ζk(i,Γ)
in (3.23) are

ζ4(1,−1) = 3, ζ4(2,−1) = 0, ζ4(3,−1) = 4, ζ4(4,−1) = 0.

To appreciate the role played by Hk, assume the same conclusion shown in Fig-
ure 3.6, but under a scenario in which the search arrives at the point marked x5 in one

416 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

(a) k = 0 (b) k = 1 (c) k = 2

(d) k = 3 (e) k = 4 (Refine!) (f) k = 5

Fig. 3.5 Illustrating the underlying lattice.

x
0

x
5

Fig. 3.6 All iterates lie on a rational lattice.

step ∆0d0 of the algorithm (i.e., within a single iteration). In this situation, Γ = 0 de-
fines the scale of the lattice. The other parameters that define the lattice are given by

x0 =

[

−0.9
−1.0

]

, ∆0 = 0.15, G = {e1,−e1, e2,−e2}, Λ = 2.

(Note that in the previous example Γ = −1 and ∆0 = 0.3, so that while now Γ = 0
and ∆0 = 0.15, M(x0,∆0,G,Λ,Γ) still “looks” the same since x0, G, and Λ are
unchanged and ΛΓ∆0 = 0.15 in either instance.)

Let G0 ≡ G. Let H0 = {(3, 4)T }, which satisfies (3.19) with ξ(1) = 3, ξ(3) = 4,
and ξ(2) = ξ(4) = 0. Suppose the search starts with the step ∆0 d, d ∈ H0. Then

OPTIMIZATION BY DIRECT SEARCH 417

k = 0 ∈ S (the simple decrease condition is satisfied by this choice of d) and

x1 = x0 + 20∆0

(

3d(1) + 4d(3)
)

.

In other words, this is still seven “hops” across the lattice M(x0,∆0,G,Λ,Γ): three
to the East and four to the North. Now, however,

ζ0(1, 0) = 3, ζ0(2, 0) = 0, ζ0(3, 0) = 4, ζ0(4, 0) = 0;

it took only one iteration, rather than four iterations, to reach this same lattice point.
Once Hk is restricted as in (3.19), it plays only a minor role in the analysis.

But if one has heuristics that suggest particularly good directions (or lattice points)
other than those defined by Gk, one can consider steps in those directions first in an
attempt to accelerate the search. Such algorithmic possibilities are described further
in section 4. The important observation is that (3.19) ensures that the underlying
structure of the iterates is unchanged.

To summarize, so long as the conditions that ensure a rational lattice are enforced,
every iterate of a GSS method that uses a rational lattice globalization strategy can
be described as in (3.22). Specifically, the iterates always are guaranteed to lie on a
lattice if

1. the expansion and contraction parameters are restricted to integral powers of
some fixed integer Λ;

2. all generating sets Gk are drawn from a finite set of search directions G;
3. any additional search directions contained in Hk are nonnegative integer com-

binations of the directions in G; and
4. each search direction in G is integral.

In general, for unconstrained methods, these conditions are simple to enforce. Some
relaxation of these conditions are possible [257]. A few of these relaxations are de-
scribed in section 5.

To show that there is a subsequence of ∆k tending to zero (i.e., (3.13)), we
make the additional assumption that the level set Lf (x0) of f is bounded. Then the
intersection of Lf (x0) with any fixed lattice M is finite. This is useful for the following
reason. Recall that the sequence of successful GSS iterates must strictly improve the
function value; i.e., the sequence

{f(xk)}k∈S

is strictly decreasing. This means that GSS can visit each point on the fixed lattice
at most once, so there can be only a finite number of successful iterates for a lattice
of fixed size.

A lattice of fixed size is important for the following reason. If no subsequence
of the ∆k’s goes to zero, then the lattice is only refined to a certain point and not
beyond; i.e., GSS is working on a fixed lattice. This is the key to the following result.

Theorem 3.8. Let the level set Lf (x0) be bounded. Choose the expansion and
contraction parameters according to the conditions (3.14) and (3.15), and the set of
search directions according to the conditions (3.17), (3.19), and (3.21). Then GSS
produces iterates such that

lim inf
k→∞

∆k = 0.

Proof. Suppose not. Then there exists ∆∗ > 0 such that ∆k > ∆∗ for all k. This
bound on ∆k in turn implies, by (3.14), (3.15), and Lemma 3.5, that there must exist

418 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

a Γ∗ such that Γ∗ ≤ Γk for all k, where Γk is as defined in Lemma 3.5. With (3.17),
(3.19), (3.21), and Theorem 3.7, this implies that every iterate xk must lie on the
lattice, M(x0,∆0,G,Λ,Γ∗).

Observe that any point on the lattice corresponds to at most one successful it-
eration, according to the decrease condition (3.7). On the other hand, every it-
erate must lie in Lf (x0), which by assumption is bounded. The intersection of
M(x0,∆0,G,Λ,Γ∗) and Lf (x0) is therefore finite.

Since any successful iterate must be in the finite set M(x0,∆0,G,Λ,Γ∗)∩Lf (x0),
and no iterate can be successful more than once, it follows that S must be finite.

If S is finite and, consequently, U is infinite, according to (3.6), ∆k expands only
finitely many times and contracts infinitely many times. Each contraction is by a
factor of at least min{Λ−1, θmax}, which guarantees that

lim
k→∞

∆k = 0.

This is a contradiction and the claim follows.
Note that the only assumption on f made in Theorem 3.8 is that its level set

Lf (x0) is compact. Observe also that Theorem 3.8 is independent of the choice of ρ
and holds for the sufficient decrease condition as well.

For the Connoisseur. Before continuing, we give a brief discussion of why we refer
to this as a rational lattice (as opposed to an integer lattice) globalization strategy.
Note that the assumption that Λ and the search directions d ∈ G are integral can be
relaxed as follows. Let Λ ∈ Q and let G be such that

d = Bc, where c ∈ Qn for each d ∈ G.(3.25)

Here B ∈ Rn×n is a fixed nonsingular matrix.
Theorem 3.7 can be rewritten to incorporate these changes (see either [257] or [161]

for further detail), but these relaxations do not fundamentally alter the conclusion of
the theorem, nor the implication, which is that the lattice can be represented as in
(3.24), possibly subject to some minor modifications.

Specifically, the relaxation of Λ ∈ Q changes the constant ΛΓ in (3.22) and (3.24),
but the ζk(i,Γ) in (3.23) remain integral, which is what is critical for the result.
Further, the real matrix B is fixed, so it can be factored out of the summations in
(3.22) and (3.24) along with ∆0, which also may be real. The important term in each
of (3.22) and (3.24) is the summation

∑p
i=1 ζ(i)d(i) (which becomes B

∑p
i=1 ζ(i)c(i)

under the relaxation (3.25)) since it is the summation that yields the lattice generated
by the vectors in the generating set G. Since ultimately (3.23) and one of either (3.21)
or (3.25) hold, the summation, either

∑p
i=1 ζ(i)d(i) or

∑p
i=1 ζ(i)c(i), yields a rational

lattice. Thus we call it a rational lattice globalization strategy, even though the lattice
is translated by x0, which is in R, is scaled by ∆0, which is in R, and possibly may be
both scaled and reoriented by B, which is in Rn×n. The fundamental structure upon
which the analysis relies is the rational lattice

∑p
i=1 ζ(i)d(i) (or possibly

∑p
i=1 ζ(i)c(i)),

which is unchanged by these relaxations.
These relaxations were not incorporated into the preceding discussion because

they complicate the presentation without providing further illumination of the final
analytical results. In fact, the traditional choices for many of the classical algorithms
have been B = I (where I is the identity matrix) and Λ = 2. However, these
relaxations are an important ingredient in the definition of some more recent methods.
(See, for instance, either [256], and the further elaborations in [166], or the algorithmic
development in [5].)

OPTIMIZATION BY DIRECT SEARCH 419

Audet [10] presents examples that demonstrate both why either d must be inte-
gral, or the c in (3.25) must be rational, and why the restrictions on the choice of
contraction/expansion values are necessary.

3.7.3. Globalization via Moving Grids. The critical step in the proof of The-
orem 3.8 is the observation that, given a fixed lattice M(x0,∆0,G,Λ,Γ∗) over a
compact set Lf (x0), the requirement of strict improvement in f means that there are
only finitely many points that can be considered before ∆k must contract.

Coope and Price [77] observed that when ∆k contracts, the search can, to a
certain extent, start over; i.e., rather than simply reducing the scale factor Λ, one can
also change G. (In fact, [77] also exploits this ability to start over in another way:
one can move from the current iterate to any point with a lower function value using
a “finite process”; this is discussed in section 5. Here we concentrate on changes to
G.)

The desire to adapt the set of search directions, as a strategy to improve the
asymptotic performance of the search, motivates this change in perspective. After
evaluating f over the current lattice M, why not use the information accumulated
during this search on M to construct a new set of generators that attempt to capture,
at least locally, some curvature information? This is in the spirit of several of the
early direct search methods such as Rosenbrock’s method of rotating directions [227],
Powell’s method based on conjugate directions [213], and the adaptive simplex of
Nelder and Mead [194]. The algorithmic strategies in the former two papers, in
particular, informed the developments in [76, 77, 224].

The strategy is essentially to fix the lattice structure between any two unsuccessful
iterations by choosing a fixed set of grid generators defined by Gk. First, Gk must be
a finite set, i.e.,

Gk = {d(1)
k , . . . , d

(pk)
k }.(3.26)

Second, the set must be chosen in such a way that it actually generates a lattice.
Thus, we require that

d = Bc, where c ∈ Qn for each d ∈ Gk.(3.27)

Here B ∈ Rn×n is a fixed nonsingular matrix. This is the same as in (3.25). Fi-
nally, the grid cannot be modified and the step length cannot be reduced until an
unsuccessful point is encountered:

Gk = Gk−1 for all k ∈ S.(3.28)

The set Hk is restricted to be integer combinations of elements of Gk:

Hk ⊂
{

pk
∑

i=0

ξ
(i)
k d

(i)
k | ξ

(i)
k ∈ {0, 1, 2, . . .}

}

.(3.29)

The goal is to use the information accumulated during the successful iterations
to construct a new—possibly better—set of search directions. The conditions on an
iteration being unsuccessful guarantee a minimum of n+1 new objective values when
the next set of grid generators is constructed.

For now we impose the requirement that φk = 1 for all k ∈ S. Given the GSS
requirements for updating ∆k, this means that ∆k ≤ ∆k−1 for all k. “Long” steps are

420 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

still possible given the definition of Hk in (3.29); in section 4.2 we demonstrate this
possibility using the original pattern search algorithm of Hooke and Jeeves. The con-
dition on φk can be relaxed by requiring, instead, that (3.13) holds, as is done in [278]
and [77], rather than proving that (3.13) holds, as we will do here. Further variations
on controlling ∆k, including the possibility of increasing ∆k after an unsuccessful
iteration, as is allowed in [77], are discussed in section 5.

In order to state theoretical results, it is helpful to establish notation to define
the most recent unsuccessful iterate. Let

ω(k) = max {` ≤ k | ` ∈ U}.(3.30)

Then we can establish the following theorem, which is the analogue of Theorem 3.7
in the case of the rational lattice. The proof is left to the reader.

Theorem 3.9. Let Dk = Gk ∪ Hk be updated according to (3.26)–(3.29), and let
φk = 1 for all k. Then GSS produces iterates such that for any k ∈ S

xk = xω(k) + ∆ω(k)

pω(k)
∑

i=1

ζk(i) d
(i)
ω(k),

where ω(k) denotes the most recent unsuccessful iterate as in (3.30) and ζk(i) is inte-
gral for all i.

Using the same notation as in the rational lattice case for (3.22), iterate xk lies
on the lattice defined by

M(xω(k),∆ω(k),Gω(k), 1, 1) =

{

xω(k) + ∆ω(k)

pω(k)
∑

i=1

ζ(i)d
(i)
ω(k) | ζ(i) ∈ Z

}

.(3.31)

Following the same line of reasoning in Theorem 3.8, for the moving grids glob-
alization strategy, the sequence ∆k is forced to go to zero.

Theorem 3.10. Let the level set of f , Lf (x0), be bounded. Let Dk = Gk ∪Hk be
updated according to (3.26)–(3.29), and let φk = 1 for all k ∈ S. Then GSS produces
iterates such that

lim
k→∞

∆k = 0.

Proof. Suppose not. By the assumption that φk = 1 for all k, the sequence ∆k is
decreasing as k → +∞ and strictly decreasing for k ∈ U . So if the conclusion of the
theorem is false, then there exists ∆∗ > 0 such that ∆k > ∆∗ for all k.

Combining this with the fact that according to (3.6), GSS must reduce ∆k by at
least a factor of θmax, there are only finitely many reductions of ∆k if ∆k > ∆∗ for
all k. Hence there can be only finitely many unsuccessful steps, so S is necessarily
infinite.

Let k̂ = max{k | k ∈ U} denote the index of the last unsuccessful iterate. By

Theorem 3.9, every iterate k ≥ k̂ must lie on the grid defined by M(xk̂,∆k̂,Gk̂, 1, 1)
as in (3.31).

Observe that every point on the lattice can generate at most one successful iterate,
i.e., k ∈ S, according to the decrease condition (3.7). On the other hand, every
iterate must lie in Lf (x0), which is assumed to be bounded. The intersection of
M(xk̂,∆k̂,Gk̂, 1, 1) and Lf (x0) is therefore finite.

OPTIMIZATION BY DIRECT SEARCH 421

Since any successful point must be in the finite set M(xk̂,∆k̂,Gk̂, 1, 1) ∩ Lf (x0),
and no point can be successful more than once, it follows that S must be finite, a
contradiction.

As with the lattice result, it makes no difference whether the simple or the suffi-
cient decrease condition is used to accept a new iterate.

3.8. Putting It All Together—Global Convergence Results. We have discussed
three ways to ensure that at least a subsequence of iterations for which ∆k converges to
zero using either sufficient decrease (section 3.7.1), the rational lattice (section 3.7.2),
or moving grids (section 3.7.3). The assumptions we imposed to show the existence
of such a subsequence are summarized below.

• Sufficient decrease—Assumes only that f is bounded below, and steps are ac-
cepted according to the sufficient decrease condition (3.7), where ρ(·) satisfies
(3.9).

• Rational lattice—Assumes that the level set of f , Lf (x0), is bounded. Further
assumes that the expansion parameter φk and contraction parameter θk are
restricted to be integral powers of some integral (or rational) constant Λ, as in
(3.14) and (3.15). Finally, assumes the set of all search directions, G =

⋃Dk

is finite and integral (or rational), as in (3.17) and (3.21).
• Moving grids—Assumes that the level set of f , Lf (x0), is bounded. Further,

assumes that the grid generators may only be updated after an unsuccessful
iterations according to (3.26)–(3.29). Finally, assumes that no expansion
steps are allowed (i.e., φk = 1 for all k ∈ S).

Recall, also, some of the requirements made in the specification of GSS given
in Algorithm 3.2. All the directions in Dk are required to be bounded below in
length. Furthermore, the directions in Gk are required to be bounded above in length.
Each set of generators Gk requires a cosine measure κ(Gk) that is bounded below by
κmin > 0. There is an upper bound θmax < 1 on the contraction parameter. The
latter requirement comes into play for globalization methods in sections 3.7.1–3.7.3,
though only implicitly in the rational lattice discussion. The requirements on the
forcing function come into play in the discussion of sufficient decrease in section 3.7.1.

3.8.1. The General Result. The following theorem is a synthesis of a variety of
convergence results that have appeared in [77, 166, 174, 257, 278]. For consistency
with the earlier discussion, we assume that f is continuously differentiable and that
∇f is Lipschitz continuous; however, one can prove the result assuming only that f
is continuously differentiable.

Theorem 3.11. Let f be continuously differentiable on Rn with ∇f(x) Lipschitz
continuous on Rn with constant M . Assume the level set of f , Lf (x0), is bounded.
Furthermore, assume that the requirements for one of the three globalization strategies
hold; i.e., either

1. f is bounded below, and the sufficient decrease condition (3.9) holds;
2. the conditions (3.14), (3.15), (3.17), (3.21) hold to produce a rational lattice;

or
3. the conditions (3.26)–(3.29) hold to produce a moving grid.

Then GSS produces iterates such that

lim inf
k→+∞

‖∇f(xk) ‖ = 0.

The result follows from Theorem 3.3 and the fact that (3.13) holds via globaliza-
tion.

422 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

3.8.2. A Stronger Result. Under some slightly stronger conditions, every limit
point of the sequence of iterates produced by a GSS algorithm will be a stationary
point. Specifically, we assume the following.

Assumption 3.12.
• For any k ∈ S, f(xk + ∆kdk) ≤ f(xk + ∆kd) for all d ∈ Gk.
• limk→+∞ ∆k = 0.

The first of these conditions says that GSS may only accept a step if it produces
at least as much improvement as the best step among the search directions in Gk.
Practically, this means that the the objective must be evaluated at every trial step
xk + ∆kd defined by every direction d ∈ Gk.

When Assumption 3.12 holds, and ∆k is small relative to ‖∇f(xk) ‖, then the
steps automatically satisfy a condition analogous to (2.4), as the next proposition
shows.

Proposition 3.13. Suppose that Assumption 3.12 holds. Let f be continuously
differentiable on Rn with ∇f(x) Lipschitz continuous on Rn with constant M . Then
GSS produces iterates such that for any η > 0 there exist δ > 0 and σ > 0, independent
of k, such that if ‖∇f(xk) ‖ > η and ∆k < δ, then

f(xk+1) ≤ f(xk) − σ∆k‖∇f(xk) ‖.

Proof. Let d̂k ∈ Gk ⊂ Dk satisfy (3.11); such a d̂k exists because Gk generates Rn.
By the mean value theorem, for some αk ∈ [0, 1],

f(xk + ∆kd̂k) = f(xk) + ∆k∇f(xk)T d̂k + ∆k

[

∇f(xk + αk∆kd̂k) −∇f(xk)
]T

d̂k.

Since d̂k satisfies (3.11),

f(xk + ∆kd̂k) − f(xk) ≤ ∆k∇f(xk)T d̂k + M∆2
k‖ d̂k ‖2

≤ −κ(Gk)∆k ‖∇f(xk) ‖ ‖ d̂k ‖ + M∆2
k‖ d̂k ‖2.

Define

δ =
κminη

2Mβmax
.

Then ∆k < δ and ‖∇f(xk) ‖ > η imply

M∆2
k‖d̂k‖2 ≤ M∆k‖d̂k‖2

(

κminη

2Mβmax

)

≤ 1

2
κmin∆kη‖d̂k‖

≤ 1

2
κ(Gk)∆k‖∇f(xk)‖‖d̂k‖.

Thus,

f(xk + ∆kd̂k) − f(xk) ≤ −1

2
κ(Gk)∆k ‖∇f(xk) ‖ ‖ d̂k ‖.

Setting σ = βmaxκmin/2 produces the desired result.
Using Assumption 3.12, Proposition 3.13, and an argument originally introduced

for trust region methods by Thomas [252], it can be shown that every limit point of the

OPTIMIZATION BY DIRECT SEARCH 423

sequence of iterates xk is a stationary point of f . As with Theorem 3.3, the Lipschitz
requirement is not strictly necessary; see the observations that follow Theorem 3.3 for
the essence of the alternative argument.

Theorem 3.14. Suppose that Assumption 3.12 holds and that GSS satisfies the
additional requirement that ‖ d ‖ ≤ βmax for all d ∈ Hk, k = 1, 2, . . ., where βmax is
as defined in (3.4). Let Lf (x0) be compact. Suppose f is continuously differentiable
on Rn and ∇f is Lipschitz with constant M . Then for the sequence of iterates {xk}
produced by the GSS algorithm,

lim
k→+∞

‖∇f(xk) ‖ = 0 .

That is, every limit point of the sequence of iterates is a stationary point.
Proof. Suppose not; then lim supk→+∞ ‖∇f(xk) ‖ = ε > 0. Recall from Theo-

rem 3.11 that lim infk→+∞ ‖∇f(xk) ‖ = 0.
Then it is possible to define subsequences {ki} and {`i} such that
• ki < `i for all i = 1, 2, . . . ,
• ‖∇f(xki

)‖ > ε/2 for all i = 1, 2, . . . ,
• ‖∇f(x`i

)‖ < ε/4 for all i = 1, 2, . . . , and
• ‖∇f(xk)‖ ≥ ε/4 for all ki ≤ k < `i, i = 1, 2,

Using η = ε/4 in Proposition 3.13 guarantees that for k sufficiently large (and ∆k

sufficiently small), there exists σ such that

f(xk) − f(xk+1) ≥ σ∆k‖∇f(xk)‖ ≥ ε1‖xk+1 − xk‖.

Here ε1 = (εσ)/(4βmax).
Then

ε1‖xki
− x`i

‖ ≤ ε1

`i−1
∑

k=ki

‖xk − xk+1‖ ≤ ε1

`i−1
∑

k=ki

f(xk) − f(xk+1) = ε1 [f(xki
) − f(x`i

)] .

Now, since f is a strictly decreasing sequence and f is bounded below, it must
converge. Thus, the right-hand side in the above equation must be going to zero, so
‖xki

− x`i
‖ must also be converging to zero as i → +∞. The assumption that ∇f is

Lipschitz continuous means that for i sufficiently large we have

‖∇f(xki
) −∇f(x`i

)‖ ≤ ε/4.

From this follows the contradiction

ε

2
< ‖∇f(xki

)‖ = ‖(∇f(xki
) −∇f(x`i

)) + ∇f(x`i
)‖

≤ ‖(∇f(xki
) −∇f(x`i

))‖ + ‖∇f(x`i
)‖

<
ε

4
+

ε

4
=

ε

2
.

Hence, the theorem is proved.

3.9. Some Comments on the Convergence of GSS under Simple Decrease. If only
simple decrease in the objective is required to accept a step, and we do not require
limk→∞ ∆k = 0, then we obtain the convergence result

lim inf
k→∞

‖∇f(xk) ‖ = 0(3.32)

424 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

for the sequence of iterates produced by a GSS method. Can one strengthen this
result to be

lim
k→∞

‖∇f(xk) ‖ = 0(3.33)

for a GSS method under the same hypotheses? The answer turns out to be no, in
general. In [10], Audet constructs an example for which (3.32) holds but (3.33) does
not. In this example, the sequence of iterates has an infinite number of accumulation
points, one of which is not a stationary point, though the others are.

It is interesting to note that there is a similar situation for global convergence
results for trust region algorithms. In [216], Powell allows steps to be accepted if
they yield simple decrease in the objective, rather than the usual sufficient decrease
condition for trust region algorithms. However, at such steps the radius of the trust
region must be decreased. For such methods Powell shows that

lim inf
k→∞

‖∇f(xk) ‖ = 0.

Yuan [275] constructed an example that shows this result cannot be strengthened to

lim
k→∞

‖∇f(xk) ‖ = 0.

A close examination of the mechanics of the convergence proofs for GSS and trust
region methods, both with only simple decrease, reveals that they share a similar
feature. In both, a sufficient decrease condition is satisfied implicitly. The step-length
control mechanisms ensure that smaller steps are taken, but not too small, and once
the steps are small enough, improvement is found, and the amount of decrease in
the objective is related to the size of the gradient (see Proposition 3.13). Usually,
this latter condition is explicitly enforced in gradient-based methods via the step
acceptance criteria in line search methods and trust region methods.

3.10. Stopping Criteria. The global convergence results are asymptotic: they tell
us what happens as k → +∞. As a practical matter, a good measure of success is
needed to know when to terminate the search. Typically, unconstrained optimization
methods terminate when the norm of the gradient is very small (among other tests).
But without explicit gradient information in a GSS algorithm, how do we know when
to stop?

Theorem 3.3 shows that at unsuccessful iterations, the norm of the gradient will
tend to decrease as ∆k is reduced. This means that it is reasonable to terminate the
algorithm when ∆k falls below some tolerance. This stopping criterion is, in fact,
one that traditionally has been used [139, 194]. Theorem 3.3 shows the validity of
this intuition of the original developers of direct search methods. Dolan, Lewis, and
Torczon [98] give a further discussion of the role of ∆k in stopping criteria and a
numerical illustration of the relationship between ∇f(xk) and ∆k.

3.11. Local Convergence of GSS. GSS methods always include at least one de-
scent direction in their set of search directions. Assuming we have a fairly good set
of search directions (i.e., lots of them and well spread out so that the cosine measure
is relatively large with respect to zero), then we may expect a GSS method to behave
like steepest descent. This helps explains why GSS methods frequently get to the
neighborhood of a solution quickly.

It is possible to show that under certain conditions, the entire sequence of iter-
ates will converge to a single local minimizer and make statements about the rate of

OPTIMIZATION BY DIRECT SEARCH 425

convergence for the sequence of unsuccessful iterates. First recall some standard defi-
nitions (e.g., [192, 197]). A sequence of scalars {αk} is said to be q-linearly convergent
to zero if there exists a constant β ∈ (0, 1) such that

|αk+1|
|αk|

≤ β for all k sufficiently large.

In the case of GSS, note that, if we require φk = 1 for k sufficiently large, then the
sequence {∆k}k∈U is q-linearly convergent to zero because ∆ki+1

/∆ki
≤ θmax.

A sequence {xk} is said to be r-linearly convergent to x∗ if

‖xk − x∗‖ ≤ αk for all k sufficiently large,

where {αk} is a sequence of scalars that is q-linearly convergent to zero. We will
show that under certain assumptions, which are typical of local convergence results
for gradient-based methods, the sequence {xk}k∈U is r-linearly convergent to x∗, and,
in fact, ‖xk − x∗ ‖ is O(∆k). Once again we see a kinship between GSS methods and
steepest descent—for steepest descent with accurate line searches, one can prove local
q-linear convergence to x∗.

Theorem 3.15 generalizes the local convergence result in [98] for methods that
are based on simple decrease. Theorem 3.15 also encompasses methods that require
sufficient decrease. The result says that if some iterate xk lands in a “basin of attrac-
tion” near a local minimizer x∗, and the step lengths are appropriately small, then
the entire sequence of iterates will converge to x∗.

The theorem is similar in spirit to local convergence results for algorithms that use
finite-difference estimates of the gradient. For instance, the local convergence result in
[29] requires that the points from whose objective values the finite-difference estimates
of the gradients are computed must be sufficiently close to x∗. The requirement here
that the entire pattern be close to x∗ is similar.

Theorem 3.15. Let f be twice continuously differentiable. Suppose x∗ is a local
minimizer of f and that ∇2f(x∗) is positive definite. For GSS, assume the following.

1. φk = 1 for all k ∈ S;
2. ρ(t) = αtp for some fixed α > 0 and fixed p ≥ 2; and
3. βmin ≤ ‖d‖ ≤ βmax for all d ∈ Dk and all k.

Then if x0 is sufficiently close to x∗, ∆0 is sufficiently small, and limk→∞ ∆k = 0,
we are guaranteed that

lim
k→+∞

xk = x∗.

Furthermore, for k ∈ U , we have that

‖xk − x∗‖ ≤ c ∆k

for some constant c independent of k. Thus, the sequence {xk}k∈U is r-linearly con-
vergent.

Proof. Let φmin and φmax denote, respectively, the minimum and maximum
eigenvalues of ∇2f(x∗).

Since we assume that ∇2f is continuous, there exists an η > 0 such that

x ∈ B(x∗, η) ⇒ spectrum
{

∇2f(x)
}

⊂
[

1

2
φmin , 2φmax

]

.

426 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

These bounds on the second derivative are used in several places in the proof.
First, for any xk ∈ B(x∗, η), we have

∇f(xk) −∇f(x∗) =

∫ 1

0

[

∇2f(x∗ + t(xk − x∗)) (xk − x∗)
]

dt.

Since ∇f(x∗) = 0, we have

‖∇f(xk)‖ =

∥

∥

∥

∥

∫ 1

0

[

∇2f(x∗ + t(xk − x∗)) (xk − x∗)
]

dt

∥

∥

∥

∥

≥ 1

2
φmin ‖xk − x∗‖.

For any k ∈ U , employing Theorem 3.3 yields

‖xk − x∗‖ ≤ 2
‖∇f(xk)‖

φmin
≤ 2

φminκmin

(

M

2
βmax +

α∆p−2
0

βmin

)

∆k.

To summarize the first part of the argument,

‖xk − x∗‖ ≤ c1∆k for any k ∈ U such that xk ∈ B(x∗, η).(3.34)

Second, let x, y ∈ B(x∗, η) such that f(x) < f(y). From Taylor’s theorem with
remainder and the fact that ∇f(x∗) = 0, we have

f(y) = f(x∗) +
1

2
(y − x∗)

T∇2f(ξ)(y − x∗),

f(x) = f(x∗) +
1

2
(x − x∗)

T∇2f(ω)(x − x∗)

for ξ and ω on the line segments connecting x∗ with y and x, respectively. Since
f(x) ≤ f(y), we obtain

0 ≤ f(y) − f(x) =
1

2
(y − x∗)

T∇2f(ξ)(y − x∗) −
1

2
(x − x∗)

T∇2f(ω)(x − x∗),

whence

0 ≤ 2φmax‖ y − x∗ ‖2 − 1

2
φmin‖x − x∗ ‖2.

Summarizing the second part of the argument, there exists c2 such that

‖x − x∗‖ ≤ c2 ‖y − x∗‖ for any x, y ∈ B(x∗, η) with f(x) ≤ f(y).(3.35)

For the third part of the argument, we must show that all the iterates stay in
B(x∗, η). Assume that x0 ∈ B(x∗, η) is close enough to x∗ so that

‖x0 − x∗‖ ≤ η

2c2
,

where c2 is from (3.35). Assume ∆0 is small enough so that

‖∆0‖ ≤ η

2βmax
.

Assuming that xk ∈ B(x∗, η), we have

‖xk+1 − x∗‖ ≤ ‖xk+1 − xk‖ + ‖xk − x∗‖.

OPTIMIZATION BY DIRECT SEARCH 427

From the assumptions on ∆k, we have

‖xk+1 − xk‖ ≤ ∆kβmax ≤ ∆0βmax ≤ η

2
.

Since f(xk) 6= f(x0) and x0, xk ∈ B(x∗, η) , we can apply (3.35) to obtain

‖xk − x∗‖ ≤ c2‖x0 − x∗‖ ≤ η

2
.

Thus, the third element in the argument says

xk ∈ B(x∗, η) for all k = 1, 2,(3.36)

By assumption, limk→0 ∆k = 0. Furthermore, (3.36) says every iterate is in
B(x∗, η). Let k ∈ S and let ω(k) denote the most recent unsuccessful iterate. Then
by (3.35) and (3.34),

‖xk − x∗‖ ≤ c2‖xω(k) − x∗‖ ≤ c1c2∆ω(k).

By the previous equation and (3.34), clearly xk → x∗. Furthermore, by (3.34)
and (3.36), the unsuccessful iterates are r-linearly convergent.

4. Algorithmic Options. The GSS framework is flexible enough to admit a wide
range of algorithmic options. In particular, the choice of search directions is an
important component when defining a GSS method. There is wide latitude in choosing
the sets of search directions Dk = Gk ∪ Hk for a GSS method. The conditions on Gk

are clear enough: the set of vectors must form a generating set. The set of coordinate
directions D⊕ has long been the traditional choice for Gk. However, as early as
1960, Rosenbrock realized the potential algorithmic advantage of rotating a set of 2n
orthogonal vectors [227] so that at least one of the directions more closely conformed
to the local topography of the function. Much of the recent work on GSS methods
has explored the possible algorithmic and computational advantages to be gained by
choosing Gk 6= D⊕ [77, 78, 115, 140, 166, 174, 256].

The question we have not really addressed is the role of Hk. Recall that the early
development of direct search focused on heuristics. Compass search is an “obvious”
algorithm and, as Davidon noted at the start, known to be “slow but sure.” So the
question in the late 1950s and early 1960s became what sort of heuristics to employ in
an effort to accelerate the search. This is where Hk becomes valuable. The directions
Hk contains play no substantive part in the analysis, but they allow the incorporation
of heuristics chosen to improve the effectiveness of the search. With the development
of a better understanding of what it takes to ensure convergence of GSS methods, the
same question, what sort of heuristics to employ in an effort to accelerate the search,
has reemerged in a new light.

4.1. Statistical Design of Experiments. Much of the early work on direct search
methods arose in the statistics community. The connections between unconstrained
optimization and statistical design of experiments are explored in [258]. For instance,
Box’s paper on evolutionary operation (EVOP) [35] proposed the construction of a
two-level factorial design (aptly enough, a “box”) around the current best known
point in an effort to capture some local second-order effects. In R2, this gives the
generating set

G =

{[

1
1

]

,

[

−1
1

]

,

[

1
−1

]

,

[

−1
−1

]}

.(4.1)

428 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

(a) (b)

Fig. 4.1 Examples in R
2 of both (a) a two-level factorial design and (b) a composite design.

Box also proposed augmenting this with multiples of the coordinate directions to
obtain additional second-order effects. This was known as a composite design and
can be represented easily enough within the context of GSS by augmenting the G in
(4.1) with, for instance, the set

H =

{[

2
0

]

,

[

0
2

]

,

[

−2
0

]

,

[

0
−2

]}

.

Both designs are illustrated in Figure 4.1. Further, recognizing that this approach
can become onerous (since the number of points in a two-level factorial design is 2n),
fractional factorial designs were proposed as a way to capture some of the second-order
effects without incurring the expense of quite so many function evaluations.

Seemingly in response to the high cost of two-level factorial designs, Spendley,
Hext, and Himsworth [245] observed that a simplex, n+1 points in Rn, is the minimal
number of points required for a statistical design to capture first-order information.
Note that this fits quite neatly with the fact that a generating set for Rn must contain
a minimum of n+1 vectors. They explicitly proposed an optimization algorithm based
on reflecting the vertex in the simplex with the highest function value (denote this
vertex vn) through the centroid of the opposite face (c = 1

n (v0 + · · · + vn−1)). (See
Figure 4.2(a) for an example in R2.) The simplex that results is accepted if f evaluated
at the reflected vertex (vr = vn + 2(c − vn)) is strictly less than f evaluated at the
vertex in the simplex with the second highest function value (denote this vertex vn−1).
The rationale for this acceptance criterion is straightforward: if vr becomes vn at the
next iteration (i.e., it has the highest function value in the new simplex), then the
new reflection step will be the former worst vertex.

The simplex algorithm of Nelder and Mead [194] is a variation on this basic idea
that allows, in effect, a simple line search of the form vn + α(c − vn), with a set
of four possible choices for α. Typical choices are α ∈ {1

2 , 3
2 , 2, 3}, as illustrated

in Figure 4.2(b); see Lagarias et al. [164] for a particularly careful and complete
description of the Nelder–Mead simplex algorithm. The line search has the effect of
allowing the shape of the simplex to deform (for any choice of α other than 2), which
is touted as a feature that allows the simplex to adapt to the local topology of the
function, hence references to this algorithm as the adaptive simplex method.

While these two simplex algorithms are classical direct search methods, neither is
a GSS method. These two simplex methods search along the single search direction
(c − vn). Further, both these methods enforce only simple decrease, but in a sense
that is subtly different from the definition of simple decrease defined in (2.3) and

OPTIMIZATION BY DIRECT SEARCH 429

v
0

v
1

v
2

v
r

c

(a)

v
0

v
1

v
2

c

(b)

Fig. 4.2 Examples in R
2 of both (a) the single possible step for the simplex algorithm of Spendley,

Hext, and Himsworth and (b) the four basic steps for the Nelder–Mead simplex algorithm.

used in Step 2 of Algorithm 3.2, since their step acceptance condition requires simple
decrease in f at the vertex in the simplex with the second highest function value vn−1,
not at the vertex in the simplex with the lowest known function value (denoted v0).
Thus both algorithms only ensure improvement of the function value at the sequence
of worst vertices, but it is the sequence of best vertices (i.e., those with the lowest
function value) that ultimately is of interest. As an interesting aside, the Nelder–
Mead simplex algorithm in R1 can be restated as a GSS method. Since in this special
case v0 serves both as the centroid of the opposite face and as the vertex with the next
highest function value, in effect the search is along two directions (a positive basis in
R1) from v0, and any improvement in the function value is with respect to f at v0.
An alternative proof for this special case, under different assumptions on f , is given
in [164].

McKinnon [179] constructed a family of functions in R2 which demonstrates that
the Nelder–Mead simplex algorithm can fail to converge to a stationary point of f ,
even if the family is parameterized so that f is strictly convex and has up to three
continuous derivatives. Key to the failure McKinnon demonstrates is the ability to
deform the simplex. Repeated deformations can cause the sequence of simplices pro-
duced by the Nelder–Mead simplex algorithm to converge to a degenerate simplex.
Notice in Figure 4.2 that choosing α = 1

2 (a so-called inside contraction) replaces
vn with a vertex that moves closer to c. In McKinnon’s examples, the Nelder–Mead
simplex algorithm repeatedly chooses α = 1

2 (only) and the simplices converge to a
straight line that is orthogonal to the steepest descent direction and have interior
angles which tend to zero (i.e., the simplices collapse along the steepest descent di-
rection, a direction along which the goal should be for the simplices to enlarge). The
collapse of the simplices means that the n+1 = 3 points in the limiting simplex do not
span R2. Thus, the search is reduced increasingly to a one-dimensional hyperplane
that does not contain the stationary point of the function.

McKinnon [179] includes a study of the effects of the choice of the starting simplex.
He found that for some choices of the starting simplex, the behavior of the Nelder–
Mead simplex algorithm applied to his family of functions, when parameterized to
ensure that f is strictly convex, is not stable against small numerical perturbations
caused by rounding error. He reports that in his numerical tests, rounding error was
enough to prevent the algorithm from converging to the nonstationary point for the
analytical examples he constructed. McKinnon hastens to add that this numerical
behavior is very sensitive to the representation of the problem and to the details of
the implementation of the Nelder–Mead algorithm (a sensitivity that others also have
observed [129]) and of the function.

430 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

Nevertheless, there is long-standing anecdotal evidence that the Nelder–Mead sim-
plex algorithm can fail in practice. There is additional experimental evidence [255] to
suggest that the Nelder–Mead simplex algorithm can fail because the search direction
becomes increasingly orthogonal to the direction of steepest descent. Recently, nu-
merous modifications to the Nelder–Mead simplex algorithm have been posed in the
mathematical optimization literature [153, 193, 224, 238, 262], but many users seem
to believe that the easiest fix simply is to restart the search with a new simplex.

These old questions of what constitutes a good and effective experimental design
have reappeared in the recent reemergence of model-based direct search methods,
often referred to as derivative-free optimization (DFO) methods [71, 72, 74, 177, 220,
221]. DFO methods share many of the concerns of response surface methodology
(RSM), originally proposed by Box and Wilson [38] for the purpose of optimizing a
mean response function whose values can only be observed subject to random error.
Because derivatives of the response function are not available, Box and Wilson sample
the response function at designated points in a neighborhood of the current iterate and
construct a local linear (or quadratic) model of the mean response via multiple linear
regression. (A note on terminology: the RSM community calls the mean response
function the response surface; the same phrase has been used by some practitioners
of simulation-based optimization to describe a polynomial model of the objective
function.) The primary difference between DFO and RSM is one of context: in RSM,
fits are made using the method of least squares; in DFO, the function values are
known and models are typically constructed via interpolation. DFO and RSM share
a common concern with experimental design: the decision of where to sample the
objective function is both crucial and unavoidable. The simplicity of working directly
with the results of the sampling, rather than explicitly constructing an approximation,
is what later led Box to propose EVOP [35] as an alternative approach to finding
optimum conditions experimentally.

Much of the focus in the current research on sampling-based derivative-free meth-
ods addresses the question of the interaction between the quality of the model (par-
ticularly with respect to second-order information) and the so-called poisedness of the
sample points used to construct the model. Powell [220] proposed using a simplex
because of the fact that it contains the minimum number of points required to capture
first-order effects. But added to this strategy is careful monitoring of the simplex to
ensure that the simplex does not collapse into a lower-dimensional hyperplane. Alter-
natively, one can capture full second-order effects using O(n2) sample points, much as
was done in Glad and Goldstein [121], but start with a minimal linear model and build
up to a full quadratic model as more and more sample points are accumulated during
the course of the search [71]. Once again, monitoring the quality of the experimental
design—the “poisedness” of the set of sample points—is critical. More recent efforts
also have moved away from regression models to other forms of approximations, such
as Newton interpolatory models [72] and support vector machines.

With the notable exception of Nelder–Mead, what all these strategies share is
an emphasis on keeping the sample points “close” to the current iterate (recall Fig-
ure 4.1). The goal is to acquire the best possible local picture of f—first-order effects,
at a minimum, and preferably full second-order effects—before making a decision
about where to move next. The emphasis is on hedging all bets so that when a move
is made away from the current iterate, it is made with a high degree of confidence
that the trial step will succeed in producing decrease in f .

OPTIMIZATION BY DIRECT SEARCH 431

x
k−1

x
k

x
p

(a)

x
k−1

x
k

(b)

Fig. 4.3 Examples in R
2 of both (a) possible exploratory moves for the pattern search algorithm of

Hooke and Jeeves and (b) the fall-back strategy for the same algorithm.

4.2. Exploratory Moves. Another philosophical approach to acceleration is to be
less cautious and more speculative in the search. Specifically, aggressively sample the
function at points that may be relatively far from the current iterate (where “relatively
far” is with respect to the value of ∆k).

Hooke and Jeeves called such speculative steps exploratory moves in connection
with their pattern search algorithm [139]. To illustrate the exploratory moves, suppose
that iteration k − 1 was successful (no exploratory step is attempted when k = 0).
Then iteration k begins by conducting coordinate search about a trial point xp =
xk + (xk −xk−1), rather than about the current iterate xk. The idea is that since the
step xk − xk−1 from xk−1 to xk led to improvement in f , then further progress may
be possible in the general direction of xk − xk−1. Such a step is called a pattern step.
The objective is evaluated at the trial point xp and the algorithm then proceeds to
conduct coordinate search about xp, even if f(xp) ≥ f(xk). If coordinate search about
xp is successful, and finds a point x+ such that f(x+) < f(xk), then x+ is accepted
as the new iterate xk+1. If no such point is found around xp, then the pattern step is
deemed unsuccessful, and the method reduces to coordinate search about xk.

In two dimensions, coordinate search about xp involves first trying the point
xp + ∆ke1. If f(xp + ∆ke1) < f(xk), then try xp + ∆ke1 + ∆ke2; otherwise, try
xp − ∆ke1. This continues until all n coordinate directions have been explored. The
number of possible exploratory steps around xp is (3n − 1), which, for our example in
Figure 4.3, can be represented as

Hk =

{[

3
1

]

,

[

4
1

]

,

[

4
2

]

,

[

4
0

]

,

[

2
1

]

,

[

2
2

]

,

[

2
0

]

,

[

3
2

]

,

[

3
0

]}

.(4.2)

Note that at least n steps are tried (one along each coordinate direction), but at
most 2n steps (two along each coordinate direction) are tried. Which steps are tried
depends on whether the current trial step improved upon the best known value of f .

For the exploratory moves to succeed, at least one of either the trial point xp or
the trial points produced by the exploratory steps about xp must produce decrease
in f . If none of them does, the search falls back to an equivalent form of coordinate
search about xk, as shown in Figure 4.3(b). Thus, in R2,

G =

{[

1
0

]

,

[

−1
0

]

,

[

0
1

]

,

[

0
−1

]}

.

For the example in Figure 4.3, this requires augmenting Hk in (4.2) with the following

432 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

x
k−1 x

k

x
k+1

x
p

Fig. 4.4 The gradual lengthening and reorientation of the steps and directions during a sequence
of successful exploratory moves taken by the Hooke and Jeeves pattern search algorithm.

vectors:

H′
k =

{[

1
1

]

,

[

1
−1

]

,

[

−1
1

]

,

[

−1
−1

]}

.

To appreciate the effect of the exploratory moves on the progress of the search,
consider what could happen at the next iteration for the example in Figure 4.3 should
one of the exploratory moves succeed, as illustrated in Figure 4.4. The cumulative
effect of a sequence of exploratory moves is to lengthen the step taken at each iteration.
Notice, also, the gradual modification of the direction taken. In the literature of the
day such a strategy was referred to as “ridge following” (for maximization problems).

The important observation here—one that has informed some of the more recent
algorithmic development for GSS methods—is that there are two classes of steps
involved in the algorithm. The steps defined by ∆k and the set Gk are the steps
that are critical to ensure the overall convergence of the search process since the set
Gk guarantees at least one direction of descent if xk is not a stationary point of f .
Hence the critical role played by Gk in the preceding analysis. But the directions in
Gk need not be the ones used to define the next iterate. Instead the directions in Gk

define a fall-back strategy; these are the directions to be tried (polled [91]) when more
aggressive strategies fail. But this means that GSS algorithms are allowed to try any
finite number of other steps, defined by ∆k and Hk, looking for a step that satisfies
the decrease condition

f(xk + ∆kdk) < f(xk) − ρ(∆k).(4.3)

If such a step can be found, then the polling can be deferred for at least one iteration
since the iteration is a success (i.e., k ∈ S). For algorithm design, the art then becomes
finding an effective strategy for such exploratory moves.

This leads to the following observation. The lengths of the steps taken by the
search may not necessarily be on the same scale as the length of the steps used to poll,
particularly when an algorithm enforces the condition ∆k+1 ≤ ∆k, as is the case for
the original pattern search algorithm of Hooke and Jeeves. Consider a recent string
of successes produced by exploratory moves with steps that are quite long relative to
∆k. However, once the exploratory moves do not succeed, the poll steps may be on a
markedly different scale. Such a situation is illustrated in Figure 4.5(a).

The rational lattice strategy allows φk ≥ 1 when k ∈ S. This means that after a
successful iteration, it is possible to have ∆k+1 > ∆k. A string of successes may be
produced by exploratory moves with steps that are again long, but now on the same
scale as ∆k, and, once the exploratory moves do not succeed, the poll steps are on a

OPTIMIZATION BY DIRECT SEARCH 433

x
k−2

x
k−1

x
k

(a) when ∆k = ∆k−1 = ∆k−2

x
k−2

x
k−1

x
k

(b) when ∆k > ∆k−1 > ∆k−2

Fig. 4.5 Examples of a poll step in R
2.

scale that is related to the length of the most recent successful step. Such a situation
is illustrated in Figure 4.5(b).

As a consequence of the fact that φk may be greater than 1 when k ∈ S, for
the rational lattice strategy it is only possible to show that lim infk→∞ ∆k = 0, not
limk→∞ ∆k = 0, holds (see [10] for an example illustrating why this is so).

This discussion also helps illustrate one other feature of GSS methods and their
accompanying analysis, and that is the flexibility available for defining the length of
steps. There actually are two components that define the length of the step: ∆k and
‖d‖, where d ∈ Dk = Gk ∪ Hk. For the analysis—and even much of the discussion
here—it is convenient to focus on what happens as ∆k is varied; in (3.4), imposing
uniform bounds on the length of ‖dk‖ makes this focus possible. But other options
for monitoring ‖∆kdk‖ are discussed further in section 5.1.

4.3. Using Oracles. Another recent development in terms of algorithmic strategies
further exploits the distinction between the steps defined by ∆k and Gk and those
defined by ∆k and Hk. Suppose that for all k one were willing to choose Gk =
{±ei | i = 1, . . . , n}. Now suppose that Hk were “everything else” for some bounded
portion of the mesh near xk. Figure 4.6 demonstrates this in R2 with

Gk =

{[

1
0

]

,

[

−1
0

]

,

[

0
1

]

,

[

0
−1

]}

.

and

Hk =

{[

−5
−5

]

,

[

−4
−5

]

,

[

−3
−5

]

, . . . ,

[

15
17

]

,

[

16
17

]

,

[

17
17

]}

.

As usual, xk is shown in magenta and the poll steps defined by ∆k and Gk are
shown in blue. The job of the oracle is to choose some finite subset of the steps defined
by ∆k and Hk to try as part of the exploratory phase of the search. In Figure 4.6,
two possible sets of choices are indicated in green. Once again, the search only falls
back on the poll steps if the initial explorations are unable to produce a step that
satisfies the decrease condition (4.3). From an analytical standpoint, it simply does

434 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

x
k

x
k

Fig. 4.6 Two examples in R
2 of using oracles to try to predict successful steps.

not matter how the oracle makes her choices, so long as the process is finite and
the usual fall-back strategy is in place. So the oracle can “guess”; she can resort to
some elaborate—or even not so elaborate—algorithmic strategy; or she can rely on
divine providence—hence the name. In truth, the oracle is nothing more or less than
a predictor; her job is to predict a point (or a finite set of points) at which one might
observe decrease in the value of f at xk.

The distinction between the exploration phase and the polling phase was noted
in [91]. There it was observed that if, for instance, the underlying function f were a
partial differential equation whose value was computed using some finite discretiza-
tion, perhaps a coarser—and thus less expensive to compute—discretization could be
used to predict points at which the finer discretization would produce decrease.

Homage for this viewpoint is due, in part, to Hooke and Jeeves [139] since the
necessary analytical tools in [257] were constructed to handle the exploratory moves
in their algorithm. In this context, the oracle for Hooke and Jeeves is their pattern
step, which assumes, when k − 1 ∈ S, a simple one-dimensional linear model of f
involving xk−1 and xk. The coordinate steps taken about the trial point xp could be

OPTIMIZATION BY DIRECT SEARCH 435

viewed as an acknowledgment that the implicit one-dimensional linear model is not
likely to be particularly accurate, so further modest adjustments may be required.

This leads to the second observation, which is of further practical import. In
both instances, a surrogate of the objective is used to predict success (i.e., the coarser
discretization of the PDE or the simple one-dimensional linear model). And in both
instances, the oracle attempts to exploit additional knowledge of the objective function
f—knowledge other than the gradient—in an attempt to accelerate the search. In the
first instance, it is in the form of an appeal to the numerical approximation underlying
the problem, but in a less costly computational form. In the second instance, it is
in the form of an attempt to build some sense of “history” into the search by using
function information obtained at earlier iterations to inform predictions about where
to look next.

The latter viewpoint, in particular, has been pursued by using algebraic approx-
imations of f built using previously computed values of f(x) [30, 31, 239, 261]. The
assumption is that the evaluation of f(x) is computationally expensive, so the idea
is to put previous evaluations to work. An algebraic approximation is constructed to
be inexpensive to compute so that it can be used as a predictor. The oracle then is a
process that (inexactly) optimizes the algebraic approximation of f and returns the
(inexact) optimizer of the algebraic approximation as a point at which improvement
in f may be observed.

In some sense this is a return to the “inner iteration–outer iteration” perspective
for line search algorithms outlined in section 2.2. At the outer iteration of a line search
algorithm, an inexpensive-to-compute local polynomial model of the function is built
using the gradient of f at xk. The inner iteration of a line search algorithm involves
finding (inexactly) the minimizer of the local polynomial model. The (inexact) min-
imizer of the model is then returned as a prediction about where decrease in f may
be found. In the realization that the local polynomial model is not usually likely to
be particularly accurate, a globalization strategy—in the form of a backtracking line
search—may need to be employed to actually produce decrease.

For this surrogate-based approach to GSS methods, at the outer iteration, an
inexpensive-to-compute algebraic approximation of the function is built using previ-
ously computed values of f . The inner iteration involves finding (inexactly) at least
one minimizer of the algebraic approximation. A finite number of (inexact) mini-
mizers of the algebraic approximation then are returned as predictions about where
decrease in f may be found. In the realization that the algebraic approximation is
not usually likely to be particularly accurate, a globalization strategy—in the form of
the poll steps—may need to be employed to actually produce decrease.

Observe that the notion of an oracle also applies to the line search methods
discussed in section 2.2. Any point satisfying the Armijo–Goldstein–Wolfe conditions
(2.4)–(2.5) is acceptable as a next iterate. In practice, the next step is generated by a
line search along a descent direction since this procedure is guaranteed to produce an
acceptable next iterate. However, one is perfectly free to try any points one wishes,
so long as no point is accepted without checking that it satisfies (2.4)–(2.5).

5. Variations on the GSS Requirements. The goal of the GSS framework given
in section 3.3 was to give a specification that was generic enough to capture many
algorithmic variations in the literature while at the same time being simple enough to
derive convergence results with a minimum of notation and special cases. In doing so,
we necessarily excluded some interesting and useful variations that recently have ap-
peared in the literature. In this section we expand, briefly, on some of these variations
and point the interested reader to the appropriate references for further study.

436 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

5.1. Controlling the Step Length. GSS prescribes a particular regimen for up-
dating the step-length control parameter—it must be reduced after an unsuccessful
iteration and can be increased only after a successful iteration. Along with other suit-
able safeguards, this way of updating ∆k ensures that the methods can be globalized ;
i.e., that the following holds:

lim
k→+∞
k∈K⊆U

∆k = 0.(5.1)

The regimen for updating the step-length control parameter within the GSS
framework can be relaxed, so long as (5.1) holds. For example, the following modifica-
tion does not fit within the GSS framework, but it does lead to equivalent convergence
results. Let φk = 1 for all k ∈ S (no expansion steps), and let θk for k ∈ U be defined
in any way (even θk ≥ 1 is admissible) that ensures that (5.1) holds. Variations
on this idea can be incorporated into the three globalization strategies discussed in
section 3.7 to produce equivalent first-order convergence results. The work of Coope
and Price [77] motivated the discussion of moving grids in section 3.7.3, but the spec-
ifications on the algorithms given in their paper are more general and encompass this
alternate criteria for the update of the step-length control parameter.

Another variation, common to the sufficient decrease approaches in [115, 174],
is the following. Given a fixed set of directions G = {d(1), . . . , d(p)} (as in (3.18)),

associate a separate step-length control parameter ∆
(i)
k with each search direction

and then update the p step-length control parameters independently. This allows the
directions to be scaled individually, each adapting to the curvature of the underlying
objective function.

The rational lattice approach also is amenable to the use of semiautonomous
step-length control parameters, as outlined in [161, 162]. In this setting, the semiau-

tonomous behavior of the ∆
(i)
k is introduced to address computational load-balancing

issues, rather than to capture curvature information.
This idea of using separate step-length control parameters brings us to the more

general question of controlling the length of the step. As mentioned at the close of
section 4.2, the steps at iteration k in GSS are composed of two components: the
step-length control parameter ∆k and the search directions ‖d‖, d ∈ Dk = Gk ∪ Hk.
We bound the lengths of the search directions as

βmin ≤ ‖d‖ ≤ βmax for all d ∈ Gk, and
βmin ≤ ‖d‖ for all d ∈ Hk,

for k = 1, 2,(5.2)

By enforcing (5.2), we have that the length of any step ‖∆kd‖ for d ∈ Gk is bounded
as a constant multiple of ∆k,

∆kβmin ≤ ‖∆kd‖ ≤ ∆kβmax.

Likewise, the lower bound holds for d ∈ Hk. By bounding the lengths of the search
directions as in (5.2), parts of the algorithm and accompanying theory that depend on
the lengths of the steps can be written in terms of the step-length control parameter
∆k alone.

Yet another variation would be to eliminate the step-length control parameter
∆k entirely and work directly with the lengths of each vector in Dk. Doing so,

OPTIMIZATION BY DIRECT SEARCH 437

however, would necessitate a substantially different development of the notation and
presentation. For example, (5.1) would be replaced with something like

lim
k→+∞
k∈K⊆U

max
d∈Gk

‖d‖ = 0.(5.3)

5.2. Additional Algorithmic Steps. As discussed in section 4, many methods fit
the GSS framework by choosing the set Hk in a particular fashion. Since the choice
of Hk affects only the successful steps, it is largely tangential to the theory.

Depending on the particular method of globalization, it may be possible to add
special additional steps that give the algorithm another chance to find an improving
point, perhaps subject to different rules.

For example, the grid-based optimization framework of Coope and Price [77]
motivated the moving grids approach described in section 3.7.3, but their approach
adds something extra. It allows for a “finite process” after each unsuccessful iteration.
In terms of GSS, one might think of this as follows. After each unsuccessful step, allow
a special iteration where only Hk need be defined and has no restrictions and ∆k is
not modified even in the event of an unsuccessful iteration. In this case, Theorem 3.9
is the same except that ω(k) is replaced everywhere by ω(k) + 1. Though this does
not fit the GSS framework, the basic ideas are the same.

Likewise, Lucidi and Sciandrone [174] have a similar extra step in a sufficient
decrease algorithm that is close to the description in section 3.7.1. Their method
allows a special iteration after every step, successful or unsuccessful. As before, only
Hk need be defined and ∆k is not modified. Furthermore, this special step requires
only simple decrease to accept the iterate.

In both cases, these special steps only allow additional successes and are imple-
mented in ways that respect globalization. Practically speaking, these special steps
are another way to incorporate a surrogate without affecting the convergence proper-
ties.

5.3. Independent Directions for Parallel Computing. The asynchronous parallel
pattern search (APPS) method [140] forms a generating set and farms out each direc-
tion to an independent process in a parallel or distributed computing environment.
The unique feature of APPS is that it dynamically makes decisions without waiting
for the information on all processors to be available. This can eliminate substantial
idle time in the computation. Convergence is detected when the subset of processes
that are done (all sharing a common accumulation point) forms a generating set.
Since the algorithm is asynchronous, this means that convergence may be detected,
and the search terminated, even though the remaining processes have not necessarily
finished the search along their designated directions. Convergence of this method is
proved by exploiting the properties of GSS in a slightly different context [161].

6. The Role of Smoothness in the Robustness of GSS Algorithms. The assump-
tion that f is continuously differentiable is critical in showing that a subsequence of
unsuccessful iterates converges to a stationary point of f ; see Theorem 3.11. On the
other hand, there is the conventional wisdom, nicely expressed by Swann [250] in his
1972 survey:

The primary reason for interest in direct search methods is their generality;
they require only the ability to evaluate the objective function at specified
points of [Rn], and since they usually make no assumptions other than
continuity of the function they can be applied to a very wide class of
problems. They are thus particularly useful for cases where the function

438 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

is non-differentiable, where the first partial derivatives of the function are
discontinuous, and where the function value depends upon some physical
measurement and may therefore be subject to random error, all of which
are problems which can cause difficulties using the more theoretically based
gradient methods.

This view is echoed in Gill, Murray, and Wright [117]:
Methods based on function comparison are intended only for problems in
which [f(x)] is discontinuous, the gradient vector g(x) is discontinuous at
the solution, or g(x) has so many discontinuities that a method assuming
continuity of g(x) will fail. Furthermore, the discontinuities are presumed
to have no special structure.

In fact, certain qualities of GSS methods do lend themselves to problems such as
those described above, as we discussed in section 1.2. In this section, we discuss why
it is reasonable to expect GSS methods (and other direct search methods) to work in
practice on badly behaved problems such as that depicted in Figure 1.2. We go on
to point out, however, that there are limits to what one can prove and hope for in
practice when applying direct search methods to nonsmooth problems.

6.1. The Effects of Multiple Search Directions and Sampling. A strength of GSS
methods, as compared to many other direct search methods, is the fact that GSS
methods look in multiple directions at every iteration. This means that even if f
is nondifferentiable at an iterate xk, so that there is no guarantee that the set of
search directions contains a descent direction, the chance of finding a point with a
lower objective value is greater for GSS than for methods that only consider a single
direction.

Another advantage that comes about by using multiple search directions is that
GSS methods are not as easily misled by “noise” in the objective function. Consider,
for example, the objective function pictured in Figure 1.2. Here, GSS methods will
easily realize decrease in the function so long as the step size is large relative to the
noise. Derivative-based methods, on the other hand, may have a hard time making
any progress at all because the local descent directions may actually point uphill
when we consider the overall trend of the function. In other words, while one of the
GSS search directions is guaranteed to be a descent direction, we may actually take
the step produced by a direction of local ascent because with the right choice of ∆
it produces decrease in f . In a line search method one takes care that the single
search direction is a descent direction, since, in the event of backtracking, we must be
guaranteed decrease in f along this direction.

Another aspect of GSS methods that helps explain their robust behavior is the
smoothing effect of the process by which trial steps are generated. This is particu-
larly the case when GSS methods are applied to functions such as the objective in
Figure 1.2, which is afflicted with low-amplitude, high-frequency “noise” that would
be amplified by differentiation. The smoothing effect described here also plays a role in
methods such as those in [154, 178, 181] that use purposefully coarse finite-difference
approximations to derivatives as a means of treating noisy objectives.

GSS methods perform a type of sampling. A familiar consequence of sampling is
that high-frequency features on a length-scale finer than the sampling are not seen, but
instead appear in an aliased form as part of a smoother version of the function. The
smoothing effect of the sampling done in GSS is explained most clearly for compass
search, because the trial points lie on uniform Cartesian grids.

Without loss of generality, assume that x0 = 0. Then, if ∆k is the current
step size parameter, any potential iterate is of the form ∆kv, where v ∈ Zn (see

OPTIMIZATION BY DIRECT SEARCH 439

Theorem 3.7). Let f̂ be the discrete Fourier transform of f on the lattice ∆kZn: for
ω ∈ [−π/∆k, π/∆k] [247],

f̂(ω) =
1

(2π)n/2

∑

v∈Zn

e−i∆kv·ω f(∆kv) ∆n
k .

Consider the band-limited interpolant f∆k
of f over ∆kZn defined by

fk(x) =
1

(2π)n/2

∫

[−π/∆k, π/∆k]n
eix·ω f̂(ω) dω.

Then

f(∆kv) = fk(∆kv) for all v ∈ Zn.

Because the algorithm only uses the values of f on the grid ∆kZn, its behavior will
be the same as if it were applied to the band-limited (and thus smoother) interpolant
fk. For larger values of ∆k, this interpolant lacks the small-amplitude, high-frequency
oscillations present in Figure 1.2. The sampling of f is too coarse to “see” oscilla-
tions that occur on a fine length-scale. Features of f corresponding to frequencies of
magnitude larger than π/∆k are not captured, so the GSS algorithm is untroubled
by them.

This leads to an interpretation of GSS algorithms as continuation methods in ∆.
GSS starts with a smooth approximation f0 of f and finds an approximate minimizer
of f0. Because GSS looks in multiple directions, one of which is a descent direction
for fk, we can expect to make progress on minimizing fk. Moreover, the fact that f0

may be considerably smoother than f should make this an easier problem to solve.
As ∆k tends to 0, higher frequency features of f are resolved. One may reasonably
expect that the local minimizers with larger basins of attraction are found for larger
values of ∆k, thus avoiding the numerous uninteresting local minimizers such as those
present in Figure 1.2.

The multiple search directions and the sampling may be viewed as complementary
in the following way. Suppose that in compass search we actually evaluate f at all 2n
points of the form xk ±∆kei. If the sampling is coarse enough, i.e., ∆k is larger than
the length-scale of the “noise,” then GSS escapes the effect of the “noise.” Rather
than form a centered finite-difference gradient, thereby reducing the information from
these multiple directions to a single direction, GSS uses the fact that at least one of
the search directions is guaranteed to be a descent direction. GSS thus avoids any
problem with truncation error in finite-differencing, which would be present since ∆k

is presumed to be not too small.
The use of multiple search directions and longer trial steps explains why GSS

methods have proven robust and effective in practice, and thus, in part, why they
have remained popular with users. These features of GSS methods are of particular
help for objectives like the one in Figure 1.2, where there is low-amplitude, high-
frequency “noise” with no discernible structure. In this regard we would second the
recommendation of Gill, Murray, and Wright in the passage quoted above in prescrib-
ing direct search methods for problems in which “the discontinuities are presumed to
have no special structure.”

That said, users of GSS methods should be aware of the potential pitfalls. In
particular, GSS methods may not converge to a stationary point when applied to non-
smooth problems—especially when the loci of nonsmoothness are highly structured.

440 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

The following analysis and examples make clear that even though GSS methods can
be used (i.e., they are well-defined) on nonsmooth problems, there is no theoretical
guarantee that they will succeed.

6.2. Why We Assume f Is Continuous. One often encounters discontinuous
functions in simulation-based design. Sometimes the discontinuities are a result of
features (such as table look-ups and switches) in simulation codes. Other times, they
are due to unexpected failures of the simulation codes. For these reasons, it is worth
considering what can happen when GSS methods are applied to discontinuous prob-
lems. Frequently they enjoy success because the sequence of iterates “steps over” the
loci of discontinuity.

However, although GSS may still find a stationary point if f is not continuous,
there is no guarantee that it will do so. Consider the following one-variable example,
where f is defined to be

f(x) =

{

(x − 1)2 if x 6= 0,
5 if x = 0.

Suppose compass search begins at x0 = −1 with ∆0 = 1. Furthermore, suppose we
choose Dk = {−1,+1}, φk = 1, and θk = 1

2 for all k. Then every odd iteration is a
contraction and even iterations are of the form

x2k = 2−k.

This is illustrated in Figure 6.1. Here xk → 0, which is not a stationary point of f .

−1.5 −1 −0.5 0 0.5 1 1.5

x0

x2 x4

x6

x8

x

f(
x)

Fig. 6.1 Compass search converging to a nonstationary point of a discontinuous function.

Certainly this is a contrived example. Choosing x0 = −1.1 would avoid these
problems altogether because compass search would never even evaluate the function
at x = 0. Although an identical example could easily be produced for a gradient-based
algorithm, we stress this point because direct search methods are so often prescribed
for discontinuous functions.

6.3. Why We Assume ∇f Exists and Is Continuous. When f(x) is continuously
differentiable, GSS methods work because, at every iteration, one of the search direc-
tions is a descent direction. That is, GSS methods are guaranteed to search along at
least one direction within 90◦ of −∇f(x).

There is no guarantee that a descent direction will exist in the nonsmooth case,
as the next example shows.

OPTIMIZATION BY DIRECT SEARCH 441

(a) (b) (c)

Fig. 6.2 A variant of the Dennis–Woods function.

Consider the following variant of the Dennis–Woods function [94]:

f(x) =
1

2
max

{

‖x − c1‖2, ‖x − c2‖2
}

,(6.1)

where c1 = (1,−1)T and c2 = −c1. The level sets of this function are shown in
Figure 6.2(a), with the minimizer indicated by a red star. This function is continuous
and strictly convex, but its gradient is discontinuous everywhere on the line x1 = x2.
In [94], it was shown that a modification of the Nelder–Mead simplex algorithm can
fail to converge to the minimizer of f .

Now consider a point of the form (a, a)T , with a 6= 0. An example is shown as a
magenta dot in Figure 6.2. The set of directions from (a, a)T along which f initially
decreases generates the shaded region. The objective increases along any direction
outside this region. Figure 6.2(c) depicts the search directions for compass search
emanating from (a, a)T . Note that although (a, a)T is not stationary, none of the
directions in the generating set can yield decrease for any value of the step-length
control parameter ∆k. In fact, numerical tests show that compass search applied to
(6.1) frequently converges to a point of the form (a, a)T with a 6= 0.

In [256], this sort of failure was observed for the multidirectional search (MDS)
algorithm, a type of GSS method. There it was shown that, under the assumptions
that Lf (x0) is compact and that f is continuous on Lf (x0), some subsequence of the
sequence of iterates produced by MDS converges to a point x∗ in a set X∗. The set X∗
is the set that contains all the stationary points of f on Lf (x0), all points in Lf (x0)
where f is nondifferentiable, and all points in Lf (x0) where the derivative of f exists
but is not continuous.

6.4. GSS Methods and Lipschitz Optimization. Now let us consider the general
question of applying GSS to the minimization of functions that are Lipschitz con-
tinuous but fail to be differentiable in the usual sense at some points. For Lipschitz
functions there is the notion of a generalized gradient and an attendant differential
calculus [66]. A particular motivation for studying Lipschitz functions here is that
some of the GSS approaches to nonlinear constraints (e.g., penalization) lead to un-
constrained, Lipschitz minimization problems (see section 8.3.3).

442 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

For a function f that is Lipschitz near a point x, the (Clarke) generalized direc-
tional derivative in the direction v, denoted by f◦(x; v), is defined to be

f◦(x; v) = lim sup
y→x

t↓0

f(y + tv) − f(y)

t
.

For many nonsmooth (convex or max) functions, including the example given in (6.1),
the generalized directional derivative coincides with the usual directional derivative.
The (Clarke) generalized gradient ∂f(x) is

∂f(x) =
{

ζ | f◦(x; v) ≥ ζT v for all v
}

.

If f is decreasing from x in the direction d, then f◦(x; d) ≤ 0. This means that
for minimization, one is interested in finding directions d for which the generalized
directional derivative is negative. As observed in section 3.4.1 for the smooth uncon-
strained case, at least one GSS search direction must be a descent direction because
any half-space contains at least one direction in the generating set. However, a funda-
mental difficulty of nonsmooth optimization is that the set of descent directions can
be smaller than a half space. Thus, to be assured of finding a successful step, a GSS
method would need to have a search direction in the interior of this set. It is not clear
how to ensure this without knowledge of ∂f(x).

The assumption that f is continuously differentiable is used in the convergence
analysis of GSS in two ways. First, it allows the use of the mean value theorem, as
in the proof of Theorem 3.3. Second, it makes it possible to take the limit of the
gradient as k → ∞, as in Theorem 3.11. If f were only Lipschitz, the generalized
mean value theorem could be applied, but the continuity needed to take the limit of
the gradient as k → ∞ would be absent.

In the case of Lipschitz functions, the negative result from [256] mentioned at the
end of the previous section is refined in [13]. There it is shown that under some mild
assumptions, if the sequence of points generated by a GSS algorithm converges to a
point x∗ and f is Lipschitz near x∗, then for all search directions d

f◦(x∗, d) ≥ 0.(6.2)

This describes the situation in the example of the previous section: at the point
x∗ = (a, a)T in Figure 6.2, the function is increasing along each of the search directions.

However, unless ∂f(x∗) is a singleton, (6.2) does not necessarily mean that x∗
is a stationary point (i.e., 0 ∈ ∂f(x∗)). If one assumes in addition that f is strictly
differentiable at x∗, then ∂f(x∗) reduces to a singleton and x∗ is a stationary point,
as noted in [13]. A function f is strictly differentiable at x if there exists a vector w
such that for all v,

lim sup
y→x

t↓0

f(y + tv) − f(y)

t
= wT v.

The following example illustrates this latter result. We modify (6.1) to make it

strictly differentiable at its minimizer. Define f̂ as

f̂(x) =
(

1 − e−α‖ x ‖2
)

f(x),

where α = 103 and f(x) is as in (6.1). A picture of f̂ is given in Figure 6.3.

OPTIMIZATION BY DIRECT SEARCH 443

Fig. 6.3 A slightly smoothed variant of the Dennis–Woods function.

Once again, the minimizer is at x∗ = (0, 0)T but now, by Proposition 2.3.13

in [66], f̂ is strictly differentiable at x∗. The strict differentiability result from [13]

says that if a GSS method were to converge to (0, 0)T , then, because f̂ is strictly
differentiable at (0, 0)T , (0, 0)T must be a stationary point. GSS has no guarantee,
however, of converging to (0, 0)T ; in fact, just as for (6.1), compass search tends to
converge to a point of the form (a, a)T , with a 6= 0.

On the other hand, functions such as f(x) = ‖x ‖ are not strictly differentiable at
their minimizers, nor are the exact penalty functions in section 8.3.3 where inequality
constraints are binding. Thus, alas, there remains a significant gap in theory and
practice between what we would like to be true about GSS methods and what is
actually true.

6.5. The Gap between Theory and Practice. GSS methods (or any direct search
method) can be applied in a straightforward way to just about any optimization prob-
lem, smooth or nonsmooth. The fact that GSS methods search in multiple directions
helps reduce the sensitivity of these algorithms to nonsmoothness. Moreover, the
sampling done in GSS can frequently step over loci of nonsmoothness, especially if
the nonsmoothness has no particular structure.

We also note that many users are satisfied even when a stationary point cannot be
guaranteed. Finding a stationary point of an objective like that in Figure 1.2 might not
be what is really wanted. Instead, appreciable improvement in the objective function,
at a reasonable cost of time and human effort, is sufficient for many applications.

This said, an inescapable conclusion of this section is that currently there are
no theoretical guarantees that GSS methods will succeed on nonsmooth problems. In
both the examples set forth above and in our practical experience, there are situations
where GSS methods do, in fact, fail to find a stationary point.

Nevertheless, GSS methods, like many optimization algorithms, perform better
in practice than their supporting theory might suggest.

7. Some Background on Constrained Optimization. The constrained optimiza-
tion problem of interest is

minimize f(x)

subject to c(x) ≤ 0.
(7.1)

Here c : Rn → Rm, and f and c are assumed to be continuously differentiable. The
inequality c(x) ≤ 0 is interpreted to hold term by term; i.e., c(i)(x) ≤ 0, i = 1, . . . ,m.

444 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

The set of points satisfying the constraints in (7.1) is called the feasible set and
is denoted by Ω:

Ω = { x | c(x) ≤ 0 } .

A point x is feasible if x ∈ Ω.
A feasible iterates algorithm ensures (and may require) that each iterate produced

is feasible. An infeasible iterates approach, on the other hand, allows xk 6∈ Ω for some
iterations, and only requires feasibility in the limit. In the case of simulation-based
optimization, it sometimes is necessary to use methods that produce only feasible
iterates since the simulations involved may make no provision for computing outputs
if the inputs x are outside the feasible region.

Historically, direct search methods took a feasible iterates approach. Most of the
early development of direct search methods for problems with constraints predated the
development of infeasible iterates methods such as augmented Lagrangian algorithms
[135, 215]. But recall, too, that a common situation in practice is that one wants
“improvement” rather than full-blown optimality. Since the user’s goal may be only
one or two correct digits, satisfying feasibility “in the limit” is not acceptable. Fur-
thermore, in the case of real physical experiments, violating certain constraints (say,
setting a temperature to less than absolute zero) may lead to nonphysical, meaning-
less results (see [35] for a discussion of one such example in the context of chemical
plant management).

Our discussion focuses primarily on methods that use a feasible iterates approach;
methods that adopt an infeasible iterates approach are presented, briefly, in sec-
tion 8.3.

7.1. The Effects of Constraints. In the unconstrained case, it suffices for one of
the search directions to lie within 90◦ of the direction of steepest descent, as discussed
in section 2.2. However, if there are constraints present, the situation is more compli-
cated because the constraints may prevent the search from taking a feasible step that
would decrease the objective function. Obtaining a direction that yields improvement
in the objective while not violating the constraints limits the choices of suitable search
directions.

This is illustrated in Figure 7.1(a)–(b). In (a), the red arrow indicates the di-
rection of steepest descent from the point x indicated by the magenta dot. The blue
directions form a positive basis and thus would be an acceptable set of search direc-
tions (a generating set) for a GSS method in the unconstrained case. In (b) a single
constraint, which restricts the solution to the lower half of the figure, is introduced.
The boundary of the feasible region Ω is indicated with a black line. To obtain a
direction that is within 90◦ of the direction of steepest descent and which does not
carry the search out of the feasible region, the directions are constrained to those that
fall in the shaded region. Unfortunately, none of the search directions are acceptable
in this case—either they are not directions of descent or they take the search outside
of the feasible region.

Equally annoying is the situation in Figure 7.1(c). Now x is in the interior of
the feasible region Ω, but close to the boundary. The direction pointing toward 10
o’clock is a descent direction, but the search can only take a very short step along this
direction if the step is to remain feasible. The longest step possible is indicated by
the dot shown in green. As a consequence, only a small improvement in the objective
may be realized, much smaller than is possible while remaining feasible. This is solely
because of the interaction between the choice of search directions and the geometry

OPTIMIZATION BY DIRECT SEARCH 445

−∇ f(x)

x

(a) A descent direction in the
generating set for the uncon-
strained case.

Ω

−∇ f(x)

x

(b) With the introduction of a
constraint, no feasible descent
directions in this set.

Ω

−∇ f(x)

x

(c) Feasible step along the one
descent direction is too short.

Fig. 7.1 How constraints can limit acceptable search directions.

−∇ f(x)

x

Ω

−∇ f(x)

x

Ω

−∇ f(x)

x

Fig. 7.2 At least one (feasible) direction of descent along which a sufficiently long step can be taken.

of the nearby portion of the boundary. These short steps, in turn, could cause an
unwary algorithm to converge to a point on the boundary that is not a constrained
local minimizer. The situation depicted in (c) is similar to the problem of bad step
lengths discussed in connection with line search methods in section 2.2; i.e., the steps
are short even though the search may be far from any minimizer.

A moment’s reflection reveals that the difficulty derives from the fact that the
generating set does not include steps parallel to the boundary. What is needed are
directions that allow the search to move along any nearby part of the boundary,
taking feasible steps that are sufficiently long. In fact, the remedy for the constraint
illustrated in Figure 7.1 is surprisingly simple, as can be seen in Figure 7.2.

7.2. The Geometry of Cones. Unconstrained and equality constrained optimiza-
tion can be described in terms of the geometry of linear subspaces. So for the uncon-
strained case, a generating set for Rn is the same as a positive spanning set, making
it possible to write any vector in Rn as a linear combination of the vectors in the gen-
erating set, with the additional requirement that all the coefficients be nonnegative.
This was the import of Definition 3.1 in section 3.4.

446 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

K

K°

(a) A cone K and its polar K◦.

v

v
K

v
K

°

K

K°

(b) The projection of v onto K and its
polar.

Fig. 7.3 An example of the geometry of cones in R
2.

Inequality constrained optimization, as in (7.1), requires the more complicated
geometry of cones. A set K is a cone if for any x ∈ K, αx ∈ K for all scalars α ≥ 0.
Definition 3.1 is the specialization of the the following definition to the case when
K = Rn [86].

Definition 7.1. Let G be a set of p vectors in Rn: G = {d(1), . . . , d(p)}. Then
the set G generates the cone K if

K =

{

v | v =

p
∑

i=1

λ(i)d(i), λ(i) ≥ 0 for i = 1, . . . , p

}

.

That is, G generates K if K is the set of all nonnegative linear combinations of
vectors in G. The cones considered here are generated by a finite number of vectors,
but cones need not be finitely generated (consider an ice cream cone or a dunce cap).

The polar cone of a cone K, denoted by K◦, is the cone defined by

K◦ =
{

w | wT v ≤ 0 for all v ∈ K
}

.

These are the vectors that make an angle of 90◦ or more with every element of K.
An example in R2 of a cone K and its polar K◦ is shown in Figure 7.3(a).

Given a convex cone K and any vector v, there is a unique closest point in K to
v, called the projection of v; denote this projection onto K by either vK or PK(v).
The polar decomposition [186, 226, 280] says any vector v can be written as the sum
of its projection onto a cone and its polar:

v = vK + vK◦ ,

where vT
K vK◦ = 0. An example in R2 is shown in Figure 7.3(b). This is the analog

in the geometry of cones of the orthogonal decomposition in linear algebra.
Given a set Ω, every point x ∈ Ω has two important cones associated with it: the

cone of tangents and the cone of normals. A vector v is tangent to Ω at x if, for every
sequence xi in Ω converging to x and positive sequence αi decreasing to 0, there is a
sequence vi converging to v such that xi + αivi ∈ Ω. Roughly speaking, a vector v is

OPTIMIZATION BY DIRECT SEARCH 447

Ω

−∇ f(x
*
)

x
*

NΩ(x
*
)

Ω

−∇ f(x
*
)

x
*

NΩ(x
*
)

Fig. 7.4 Two examples of constrained local minimizers.

tangent to Ω at x if one can proceed from x along v for at least some short distance
and remain in Ω. A standard result is that the set of all vectors tangent to Ω at x is
a convex cone [66]. This cone is called the (Clarke) tangent cone and is denoted by
TΩ(x). The cone polar to the tangent cone is called the normal cone and is denoted
by NΩ(x). Again roughly speaking, the normal cone consists of the vectors that point
“outward” from Ω at x. Note that if x is in the interior of Ω, then NΩ(x) = {0} and
TΩ(x) is all of Rn.

7.3. First-Order Necessary Conditions for a Constrained Minimizer. Next, con-
sider the necessary conditions for constrained minimizers. A point x∗ ∈ Ω is a local
constrained minimizer if, for some r > 0,

f(x∗) ≤ f(x) for all x ∈ Ω such that ‖x − x∗‖ < r.

If x∗ is a local constrained minimizer, then

−∇f(x∗) ∈ NΩ(x∗).(7.2)

If x∗ is a local minimizer of (7.1) and x∗ is in the interior of Ω, then NΩ(x∗) = {0}
and (7.2) says ∇f(x∗) = 0. On the other hand, if x∗ is on the boundary of Ω and
∇f(x∗) 6= 0, (7.2) says that the only way to obtain further decrease locally is to leave
the feasible region. Two examples for which (7.2) holds are shown in Figure 7.4.

A constraint c(i)(x) in (7.1) is called binding at x if c(i)(x) = 0. Under various
relatively mild conditions called constraint qualifications, the cone of vectors normal
to Ω at x is the cone generated by the outward-pointing normals to the constraints
that are binding at x. (See any of [69, 106, 192, 197] for a discussion of constraint
qualifications.)

Let B(x) denote the indices of the constraints binding at x:

B(x) =
{

i | c(i)(x) = 0
}

.

If a suitable constraint qualification holds at x, then the normal cone is given by

NΩ(x) =

v | v =
∑

i∈B(x)

α(i)∇c(i)(x), α(i) ≥ 0 for all i ∈ B(x)

.

448 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

Ω

x

1

−∇ f(x)

w

(a) The w that gives the mea-
sure χ(x).

Ω

x

−∇ f(x)
q(x)

(b) q(x).

Ω

x

1

−∇ f(x)

w
q(x)

(c) w and q(x) superimposed
for comparison.

Fig. 7.5 The geometry of χ(x) and q(x).

If the normal cone can be written in this way, one obtains the Karush–Kuhn–Tucker
(KKT) condition for a constrained local minimizer. The necessary condition −∇f(x∗)
∈ NΩ(x∗) becomes

−∇f(x∗) =
∑

i∈B(x∗)

α(i)∇c(i)(x∗), where α(i) ≥ 0 for i ∈ B(x∗).(7.3)

A point for which (7.3) holds is called a KKT point, and the α(i) are called Lagrange
multipliers.

7.4. Measures of Convergence to KKT Points. The necessary condition (7.2) has
the drawback that it does not serve as a continuous measure of constrained station-
arity, because the normal cone NΩ(x) does not depend continuously on x at the
boundary of the feasible region Ω. For this reason, two measures of stationarity and
convergence to KKT points appear in the discussion that follows. These measures of
stationarity are widely used in nonlinear programming; they are not peculiar to the
analysis of GSS methods.

The first measure is the following. For x ∈ Ω, let

χ(x) = max
x+w∈Ω
‖ w ‖≤1

−∇f(x)T w.(7.4)

Loosely speaking, χ(x) captures the degree to which the direction of steepest descent
is outward-pointing with respect to the portion of the feasible region near x. The sets
defining χ and the maximizer w in (7.4) are depicted in Figure 7.5(a).

When Ω is convex, or otherwise has a geometrically “nice” boundary vis-à-vis the
aforementioned constraint qualifications, the function χ has the following properties
[69]:

1. χ(x) is continuous.
2. χ(x) ≥ 0.
3. χ(x) = 0 if and only if x is a KKT point for (7.1).

If χ(x) = 0, then there is no direction making an angle of less than 90◦ with the
direction of steepest descent along which one can move for any distance, no matter
how short, and still remain feasible. Showing that χ(xk) → 0 as k → ∞ constitutes
a global first-order convergence result.

OPTIMIZATION BY DIRECT SEARCH 449

The second measure of constrained stationarity involves projections onto Ω under
the assumption that Ω is convex, which is the case for bound and linearly constrained
problems. Let PΩ(x) denote the point in Ω closest to x, which is well-defined if Ω is
convex. Define

q(x) = PΩ(x −∇f(x)) − x.

A point x∗ is a KKT point of (7.1) if and only if q(x∗) = 0 (see [69, 99], for instance).
Thus, a global first-order convergence result could also be obtained by showing that
‖ q(xk) ‖ → 0. Like χ, ‖ q(xk) ‖ reflects the extent to which the direction of steep-
est descent is outward-pointing with respect to the feasible region. Unlike χ(x),
however, ‖ q(xk) ‖ depends on the global geometry of the feasible region, since the
projection PΩ(x − ∇f(x)) is not necessarily within a predetermined distance of x.
Figure 7.5(b) gives a depiction of q(x), and Figure 7.5(c) superimposes Figure 7.5(a)
and Figure 7.5(b) to show the differences between χ(x) and q(x).

In the constrained theory, the quantities χ(x) and ‖ q(x) ‖ play roles similar to
that of ‖∇f(x) ‖ in the unconstrained theory. Each provides a continuous measure
of how close a point x is to constrained stationarity, as in the theory of methods
based explicitly on derivatives. The presentation to follow relies on the measure χ(x).
Though the measure ‖ q(x) ‖ is particularly well suited for the discussion of both
derivative-based and direct search algorithms for bound constrained problems (e.g.,
[52, 67, 69, 99, 167]), the measure χ(x) is used here in the simpler case of bound
constraints to shed some light on the more complicated situation with general linear
constraints. The use of χ(x) is by no means essential, however, and direct search
methods for bound constrained problems can be analyzed using ‖ q(x) ‖ (e.g., [167]).

8. Direct Search and Constrained Optimization. Direct search methods are usu-
ally presented for the case of unconstrained optimization. What is not so widely
appreciated is that since the time they first appeared in the 1950s and 1960s, they
have been adapted in various ways to handle constrained problems [39, 54, 84, 95,
122, 137, 139, 152, 157, 178, 194, 207, 227, 245].

Early proposals for direct search algorithms for constrained optimization met
with some success in practice. However, they are not used much today, unlike their
unconstrained counterparts. In fact, the early developers of direct search methods
for constrained optimization were aware that their heuristics did not always work in
practice. For instance, see Box’s comments on Rosenbrock’s method in [39] or Keefer’s
comments on Box’s method in [152]. At the time, the emphasis in optimization
was on the development of new computational methods rather than on establishing
their theoretical properties. This is not surprising. The early development of direct
search methods preceded the first global convergence analysis of even unconstrained
optimization algorithms using the Armijo–Goldstein–Wolfe conditions (2.4)–(2.5).

Nevertheless, some of the ideas proposed in the early development of direct search
methods can be placed on a firm theoretical basis. This is particularly true for bound
and linearly constrained problems. The approach outlined here for bound and general
linear constraints is a feasible iterates approach [167, 168, 173, 175]. Philosophically, in
the presence of linear constraints, the situation is similar to that of the unconstrained
case. At each iteration the method must work with a sufficiently rich set of search
directions to ensure that, regardless of the direction of steepest descent, one of the
search directions is a descent direction if the current iterate is not a KKT point. But,
as discussed in section 7.1 and illustrated in Figure 7.1(c), the presence of constraints
introduces a new consideration. Now it is not enough simply to ensure a direction of

450 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

descent; it must also be possible to take sufficiently long steps along descent directions
and remain feasible. This suggests modifying the choice of search directions for GSS
methods. The following sections discuss how to do so.

8.1. The Case of Bound Constraints: Compass Search, Again. Bound constraints
are treated here apart from general linear constraints for several reasons. Bounds and
their geometry are much simpler to describe, as are the modifications needed to tailor
GSS methods to account for the constraints, as the illustrations in Figure 7.2 suggest.
At the same time, the bound constrained case serves to make clearer the issues that
must be addressed for general linear constraints.

The bound constrained problem is

minimize f(x)

subject to ` ≤ x ≤ u.
(8.1)

The inequality ` ≤ x ≤ u is interpreted to hold term by term; i.e., `(i) ≤ x(i) ≤ u(i),
i = 1, . . . , n. We allow the possibility that some of the variables may be unbounded
by allowing `(i) = −∞ and u(i) = +∞. The feasible region is Ω = {x | ` ≤ x ≤ u}.

Compass search is the simplest example of a globally convergent algorithm for
solving (8.1). It may be surprising that this exceedingly simple algorithm is guaran-
teed to converge to a KKT point of (8.1), but such is the case.

In two dimensions, compass search for bound constraints can be summarized as
follows. Try steps to the East, West, North, and South. If one of these steps yields
reduction in the value of the objective function and satisfies the bounds, then this
point becomes the new iterate. If none of these steps yields feasible improvement, try
again with steps half as long. As is usual in the unconstrained case, the algorithm
terminates when the step length falls below a given threshold.

A quick review of the description of compass search found in section 1.1 will
reveal that the only difference between the unconstrained and the bound constrained
variants of compass search is the insistence that every iterate (including the initial
iterate x0) must be contained in the feasible region—as emphasized in the description
above. In other words, xk ∈ Ω for all k = 0, 1,

The first reference that we can find in the direct search literature which explicitly
observes that the coordinate directions should be used as search directions when there
are only bound constraints is Keefer’s Simpat algorithm [152]. Keefer notes that the
pattern associated with the method of Hooke and Jeeves [139] conforms in a natural
way to the boundary of the feasible region and is well suited for coping with bounds.
The Simpat algorithm combines the use of the Nelder–Mead simplex algorithm [194]
in the interior of the feasible region with the use of the Hooke and Jeeves pattern
search algorithm near the boundary.

As observed in [167], there is an equivalence between this GSS method for bound
constrained problems and an exact penalization approach to problem (8.1). Applying
the version of compass search just discussed to problem (8.1) produces exactly the
same iterates as applying compass search method to the unconstrained problem

minimize f̂(x),(8.2)

where

f̂(x) =

{

f(x) if x ∈ Ω,
+∞ otherwise.

(8.3)

OPTIMIZATION BY DIRECT SEARCH 451

Ω

K(x, ε
1
)

K°(x, ε
1
)

x

ε
1

Ω

K(x, ε
2
)

K°(x, ε
2
)

xε
2

Fig. 8.1 The cones K(x, ε) and K◦(x, ε) for the values ε1 and ε2.

In fact, this is one classical approach used with direct search methods to ensure that
the iterates produced remain feasible (see, for instance, [152, 194, 245], as well as
the comments in section 8.3.3). GSS (and other direct search) methods are directly
applicable to (8.2) using the exact penalty function (8.3). However, this exact pe-
nalization approach should not be applied with an arbitrary generating set G. As
noted in section 7.1, the search directions should respect the boundary of the feasible
region. The simplest condition on G that suffices to ensure global convergence is that
G contain D⊕ (or scaled variants), as in the case of compass search.

8.1.1. The Geometry of the Nearby Boundary. Let x be an iterate generated by
compass search. It is the interaction of the choice of search directions with the portion
of the boundary of Ω near x (i.e., the bound constraints that are binding or nearly
binding at x) that is of concern. Given x ∈ Ω, let K(x, ε) denote the cone generated
by 0 and the outward-pointing normals of the constraints within a distance ε of x,
which are

{ei | u(i) − x(i) ≤ ε} ∪ {−ei | x(i) − `(i) ≤ ε}.

The cone K(x, ε) is generated by the normals to the faces of the boundary within
distance ε of x. If K(x, ε) = {0}, as is true in the unconstrained case or when x is
well within the interior of the feasible region, then K◦(x, ε) = Rn. The significance of
K(x, ε) is that for suitable choices of ε, its polar K◦(x, ε) approximates the feasible
region near x. (More precisely, x + K◦(x, ε) approximates the feasible region near x,
but we will continue to abuse the language in this manner.)

These cones are illustrated in Figure 8.1 for two values of ε, ε1 and ε2. In the
left-hand figure, K(x, ε1) is the shaded cone between the two green vectors, while
K◦(x, ε1) is the shaded cone between the two blue vectors. In the right-hand figure,
K(x, ε2) is the green ray, while K◦(x, ε2) is the shaded region below the blue line.
In both cases, K◦(x, ε) mirrors the geometry of the nearby boundary of Ω, where
“nearby” is defined in terms of the particular choice of ε. On the other hand, in both
cases the actual tangent cone at x is TΩ(x) = Rn, which does not capture the nearby
shape of Ω.

The polar cone K◦(x, ε) is important because if K◦(x, ε) 6= {0}, then the search
can proceed from x along all directions in K◦(x, ε) for at least a distance of ε and still

452 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

remain inside the feasible region. This is not the case for directions in the tangent
cone of the feasible region at x, since the latter cone does not reflect the proximity of
the boundary for points close to, but not on, the boundary.

8.1.2. Obtaining Feasible Descent. At every iteration k, the set of search direc-
tions Gk in compass search is D⊕ = {e1, e2, . . . , en,−e1,−e2, . . . ,−en}. Obviously,
since these vectors form a positive basis for Rn, one of them is guaranteed to be a
descent direction, provided −∇f(xk) 6= 0, no matter the orientation of −∇f(xk).
However, as discussed in section 7.1, this is not enough. There remains the potential
for steps that are excessively small not because there is little feasible improvement
possible, but solely because the unhappy orientation of the steps causes them to bump
up against the boundary.

A first step toward showing that compass search produces at least a subsequence
of iterates that converges to a KKT point of (8.1) is to show that if the iterate xk

is not a KKT point, then at least one of the search directions is a descent direction
along which the search can progress a reasonable distance and remain feasible. The
feature of compass search that guarantees a direction of feasible descent for problem
(8.1) is that some subset of the set of search directions D⊕ necessarily reflects the
shape of the feasible region near the current iterate xk, no matter where xk lies in
Ω. A feasible descent direction will be implicitly identified as a generator of a cone
K◦(x, ε) for some ε > 0. As illustrated previously in Figure 8.1, the cone K◦(x, ε)
approximates the feasible region near x.

Now, if the algorithm has not arrived at a KKT point (i.e., χ(x) 6= 0), then
there must be a descent direction from x along which the search can move for some
distance and remain feasible. If ε is not too large, K◦(x, ε) should be a good enough
approximation of Ω near x. If K◦(x, ε) is a good enough approximation of Ω near x,
then there should also be a descent direction in K◦(x, ε) along which the search can
move for a distance of at least ε and remain feasible. Since such a descent direction
must be a nonnegative combination of the generators of K◦(x, ε), at least one of these
generators should be a descent direction, too. But in the case of bound constraints,
K◦(x, ε) necessarily is generated by a subset of D⊕, the set of search directions for
compass search.

The upshot is that if χ(x) 6= 0, then at least one of the search directions in
D⊕ will be a descent direction, and the search can take a suitably long step along
this direction and remain feasible. The situation is illustrated in Figure 8.2. In these
pictures, at least one of the generators of K◦(x, ε), −e2, is a feasible descent direction.
Moreover, the search can move a distance at least of the order of ε along this direction
and remain feasible, so the issue does not arise of excessively small steps due solely
to bumping up against the boundary.

The need for ε to be sufficiently small is illustrated in Figure 8.3(a). Note that x
is not a KKT point, but for this particular choice of ε, there is no descent direction
in K◦(x, ε). However, if ε were slightly smaller, as shown in Figure 8.3(b), then
K(x, ε) = {0} and K◦(x, ε) = Rn. If so, D⊕ is the set of generators for Rn (as in the
unconstrained case), at least one of the search directions would be a descent direction
(in Figure 8.3(b), either e1 or e2), and the search would be able to move a distance
of at least ε along this direction and remain feasible. It will turn out that ε must be
small relative to χ(x).

For compass search, the simplicity of the boundary of Ω for the bound constrained
problem (8.1) means that D⊕ automatically contains all the generators for any possible

OPTIMIZATION BY DIRECT SEARCH 453

Ω

[−∇ f(x)]
K

°

[−∇ f(x)]
K

K(x, ε)

K°(x, ε)

x

1 ε

−∇ f(x)

w

(a) When −∇f(x) 6∈ K◦(x, ε) and its
projection onto K◦(x, ε) is not equal to
zero.

Ω

K(x, ε)

K°(x, ε)

x

1 ε

−∇ f(x)

w

(b) When −∇f(x) ∈ K◦(x, ε).

Fig. 8.2 At least one generator of K◦(x, ε) that yields feasible descent for a step of at least length
ε.

Ω

K(x, ε)

K°(x, ε)

x

ε

−∇ f(x)

(a) When ε is not sufficiently small.

Ω

K°(x, ε)

x

ε

−∇ f(x)

(b) When ε is sufficiently small.

Fig. 8.3 Why ε must be small enough to ensure feasible descent along at least one generator of
K◦(x, ε) for a step of at least length ε.

K◦(x, ε). In this way, compass search is able to pick up any feasible improvement in
the objective without knowing the direction of steepest descent.

The next proposition says that if the projection [−∇f(x)]K◦ is nonzero, then one
of the generators for K◦(x, ε) is a descent direction. This is an analog of (3.2). In this
case, however, the set of search directions GK◦ is the subset of G = D⊕ that generates
K◦(x, ε), rather than Rn. As a result, the bound is in terms of the projection of the
vector −∇f(x) into K◦(x, ε).

Proposition 8.1 is illustrated in Figure 8.4 for a generic vector v. In both situ-
ations, the projection vK◦ makes an angle of less than 90◦ with at least one of the
generators of K◦(x, ε). (Be warned, though, that the two-dimensional case is a bit
misleading since the projection vK◦ is collinear with one of the generators, while in

454 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

v = v
K

°

K

K°

(a)

v

v
K

v
K

°

K

K°

(b)

Fig. 8.4 The geometry of Proposition 8.1.

higher dimensions the projection may lie in the interior of a face.)
Proposition 8.1. Let G = D⊕. Let x ∈ Ω and ε ≥ 0, and let K◦ = K◦(x, ε)

and K = K(x, ε) for the bound constrained problem (8.1). Let GK◦ ⊆ G be the set of
generators of K◦. Then, if [−∇f(x)]K◦ 6= 0, there exists d ∈ GK◦ such that

1√
n
‖ [−∇f(x)]K◦ ‖ ≤ −∇f(x)T d.

Proof. Let v = −∇f(x). The polar decomposition of v gives v = vK◦ + vK . In
this case,

v
(j)
K◦ =

v(j) if v(j) > 0 and ej ∈ K◦,
v(j) if v(j) < 0 and −ej ∈ K◦,
0 otherwise

and

v
(j)
K =

v(j) if v(j) > 0 and ej ∈ K,
v(j) if v(j) < 0 and −ej ∈ K,
0 otherwise.

Let j denote the index of the largest magnitude element of vK◦ ; i.e.,

| v(j)
K◦ | = max

i
| v(i)

K◦ |.

If d = sign(v
(j)
K◦)ej , then

vT
K◦d = | v(j)

K◦ | ≥ ‖ vK◦ ‖√
n

.

Since |v(j)
K◦ | > 0 by the assumption that vK◦ 6= 0, the vector sign(v

(j)
K◦) ej is necessarily

a generator for K◦. Furthermore, v
(j)
K = 0, so vT

Kd = 0. Thus,

1√
n
‖ vK◦ ‖ ≤ (vK◦ + vK)

T
d = vT d.

OPTIMIZATION BY DIRECT SEARCH 455

The next result, Proposition 8.2, relates χ(x) to the descent direction guaranteed
by Proposition 8.1.

Proposition 8.2. Let G = D⊕. Let x ∈ Ω and ε ≥ 0, and let K◦ = K◦(x, ε)
and K = K(x, ε) for the bound constrained problem (8.1). Then

χ(x) ≤ ‖ [−∇f(x)]K◦ ‖ +
√

n ‖ [−∇f(x)]K ‖ ε.(8.4)

Proof. The proof relies on the fact that one can move along a direction in K(x, ε)
for a distance of at most

√
nε before going infeasible, as illustrated in Figure 8.3(a).

Let v = −∇f(x). Applying the polar decomposition v = vK + vK◦ to (7.4) yields

χ(x) ≤ max
x+w∈Ω
‖ w ‖≤1

vT
K◦w + max

x+w∈Ω
‖ w ‖≤1

vT
Kw.(8.5)

The first term on the right is easily bounded as

max
x+w∈Ω
‖ w ‖≤1

vT
K◦w ≤ ‖ vK◦ ‖.

Meanwhile,

max
x+w∈Ω
‖ w ‖≤1

vT
Kw = max

x+w∈Ω
‖ w ‖≤1

vT
K(wK + wK◦) ≤ max

x+w∈Ω
‖ w ‖≤1

vT
KwK ,

since vT
KwK◦ ≤ 0 for any w. However, the definition of K(x, ε) ensures that if x +

w ∈ Ω, no component of wK can be larger than ε (see Figure 8.3(a)). Therefore,
‖wK ‖ ≤ √

nε, and (8.5) yields

χ(x) ≤ ‖ vK◦ ‖ +
√

n‖ vK ‖ε.

Note that if K = {0}, then K◦ = Rn.
To better understand the bound (8.4), suppose that x is not a KKT point, so

χ(x) > 0. Suppose also that ‖ − ∇f(x) ‖ ≤ γ for some γ. Then ‖ [−∇f(x)]K ‖ ≤
γ, as well. If ε is sufficiently small compared to χ(x), say,

√
nγε = 1

2χ(x), then
Proposition 8.2 yields χ(x) ≤ 2‖ [−∇f(x)]K◦ ‖. Thus, Proposition 8.2 says that if
χ(x) 6= 0, then [−∇f(x)]K◦ 6= 0, provided ε is sufficiently small compared to χ(x).

However, Proposition 8.1 then guarantees that one of the generators of K◦(x, ε) is
a descent direction. Moreover, the search can move along this direction at distance of
at least ε and remain feasible, and ε is of roughly the same order as χ(x). This means
that one of the search directions is a feasible descent direction, and, in addition, the
problem of excessively small steps along this direction due solely to the proximity of
the boundary does not arise.

8.1.3. A Bound on Stationarity at Unsuccessful Iterations. The following result,
analogous to Theorem 3.3 in the unconstrained case, bounds χ(xk) in terms of the
value of the step-length control parameter ∆k at unsuccessful iterations.

Theorem 8.3. Let f : Rn → R be continuously differentiable, and suppose ∇f
is Lipschitz continuous with constant M and ‖∇f(x) ‖ ≤ γ for all x ∈ Ω. Then the
bound constrained version of compass search produces iterates such that for any k ∈ U ,

χ(xk) ≤ √
n(M + γ)∆k.

Proof. There are two cases to consider.

456 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

Case I. Let int(Ω) denote the interior of Ω. If, for all d ∈ G, xk + ∆kd 6∈ int(Ω),
then every trial point is either on the boundary of or outside Ω; i.e., for i = 1, . . . , n,

x
(i)
k − ∆k ≤ `(i) and x

(i)
k + ∆k ≥ u(i).

This means that if x+w ∈ Ω, no component of w can be larger than ∆k, so the length
of the longest vector w for which x + w ∈ Ω cannot exceed

√
n∆k. Thus,

χ(xk) = max
xk+w∈Ω

‖ w ‖≤1

−∇f(xk)T w ≤ max
xk+w∈Ω

‖ w ‖≤1

‖∇f(xk) ‖ ‖w ‖ ≤ √
n∆k‖∇f(xk) ‖ ≤ √

nγ∆k.

Case II. Otherwise, there exists at least one d ∈ G such that xk + ∆kd ∈ int(Ω).
In fact, the cone K◦ = K◦(xk,∆k) is generated by the set d ∈ G such that xk +∆kd ∈
int(Ω). In this case, applying Proposition 8.2 yields

χ(xk) ≤ ‖ [−∇f(xk)]K◦ ‖ +
√

n ‖ [−∇f(xk)]K ‖ ∆k

≤ ‖ [−∇f(xk)]K◦ ‖ +
√

nγ∆k.

Following the same reasoning as in the proof of Theorem 3.3 with the first equation
replaced by the result of Proposition 8.1 yields

‖ [−∇f(xk)]K◦ ‖ ≤ √
nM∆k.

The theorem follows.
Theorem 8.3 means that the other element needed to prove that at least one limit

point of the subsequence of unsuccessful iterations is a KKT point is showing that

lim inf
k→∞
k∈U

∆k = 0.(8.6)

However, in the case of compass search this follows from the arguments already seen
in section 3.7.2.

The analysis for general linear constraints will follow a similar pattern. The
suitable choice of search directions and results on the geometry of the feasible region
first lead to a bound on χ(xk) in terms of ∆k. The globalization strategies already
seen for GSS algorithms for unconstrained problems then yield (8.6) with little or no
alteration.

The reader may have noticed that ε plays only a minor role in the analysis for the
bound constrained case. The use of ‖ q(x) ‖, rather than χ(x), in the analysis of the
bound constrained case would obviate the need to introduce K(x, ε). The additional
machinery was introduced here only to illustrate some of the issues that now become
of substantive concern in the consideration of general linear constraints.

8.2. Direct Search Methods for General Linear Constraints. Next consider the
general linearly constrained problem, written as

minimize f(x)

subject to Ax ≤ b.
(8.7)

The feasible set is Ω = { x | Ax ≤ b } .
As with bound constrained problems, the set of search directions Dk for linearly

constrained optimization should reflect the geometry of any portion of the boundary
of the feasible region near xk. However, the feasible region is now a general polyhedron

OPTIMIZATION BY DIRECT SEARCH 457

rather than a box. This more complex geometry makes the description of the search
directions more complicated, as discussed next.

For derivative-free methods, the basic principles discussed here for handling the
geometry of linear constraints were first considered by May [178] in his extension to
linearly constrained problems of Mifflin’s algorithm [181]. May’s approach is not a
pure direct search method since it relies, instead, on coarse finite-difference approxi-
mations to the derivative of f .

8.2.1. The Geometry of the Nearby Boundary. Once again, the focus is on that
portion of the boundary near x. Unlike the bound constrained case, though, the
boundary of the polyhedron Ω is no longer so regular. Further, trying to assem-
ble a single generating set G that can accommodate all possible configurations is a
combinatorial problem, equivalent to vertex enumeration [14], as discussed further in
section 8.2.8.

Let aT
i be the ith row of the constraint matrix A in (8.7). Given x ∈ Ω and ε ≥ 0,

define the index set I(x, ε) by

i ∈ I(x, ε) if x is within distance ε of the set
{

y | aT
i y = b(i)

}

.

For i ∈ I(x, ε), define

νi(x, ε) = ai.(8.8)

These are the outward-pointing normals to the corresponding faces of Ω. Examples
are shown in Figure 8.5 for two different choices of x ∈ Ω.

Given x ∈ Ω, K(x, ε) denotes the cone generated by 0 and the vectors νi(x, ε)
for i ∈ I(x, ε). The cone K(x, ε) is thus generated by the normals to the faces of
the boundary within distance ε of x. If K(x, ε) = {0}, then K◦(x, ε) = Rn. Observe
that K(x, 0) = NΩ(x), while K◦(x, 0) = TΩ(x). The cones K(x, ε) and K◦(x, ε) are
illustrated in Figure 8.6 for two different values of ε. In the left-hand figure, K(x, ε1)
is the shaded cone between the two green vectors, while K◦(x, ε1) is the shaded cone
between the two blue vectors. In the right-hand figure, K(x, ε2) is the green ray, while
K◦(x, ε2) is the shaded region below the blue line.

As in the bound constrained case, the polar cone K◦(x, ε) is important because if
ε > 0 is sufficiently small, the search can proceed from x along all directions in K◦(x, ε)
for a distance ε and still remain inside the feasible region (see Proposition 8.9). This
is not the case for directions in TΩ(x), since the tangent cone does not reflect the
proximity of the boundary for points close to, but not on, the boundary.

A depiction of K(x, ε) and K◦(x, ε) in three dimensions is given in Figure 8.7.
The point x is near the apex of a right-angle pyramid, and ε is large enough that
x is within distance ε of the four faces that meet at the apex. The cone K(x, ε) is
generated by the normals to these four faces.

8.2.2. Specifying the Generating Set. For linearly constrained problems, two ge-
ometrical requirements on the set of search directions Dk have appeared in the liter-
ature.

Condition 8.4 (see [168, 175]; see also [178] for a special case). Dk includes a
set Gk of generators for all of the cones K◦(xk, ε), 0 ≤ ε ≤ ε∗, for some ε∗ > 0 that
is independent of k.

Note that as ε varies from 0 to ε∗ there is only a finite number of distinct cones
K(xk, ε) since there is only a finite number of faces of Ω. Thus there is only a finite

458 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

Ω

x
1

ε

ν
1
(x

1
, ε)

ν
2
(x

1
, ε)

Ω

x
2

ε

ν
2
(x

2
, ε)

ν
3
(x

2
, ε)

Fig. 8.5 The outward-pointing normals νi(x1, ε) for the index set I(x1, ε) = {1, 2} and νi(x2, ε) for
the index set I(x2, ε) = {2, 3}.

Ω

K(x, ε
1
)

K°(x, ε
1
)

x

ε
1

Ω

K(x, ε
2
)

K°(x, ε
2
)

x

ε
2

Fig. 8.6 The cones K(x, ε) and K◦(x, ε) for the values ε1 and ε2.

x

Ω

x

K°(x, ε)

K(x, ε)

Ω

Fig. 8.7 A pyramid-shaped feasible region with a point x near the apex of the pyramid.

OPTIMIZATION BY DIRECT SEARCH 459

Ω

x

x

Ω

Fig. 8.8 Sets of search directions that conform to the nearby boundaries.

number of cones K◦(xk, ε) as ε varies from 0 to ε∗. For instance, in Figure 8.6, for
0 ≤ ε ≤ ε1 there are only three distinct cones K(xk, ε).

Condition 8.5 (see [175]). For εk > 0, Dk includes a set Gk of generators for
K◦(xk, εk).

The latter condition can be viewed as a way to try to defer looking at some of the
search directions that arise in Condition 8.4. The rules for choosing and updating εk

are discussed later.
The set of search directions must also satisfy an analog of the uniformity con-

dition (3.11). This condition is given in Condition 8.8, after the necessary technical
development.

These are only the minimal requirements on the set of search directions. One
might also choose to include the generators of K(x, ε). Since K(x, ε)+K◦(x, ε) = Rn,
one would then have sets of search directions that would capture descent in any
direction. The 2n search directions ±e(i), i = 1, . . . , n, in compass search have this
property. The question of computing generators of cones is addressed in section 8.2.8.

The name generating set search derives from the requirement that Dk contain
generators for the cones K◦(xk, ε). In the unconstrained case, K(xk, ε) = {0} and
K◦(xk, ε) = Rn, so Dk must contain a set of generators for Rn. As noted in section 3.4,
a set of generators for Rn is also called a positive spanning set. In the constrained case,
if xk is away from the boundary, in the sense that K(xk, ε) = {0}, then K◦(xk, ε) = Rn

and a set of generators for K◦(xk, ε) is simply a positive spanning set for Rn, as in the
unconstrained case. This is illustrated in Figure 8.3(b) for the bound constrained case.
Thus, if the iterate is far enough from the boundary of Ω, the set of search directions
can look like one for unconstrained optimization, as it should. On the other hand, if
xk is near the boundary, K(xk, ε) 6= {0} and the generating set must conform to the
local geometry of the boundary, as depicted in Figure 8.8.

8.2.3. GSS Algorithms for Linearly Constrained Problems. Besides the specifica-
tion of the set of search directions, the other major change from Algorithm 3.2 for
unconstrained minimization is the way feasibility is treated. As in the bound con-
strained case, the algorithm is required to begin with a feasible iterate x0 ∈ Ω and
thereafter accept only feasible iterates.

460 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

Two flavors of linearly constrained GSS algorithms are outlined in Algorithms 8.1
and 8.2. The significant differences with the unconstrained Algorithm 3.2 are colored
red.

Algorithm 8.1 most resembles the linearly constrained algorithm described in
[168], though here the option of a sufficient decrease step acceptance criterion has been
added. The set of search directions Dk satisfies Condition 8.4. Imposing Condition 8.4
means that the algorithm looks for improvement at feasible points along the edges of
cones, some of which are guaranteed to look like the feasible region near xk. As in
the unconstrained case, it is possible (and frequently is the case) that an acceptable
step is found without having to look along every potential search direction.

Algorithm 8.2 captures elements of Algorithms 1 and 2 in [175]. It is based on
a sufficient decrease criterion, and the search directions satisfy either Condition 8.4
or Condition 8.5. In Step 2, if a full-length step along an essential search direction
is infeasible, then one tries a step to the boundary of the feasible region along this
direction.

In both Algorithm 8.1 and Algorithm 8.2, if the search directions satisfy Condi-
tion 8.4, the failure to find improvement can only be due to the step length, so the
response to an unsuccessful iteration is to reduce ∆k. In Algorithm 8.2, under Con-
dition 8.5, the εk used to identify the outward-pointing normals is allowed to vary.
So in Algorithm 8.2, an unsuccessful iteration may be due to the step length, but
it may also be due to the choice of search directions (or both). The response to an
unsuccessful iteration is therefore to reduce both ∆k and εk.

Not all possible variants are considered here. For instance, one could also use
truncation to feasible lattice points in connection with a simple decrease criterion
for accepting steps. One could also have different step-length control parameters for
different directions.

8.2.4. Existence of a Feasible Descent Direction among the Search Directions.
There are two facts that one must establish to prove convergence for linearly con-
strained GSS. First, one must show that one of the search directions is a descent
direction, as in the unconstrained and bound constrained cases. Second—and this
is a complication due to the constraints—one must show that the search can take a
suitably long step along this descent direction and remain feasible. This latter point
first was discussed in section 7.1 in connection with Figure 7.1 and then developed in
section 8.1.2 for the case of bound constraints.

Proving the existence of a descent direction in Dk is more complicated than in
the unconstrained and bound constrained cases. The following is a crucial geometric
fact about the feasible region. For x ∈ Ω and v ∈ Rn, define

χ̂(x; v) = max
x+w∈Ω
‖ w ‖≤1

vT w;

then χ(x) = χ̂(x;−∇f(x)). The introduction of χ̂ makes clear that the following
proposition is a fact about polyhedra, independent of the objective f . It relates χ̂(x; v)
to the projection of v onto K◦(x, ε), as in Proposition 8.2 for bound constraints. Once
again, the cone K◦(x, ε) may be viewed as an approximation of the part of the feasible
set near x. The proof may be found in [160].

Proposition 8.6. There exists c8.6 > 0, depending only on A (the matrix of
constraints), such that if x ∈ Ω, then

χ̂(x; v) ≤ ‖PK◦(x,ε)(v) ‖ + c8.6 ‖PK(x,ε)(v) ‖ ε.

OPTIMIZATION BY DIRECT SEARCH 461

Initialization.

Let f : Rn → R be given. Let Ω define the feasible region.

Let x0 ∈ Ω be the initial guess.

Let ∆tol > 0 be the step-length convergence tolerance.

Let ∆0 > ∆tol be the initial value of the step-length control parameter.

Let φmax ≥ 1 be an upper bound on the expansion factor.

Let θmax < 1 be an upper bound on the contraction parameter.

Let ρ be a scalar function satisfying either (3.8) or (3.9). The choice ρ ≡ 0
is acceptable.

Let βmax ≥ βmin > 0 be upper and lower bounds, respectively, on the
lengths of the vectors in any generating set.

Let ε∗ > 0 be the tolerance for choosing the locally active constraints.

Algorithm. For each iteration k = 1, 2, . . .

Step 1. Let Dk = Gk ∪Hk, where Gk satisfies Condition 8.4 and
Condition 8.8, βmin ≤ ‖d‖ ≤ βmax for all d ∈ Gk, and Hk is a
finite (possibly empty) set of additional search directions such
that βmin ≤ ‖d‖ for all d ∈ Hk.

Step 2. If there exists dk ∈ Dk such that f(xk + ∆kdk) < f(xk) − ρ(∆k)
and xk + ∆kdk ∈ Ω, then do the following:

– Set xk+1 = xk + ∆kdk (change the iterate).

– Set ∆k+1 = φk∆k, where 1 ≤ φk ≤ φmax (optionally expand
the step-length control parameter).

Step 3. Otherwise, either xk + ∆kd 6∈ Ω or f(xk + ∆kd) ≥ f(xk) − ρ(∆k)
for all d ∈ Dk, so do the following:

– Set xk+1 = xk (no change to the iterate).

– Set ∆k+1 = θk∆k where 0 < θk < θmax < 1 (contract the
step-length control parameter).

– If ∆k+1 < ∆tol, then terminate.

Algorithm 8.1 One variant of a linearly constrained GSS method.

¿From Proposition 8.6 the following result can be derived. It says that if x is
not a KKT point, then one of the generators of K◦(x, ε) is a descent direction for f ,
provided ε is sufficiently small. For the proof, the reader is referred to [160].

The geometry of Proposition 8.7 is depicted in Figure 8.9. In Figure 8.9(a), there
is no descent direction in K◦(x, ε1), but in Figure 8.9(b), ε2 is smaller and one edge
of K◦(x, ε2) is a descent direction. See also Figure 8.3 for an example in the case of
bound constraints.

Proposition 8.7. Let γ > 0 be given. Then there exists r8.7 > 0, depending
only on γ and A (the matrix of constraints), for which the following holds. Suppose
that x ∈ Ω, ‖∇f(x) ‖ < γ, and χ(x) > 0. Given ε ≥ 0, let K◦ = K◦(x, ε), and let

462 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

Initialization.

Let f : Rn → R be given. Let Ω define the feasible region.

Let x0 ∈ Ω be the initial guess.

Let ∆tol > 0 be the step-length convergence tolerance.

Let ∆0 > ∆tol be the initial value of the step-length control parameter.

Let φmax ≥ 1 be an upper bound on the expansion factor.

Let θmax < 1 be an upper bound on the contraction parameter.

Let ρ be a scalar function satisfying (3.9). This time, ρ ≡ 0 is not allowed.

Let βmax ≥ βmin > 0 be upper and lower bounds, respectively, on the
lengths of the vectors in any generating set.

If the search directions satisfy Condition 8.5:
- Let ε0 > 0 be an initial tolerance for choosing the locally active

constraints.
- Let θε, 0 < θε < 1, be a reduction factor for εk.

Algorithm. For each iteration k = 1, 2, . . .

Step 1. Let Dk = Gk ∪Hk, where Gk satisfies either Condition 8.4 or
Condition 8.5, and Condition 8.8, βmin ≤ ‖d‖ ≤ βmax for all
d ∈ Gk, and Hk is a finite (possibly empty) set of additional
search directions such that βmin ≤ ‖d‖ for all d ∈ Hk.

Step 2. For dk ∈ Dk, let αk(d) be the largest nonnegative value of α for
which xk + αd ∈ Ω. Let ∆̄k(d) = min(∆k, αk(d)).

Step 3. If there exists dk ∈ Dk such that
f(xk + ∆̄k(dk) dk) < f(xk) − ρ(∆̄k(dk)), then do the following:

– Set xk+1 = xk + ∆̄k(dk) dk (change the iterate).

– Set ∆k+1 = φk∆k, where 1 ≤ φk ≤ φmax (optionally, increase
∆k).

Step 4. Otherwise, f(xk + ∆̄k(d) d) ≥ f(xk) − ρ(∆̄k(d)) for all d ∈ Dk, so
do the following:

– Set xk+1 = xk (no change to the iterate).

– Set ∆k+1 = θk∆k where 0 < θk < θmax < 1 (reduce ∆k).

– If the search directions satisfy Condition 8.5, set εk+1 = θεεk

(reduce εk).

– If ∆k+1 < ∆tol, then terminate.

Algorithm 8.2 A second variant of a linearly constrained GSS method.

OPTIMIZATION BY DIRECT SEARCH 463

Ω

K(x, ε
1
)

K°(x, ε
1
)

−∇ f(x)

x

ε
1

(a) No descent direction in K◦(x, ε1).

Ω

K(x, ε
2
)

K°(x, ε
2
)

−∇ f(x)

x

ε
2

(b) A generator of K◦(x, ε2) is a descent
direction.

Fig. 8.9 K(x, ε) contains a descent direction if ε is sufficiently small.

G be a set of generators of K◦. Then there exists c8.7(G) > 0, depending only on G,
such that if ε < r8.7 χ(x), then for some d ∈ G,

c8.7(G) χ(x) ‖ d ‖ ≤ −∇f(x)T d.(8.9)

Proposition 8.7 means that under Condition 8.4, at least one of the search direc-
tions in Dk, which generate K◦(xk, ε) for all 0 ≤ ε ≤ ε∗, is a descent direction for f
at xk. The need for ε to be sufficiently small, compared to χ, is the reason for the
requirement in Condition 8.4 that Dk contain generators for the cones K◦(xk, ε) for
all 0 ≤ ε ≤ ε∗. In compass search, Condition 8.4 is satisfied automatically by the
choice G = D⊕ since then the generators for all possible K◦(xk, ε) are included auto-
matically. Under Condition 8.5 there is a descent direction in Dk if εk is sufficiently
small relative to χ(xk).

The bound (8.9) generalizes (3.11) from the unconstrained case. In the uncon-
strained case, Ω = Rn, and

χ(x) = max
‖w ‖≤1

−∇f(x)T w = ‖∇f(x) ‖.

Thus (8.9) reduces to

c8.7(G) ‖∇f(x) ‖ ‖ d ‖ ≤ −∇f(x)T d,

which is (3.11), with c8.7(G) = κ(G).
Because c8.7(G) plays the role in the linearly constrained case that κ(G) plays in

the unconstrained case, and in fact reduces to κ(G) if there are no constraints nearby,
the following uniformity condition must be imposed in addition to Conditions 8.4 and
8.5.

Condition 8.8. There exists cmin > 0, independent of k, such that for all k

c8.7(Gk) > cmin,

where c8.7(G) is the quantity from Proposition 8.7.

464 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

As in the unconstrained case, this ensures that at least one search direction lies
safely within 90◦ of −∇f(x).

This uniformity condition is automatically satisfied if there is only a finite number
of distinct sets of search directions Gk allowed, as in the lattice-based GSS method in
[168]. Otherwise, Condition 8.8 must be enforced extrinsically in the construction of
the search directions. The satisfaction of Condition 8.8 is only a concern if some of
the K◦(x, ε) contain a subspace. In such cases, the goodness of the search directions
needs to be ensured, as in the unconstrained case.

The other point necessary for the convergence analysis is that it is possible to take
suitably long steps along the descent direction in Dk promised by Proposition 8.7 and
still remain feasible. The following result ensures that it is possible to take reasonably
long steps along directions in K◦(xk, ε) and remain feasible.

Proposition 8.9. If x ∈ Ω, and w ∈ K◦(x, ε) satisfies ‖w ‖ ≤ ε, then x+w ∈ Ω.
The proof follows from the definitions of K(x, ε) and K◦(x, ε).

8.2.5. The Situation at Unsuccessful Iterations. At unsuccessful iterations of Al-
gorithms 8.1 and 8.2, there are bounds on the measure of stationarity χ(xk). These
bounds are linearly constrained versions of Theorem 3.3. As in the discussion of un-
successful iterations in the unconstrained case, we make some assumptions to simplify
the statements of the results that follow. In particular, the Lipschitz continuity of
∇f(x) can be replaced by uniform continuity.

For Algorithm 8.1, requiring Condition 8.4 for the set of search directions yields
the following result.

Theorem 8.10. Suppose ∇f is Lipschitz continuous with constant M . Further-
more, suppose the iterates {xk} generated by Algorithm 8.1 lie in a bounded set, and
that ‖∇f(x) ‖ ≤ γ on this set. Then there exists c8.10, independent of k, but depend-
ing on c8.7(Gk), such that if k is an unsuccessful iteration of Algorithm 8.1 for linearly
constrained optimization, then

χ(xk) ≤ c8.10

[

M ∆k βmax +
ρ(∆k)

∆kβmin

]

.

An analogous bound at unsuccessful iterations for Algorithm 8.2 depends on
whether Condition 8.4 or Condition 8.5 is imposed on the set of search directions.

Theorem 8.11. Suppose ∇f is Lipschitz continuous with constant M . Further-
more, suppose the iterates {xk} generated by Algorithm 8.2 lie in a bounded set, and
that ‖∇f(x) ‖ ≤ γ on this set. Then there exist c8.11 and r8.11 independent of k, but
depending on c8.7(Gk), such that if k is an unsuccessful iteration of Algorithm 8.2 for
linearly constrained optimization, then

χ(xk) ≤ c8.11

[

M ∆k βmax +
ρ(∆k)

∆kβmin

]

if the search directions satisfy Condition 8.4, and

χ(xk) ≤ c8.11

[

M ∆k βmax +
ρ(∆k)

∆kβmin
+ r8.11

γ

βmin
εk

]

if the search directions satisfy Condition 8.5.

OPTIMIZATION BY DIRECT SEARCH 465

8.2.6. Global Convergence Results. The bounds for χ at unsuccessful iterations
can be used to establish global first-order convergence results for Algorithms 8.1 and
8.2. The results given here are a synthesis of a variety of results from [167, 168, 173,
175].

Theorems 8.10 and 8.11 make clear that if the search directions satisfy Condi-
tion 8.4, the crux of the convergence analysis lies in showing, as in the unconstrained
case, that either

lim inf
k→+∞

k∈U

∆k = 0 or lim
k→+∞

k∈U

∆k = 0.

However, such a result follows from the arguments already made in sections 3.7.1 and
3.7.2.

This leads to the following convergence result for Algorithm 8.1. Suppose f is
continuously differentiable on Rn, and ∇f(x) is Lipschitz continuous on Rn with
constant M . If ρ ≡ 0, suppose in addition that Lf (x0)∩Ω is bounded, where Lf (x0)
is the level set { x | f(x) ≤ f(x0) }. Otherwise, assume only that {xk} remains in a
bounded set. Furthermore, assume that either

1. the sufficient decrease condition (3.9) holds, or
2. the entries of A are rational, and the conditions (3.14), (3.15), (3.17), (3.21)

hold to produce a rational lattice.
Then Algorithm 8.1 produces iterates {xk} for which

lim inf
k→+∞

χ(xk) = 0 .

That is, the sequence of iterates has a limit point that is a KKT point of (8.7).
The additional assumption that the matrix of constraints A is rational arises in

connection with linearly constrained GSS algorithms that enforce only simple de-
crease. As discussed in section 3.7.2, these rely on a lattice structure to ensure global
convergence. The matrix of constraints A is assumed to be rational to ensure that
it is possible to construct search directions for Dk that lead to the desired lattice
structure. See [168] for a further discussion of this point.

One can ensure that limk→+∞ χ(xk) = 0 by enforcing a feasible point version of
Assumption 3.12 from the unconstrained case (see [168]).

In Algorithm 8.2, the sufficient decrease condition (3.9) is enforced. In [175] the
authors show that

lim
k→+∞

∆k = 0.

Moreover, if the search directions satisfy Condition 8.5, they show that there is a
subsequence K of iterations for which

lim
k∈K

εk = 0.

With this additional information, Theorem 8.11 leads to the following result. Let
f be continuously differentiable on Rn and ∇f(x) Lipschitz continuous on Rn with
constant M . Suppose the iterates produced by Algorithm 8.2 remain in a bounded
set. Then Algorithm 8.2 produces iterates {xk} for which

lim inf
k→+∞

χ(xk) = 0 .

466 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

If the search directions satisfy Condition 8.4, this result can be extended, again by
enforcing a feasible point version of Assumption 3.12, to show that

lim
k→+∞

χ(xk) = 0.

That is, all the limit points of the sequence of iterates are KKT points.

8.2.7. Stopping Criteria. The results in section 8.2.5 suggest practical stopping
criteria for GSS algorithms for linearly constrained problems. The situation is much
the same as that discussed in section 3.10 for unconstrained problems.

Theorem 8.10 shows that at unsuccessful iterations, the continuous measure of
stationarity χ will tend to decrease as ∆k is decreased. Consequently, it is reasonable
to terminate the algorithm when ∆k falls below some tolerance. Theorem 8.11 tells
us something similar, though if the search directions are only chosen to satisfy Con-
dition 8.5, then not only ∆k but also εk should be required to be sufficiently small
before termination.

8.2.8. Constructing the Search Directions. If the generators of K(xk, ε) are lin-
early independent, then there are several ways in which to compute the generators of
the polar cone K◦(xk, ε), which give the search directions needed for a GSS algorithm.
For a further discussion of how to construct the search directions (or, equivalently,
generators of a polyhedral cone), see [168, 175, 178, 210].

A simple construction is the following, taken from [168]. Suppose that for some
ε∗ > 0, the cone K(x, ε∗) has a linearly independent set of generators (i.e., the
constraints in (8.8)). Let V denote the matrix whose columns are these generators.
If there are r generators, V is an n× r matrix. Let N be a positive basis for the null
space of V T . Then one can show that for any ε, 0 ≤ ε ≤ ε∗, a set of generators of
K◦(x, ε) can be found among the columns of N , V (V T V)−1, and −V (V T V)−1.

This gives a simple way to compute generators for all the cones K(x, ε) for all
0 ≤ ε ≤ ε∗. Moreover, this construction shows that there need be no more than
2n generators in any given set of search directions Dk, so long as the cone K(x, ε∗)
has a linearly independent set of generators. Thus, the sets of search directions for
linearly constrained optimization need not contain a significantly larger number of
search directions than those for unconstrained optimization. Generators can also be
constructed using the QR factorization [175, 178].

If the generators of K(xk, ε) are not linearly independent, matters are much more
complicated. In this case, the only vertex in K◦(xk, ε) (the origin) may be a degenerate
vertex, where the notion of a degenerate vertex is that found in linear programming.
The apex of the pyramid in Figure 8.7 is an example. The generators of K◦(xk, ε)
correspond to edges of the cone, and the edges are determined by intersections of sets
of n − 1 faces (hyperplanes corresponding to constraints in the original optimization
problem). However, because more than n faces meet at the origin, not every set
of n − 1 faces intersects in an edge of the cone and determines a generator. In this
situation, there seems to be little recourse other than enumeration of all possible edges
(see, for instance, [14] for a discussion of this problem).

8.3. General Nonlinear Constraints. We return to the general nonlinear program
(7.1). The question of treating general nonlinear constraints with direct search opti-
mization algorithms has a long history, and many different ideas have been proposed.
There are difficulties, however, in extending direct search methods to general nonlinear
programs.

OPTIMIZATION BY DIRECT SEARCH 467

8.3.1. Feasible Direction Methods That Use Constraint Derivatives. If the deriva-
tives of the constraints c(x) in (7.1) are available, or if estimation of these derivatives
is deemed appropriate, then there are a number of proposed modifications of direct
search methods along the lines of feasible directions algorithms. These methods in-
volve the explicit use of derivatives of the constraints to compute feasible directions
at the boundary of the feasible region.

Klingman and Himmelblau [157] give an algorithm with a simple construction of
a single feasible direction that serves as the search direction. The method of Glass and
Cooper [122] is more sophisticated and computes a new search direction by solving
a linear programming problem involving a linear approximation of the objective and
constraints, just as one would in a derivative-based feasible directions algorithm.

More recently, Lucidi, Sciandrone, and Tseng [175] presented a feasible directions,
feasible iterates GSS approach for which one is guaranteed KKT point convergence.
Algorithm 8.2 in section 8 is a specialization of their approach to the case of linear
constraints.

The assumption underlying this approach is that the nonlinear constraints and
their gradients can be computed relatively cheaply and accurately. This is the situ-
ation, for instance, in some shape optimization problems, in which the optimization
variables x describe the shape of some object whose physical characteristics are being
optimized. The constraints might be geometrical in nature, and given by fairly simple
algebraic functions of x. The objective, on the other hand, might involve the adaptive
solution of a differential equation, giving rise to an objective like that in Figure 1.2.

In the approach presented in [175], the feasible region near xk is approximated
by the linearization of the nearby constraints, as in traditional feasible directions
methods that rely on derivatives. The important search directions are the generators
of the cones normal to the cones generated by the nearby outward-pointing normals,
as in the linearly constrained approach just discussed.

This approach employs a sufficient decrease condition of the form ρ(t) = o(t). The
amount of feasible descent required is computed by conducting curvilinear searches
along the curves defined by the projections of the search directions onto the feasible
set. These projections onto the feasible set guarantee feasibility of the iterates. Since
the constraints and their derivatives are assumed to be relatively inexpensive to com-
pute, these projections may be assumed to be relatively inexpensive to compute as
well.

In the class of algorithms described in [175], steps are not allowed to violate
feasibility with respect to the linearizations of the locally active constraints. If one
cannot take a step along a search direction as far as dictated by the step-length control
parameter, one simply goes as far as possible, as in Algorithm 8.2. This means that
if xk is near the boundary, some of the steps may be quite short. However, the step-
length control parameter is not reduced, so these short steps are only in the search
directions that intersect the boundary.

It is also possible to choose the search directions according to Condition 8.5, if
desired, so one only works with the generators of a single cone K◦(xk, εk) at each
iteration, rather than generators for the entire family K◦(xk, ε), 0 ≤ ε ≤ ε∗. This
idea was illustrated for the linearly constrained case in Algorithm 8.2. At unsuccessful
iterations, εk is reduced as well as the step-length control parameters.

Under very mild assumptions on the nonlinear constraints c(x), and the assump-
tion that the sequence of iterates remains in a compact set, the following convergence
results can be obtained [175]. If the search directions are chosen according to Condi-

468 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

tion 8.4, then all the limit points of the sequence of iterates are KKT points. If the
search directions are chosen according to Condition 8.5, then at least one limit point
of the sequence of iterates is a KKT point.

8.3.2. An Augmented Lagrangian Approach. Another approach to using GSS
methods for nonlinearly constrained problems is the augmented Lagrangian approach
by Lewis and Torczon in [169]. Augmented Lagrangian methods were first proposed
in the late 1960s by Hestenes [135] and Powell [215]. The GSS variant is based on the
augmented Lagrangian method of Conn, Gould, and Toint [68]. The latter algorithm
is modified by using a GSS method for the bound constrained minimization of the
augmented Lagrangian.

Assume the problem has been stated as an equality constrained problem, possibly
after the introduction of slack variables in inequalities:

minimize f(x)
subject to c(x) = 0

` ≤ x ≤ u.
(8.10)

The augmented Lagrangian in [68] is

Φ(x;λ, σ, µ) = f(x) +

m
∑

i=1

λ(i)c(i)(x) +
1

2µ

m
∑

i=1

σ(i)c(i)(x)2.

The vector λ(i) = (λ
(i)
1 , . . . , λ

(i)
m)T is the Lagrange multiplier estimate for the equality

constraints, µ is the penalty parameter, and the components σ(i) of the vector σ are
positive weights. The equality constraints of (8.10) are incorporated in the augmented
Lagrangian Φ while the simple bounds are left explicit. For a particular choice of
multiplier estimate λk, penalty parameter µk, and scaling σk, define

Φk(x) = Φ(x;λk, σk, µk).

At iteration k of the augmented Lagrangian algorithm described in [68], one
approximately solves the subproblem

minimize Φk(x)
subject to ` ≤ x ≤ u.

(8.11)

The degree to which this subproblem must be solved is given by

‖PΩ (xk −∇Φk(xk)) ‖ ≤ ωk,(8.12)

where PΩ denotes the projection onto Ω = {x | ` ≤ x ≤ u} and ωk is updated at each
iteration k.

The feature of interest in the GSS adaptation of this algorithm is the way in
which the bound constrained subproblem (8.11) is approximately solved using a bound
constrained GSS method. Since GSS methods do not have recourse to derivatives
or explicit approximations thereof, the stopping criterion (8.12) is not appropriate.
However, one can show that

‖PΩ (xk −∇Φk(xk)) ‖ ≤ C∆k,

a result similar to Theorem 8.3. This correlation between the step-length control
parameter and a measure of stationarity makes it possible to replace (8.12) with a

OPTIMIZATION BY DIRECT SEARCH 469

stopping criterion based on the size of the step-length control parameter ∆. In ef-
fect, the algorithm proceeds by successive, inexact minimization of the augmented
Lagrangian via a GSS method, but without knowing exactly how inexact the mini-
mization is.

In the GSS version of the augmented Lagrangian algorithm, the Hestenes–Powell
multiplier update formula is used since it does not require derivatives of the objective
or constraints. The GSS augmented Lagrangian variant in [169] exhibits all of the
first-order convergence properties of the original algorithm of Conn, Gould, and Toint.

If (8.10) is the result of introducing slacks to an inequality constrained problem,
then further simplifications are possible to eliminate the slacks from the solution of
(8.11). Decreasing the dimension of the problem improves the efficacy of direct search,
as discussed previously.

8.3.3. Other Approaches. We conclude with a brief survey of other ideas that have
been proposed for adapting direct search algorithms to nonlinear programs. While
these approaches sometimes succeed in practice, there remains no guarantee that the
search will approach a KKT point for the problem (7.1).

Inexact Penalization. A popular approach to constrained optimization has been
to modify the objective so that it takes on very large values near the boundary of the
feasible region and at all infeasible points. Rosenbrock [227], for example, proposed
a form of inexact penalization as a means of treating constraints in connection with
his rotating directions method. (A little-appreciated fact: Rosenbrock introduced his
celebrated “banana” function in connection with direct search [227]. Rosenbrock’s
direct search method is tailored to deal with objectives whose graphs have long,
narrow, turning valleys, such as that exhibited by the banana function.) Rosenbrock
redefined the objective near the boundary of the feasible region in a way that would
tend to keep the iterates feasible.

Similar ideas for modifying the objective in the case of bound constraints are
discussed by Spendley, Hext, and Himsworth [245] and Nelder and Mead [194] in
connection with the simplex-based methods. In these approaches the objective is
given a suitably large value at all infeasible points. In the case of bound constraints,
Spendley [244] also discusses the simple expedient of setting to the corresponding
bound any variable that would otherwise become infeasible when applying the simplex
algorithm of Nelder and Mead.

Exact Penalization. More systematic approaches to penalization also have ap-
peared. The treatment of inequality constraints via exact, nonsmooth penalization
(though not by that name) appears as early as the work of Hooke and Jeeves [139].
They suggested minimizing the nonsmooth penalty function

F (x) = f(x) +

m
∑

i=1

w(i) max(0, c(i)(x)),

where the weights w(i) > 0 are chosen to be sufficiently large.
Weisman’s MINIMAL algorithm [137] applies the pattern search algorithm of Hooke

and Jeeves to a nonsmooth quadratic penalty function and incorporates an element
of random search. More recently, Kearsley and Glowinski [124, 151] applied direct
search methods with exact, nonsmooth penalization to equality constrained problems
arising in control.

The potential difficulties with these approaches are those associated with non-
smooth optimization. While the direct search iterations always will be defined, there

470 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

remains the possibility that the algorithm will fail to converge to a stationary point,
as discussed in section 6.

Barrier Methods. Davies and Swann [84], in connection with applying the pattern
search method of Hooke and Jeeves to constrained optimization, recommend the use
of the reciprocal barrier method of Carroll [54, 106]. One could also use a logarithmic
barrier function.

Other Alternatives. There are number of direct search approaches to constrained
optimization that do not neatly fit in the previous categories. These may be viewed
as ad hoc methods insofar as there exist no guarantees of global convergence to KKT
points. However, as already discussed in connection with direct search methods, good
heuristics can often be placed on a rigorous footing. Certainly, they may prove useful
in practice.

One direct search method for constrained optimization from the 1960s that has
remained popular in application is M. J. Box’s Complex method [39]. The Complex
method was originally developed to address difficulties encountered with Rosenbrock’s
method. In this algorithm, the objective is sampled at a broader set of points than in
the simplex-based methods to try to avoid premature termination. There is also an
element of random search involved.

The ACSIM algorithm of Dixon [95] is a hybrid algorithm. It combines ideas from
the simplex method of Nelder and Mead and the Complex method with elements of
hem-stitching and quadratic modeling to accelerate convergence.

The flexible tolerance method of Paviani and Himmelblau [137, 207] takes the
perspective of constrained optimization as a bilevel problem of improving feasibility
and then optimality. The flexible tolerance method is based on the method of Nelder
and Mead. It alternately attempts to reduce the objective and constraint violation,
depending on the extent to which the iterates are infeasible. A strategy similar in
spirit is used in Audet and Dennis [12], where a filter method inspired by that of
Fletcher and Leyffer [108] is applied.

9. Summary. For the family of generating set direct search methods discussed in
this paper, old worries about a lack of a firm mathematical foundation are no longer
valid. In the unconstrained case, approaches such as compass search, evolutionary
operation (EVOP) [35], the pattern search algorithm of Hooke and Jeeves [139], and
multidirectional search [256] can all be assured of global convergence to a stationary
point when the objective function is smooth.

Elements of the convergence analysis provide insights about the observed behavior
of these methods:

• the geometry of the search directions (section 3.4) together with the global-
ization techniques (section 3.7) prevents bad steps in these algorithms, and
explains their reliability;

• the cosine measure (3.10) and its dependence on the dimension of the problem
help explain the observation that performance deteriorates for problems with
large numbers of variables;

• the connection between a measure of stationarity and the step-length con-
trol parameter (section 3.6) offers a rationale for the standard termination
criterion; and

• the local analysis (section 3.11) sheds light on why asymptotic convergence
may be slow.

Understanding the elements needed to ensure convergence to KKT points has
been crucial in devising reliable direct search methods for constrained optimization,

OPTIMIZATION BY DIRECT SEARCH 471

where the heuristics proposed in the past prove inadequate. When pursuing a feasible
iterates approach to problems with constraints, the search directions must generate
cones that reflect the geometry of nearby constraints. For nonlinear constraints, an
approach that solves (approximately) a sequence of bound constrained or linearly
constrained subproblems can be built on the relationship between an appropriately
chosen measure of stationarity and the step-length control parameter.

Although derivatives do not appear explicitly, the “crypto-gradient” nature of
generating set direct search methods emerges in analyzing their convergence. In fact,
one can view these methods as lying at one end of a spectrum of methods (with
Newton’s method at the other end) that all require some smoothness to be assured
that at least a subsequence of the iterates converges to a stationary point.

Work remains to explain why direct search methods so often experience practical
success on noisy and nonsmooth problems, despite the existence of examples where
they are known to fail. Gaps persist in the understanding of classic direct search
methods that do not fit the GSS framework, such as the simplex algorithms of Nelder
and Mead [194] and Spendley, Hext, and Himsworth [245].

There are opportunities for new, provably convergent direct search methods that
are more efficient in practice because they adapt better to the local topography dur-
ing the course of the search, as in [76]. In parallel, distributed, and heterogeneous
computing environments, [115, 140, 161, 162] suggest ways to retain convergence prop-
erties while exploiting evolving computational paradigms. The issue of systematically
improving efficiency on large-dimensional problems is open, as is the possibility of
further hybrid algorithms that include elements of an explicit local model based on
function values.

Finally, we reemphasize that, when direct search methods were originally de-
veloped, they were applied to problems for which much better alternatives are now
available. Nevertheless, they are still a “method of first resort” for important and
complex problems, especially in simulation-based optimization. Direct search meth-
ods can look forward to more years of practical success and theoretical analysis.

Acknowledgments. We thank Mike Heath for planting the seeds that led to this
review. We thank Nick Trefethen for inviting us to submit a review for consideration
by SIAM and for then patiently—and persistently—prodding us over the course of
many years to deliver on our promise! We thank Randy LeVeque for shepherding us
through the final rush of completion; he read multiple drafts of the manuscript (includ-
ing the early, exceedingly rough versions), asked illuminating questions, and provided
useful observations that did much to improve the presentation. We are particularly
indebted to Margaret Wright, who not only read every draft of the manuscript we
submitted and provided many useful suggestions, but who also expended a great deal
of effort helping us to reorganize and edit the introduction and summary—their final
form owes much to her efforts.

“Thanks, Grazie, and Gracias!” to Ian Coope, Stefano Lucidi, Juan Meza, Stephen
Nash, Chris Price, Marco Sciandrone, and Michael Trosset for reading sundry versions
of the manuscript and passing along corrections and suggestions. We are grateful to
Anne Shepherd, who carefully read the entire manuscript, found mistakes others had
missed, and made several suggestions for improving the presentation at key points.
Finally, we thank the two anonymous referees who took great pains, under greatly
restricted deadlines, to review the entire manuscript and pass along additional useful
comments and corrections.

472 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

We also are grateful to Bas Franck for relating to us the hearing aid example in
the introduction. Further, we are indebted to Jeff Borggaard for providing us with
the “noisy” example in Figure 1.2.

Our thanks go out to the Computer Science Research Institute (CSRI) at Sandia
National Laboratories for sponsoring many long-term visits between us, including a
month-long visit during the summer of 2003 when we undertook this effort in earnest;
we also are grateful to Karen Cardwell at Sandia for tracking down copies of the
many older, and now difficult to find, references. We thank the IMA—the Institute
for Mathematics and Its Applications—for the invitation to attend the Workshop on
Optimization in Simulation-Based Models, January 9–16, 2003, which inspired some
of the comments here and provided us a wonderful opportunity to work together on
revisions to this paper during the week we were in residence.

We extend a general thanks to the many, many people who, knowing our interest
in direct search methods, have asked us interesting (often tough!) questions, relayed
their experience using direct search methods, and sent us copies of papers that we
might not have discovered if left to our own devices. Our understanding of direct
search is richer as a consequence.

REFERENCES

[1] E. R. Åberg and A. G. T. Gustavsson, Design and evaluation of modified simplex methods,
Analytica Chimica Acta, 144 (1982), pp. 39–53.

[2] M. A. Abramson, Pattern Search Algorithms for Mixed Variable General Constrained Opti-
mization Problems, Ph.D. thesis, Department of Computational and Applied Mathemat-
ics, Rice University, Houston, TX, 2002.

[3] M. A. Abramson, C. Audet, and J. E. Dennis, Jr., Generalized Pattern Searches with
Derivative Information, Tech. Rep. 02–10, Department of Computational and Applied
Mathematics, Rice University, Houston, TX, 2002.

[4] J. W. Akitt, Function minimisation using the Nelder and Mead simplex method with limited
arithmetic precision: The self regenerative simplex, Comput. J., 20 (1977), pp. 84–85.

[5] P. Alberto, F. Nogueira, H. Rocha, and L. N. Vicente, Pattern Search Methods for
User-Provided Points: Application to Molecular Geometry Problems, Tech. Rep. 00–20,
Departamento de Matemática, Universidade de Coimbra, Portugal, 2000 (revised 2002).

[6] E. J. Anderson and M. C. Ferris, A direct search algorithm for optimization with noisy
function evaluations, SIAM J. Optim., 11 (2001), pp. 837–857.

[7] H. L. Anderson, W. C. Davidon, M. G. Glicksman, and U. E. Kruse, Scattering of positive
pions by hydrogen at 189 MeV, Phys. Rev., 100 (1955), pp. 279–287.

[8] Anonymous, A new algorithm for optimization, Math. Programming, 3 (1972), pp. 124–128.
[9] L. Armijo, Minimization of functions having Lipschitz continuous first partial derivatives,

Pacific J. Math., 16 (1966), pp. 1–3.
[10] C. Audet, Convergence Results for Pattern Search Algorithms Are Tight, Tech. Rep. G–

2002–56, Les Cahiers du GERAD, École Polytechnique de Montréal, Département de
Mathématiques et de Génie Industriel, Montréal, QC, Canada, 2002.

[11] C. Audet and J. E. Dennis, Jr., Pattern search algorithms for mixed variable programming,
SIAM J. Optim., 11 (2000), pp. 573–594.

[12] C. Audet and J. E. Dennis, Jr., A Pattern Search Filter Method for Nonlinear Program-
ming without Derivatives, Tech. Rep. 00–09, Department of Computational and Applied
Mathematics, Rice University, Houston, TX, 2000.

[13] C. Audet and J. E. Dennis, Jr., Analysis of generalized pattern searches, SIAM J. Optim.,
13 (2003), pp. 889–903.

[14] D. M. Avis and K. Fukuda, A pivoting algorithm for convex hulls and vertex enumeration
of arrangements and polyhedra, Discrete Comput. Geom., 8 (1992), pp. 295–313.

[15] M. Avriel, Nonlinear Programming: Analysis and Methods, Prentice-Hall, Englewood Cliffs,
NJ, 1976.

[16] J. W. Bandler and P. A. McDonald, Optimization of microwave networks by razor search,
IEEE Trans. Microwave Theory Tech., 17 (1969), pp. 552–562.

[17] G. K. Barnes, A Comparative Study of Nonlinear Optimization Codes, Master’s thesis, Uni-
versity of Texas at Austin, 1967.

OPTIMIZATION BY DIRECT SEARCH 473

[18] R. A. Barneson, N. F. Brannock, J. G. Moore, and C. Morris, Picking optimization
methods, Chemical Engrg., 77 (1970), pp. 132–142.

[19] M. Bell and M. C. Pike, Remark on algorithm 178, Comm. ACM, 9 (1966), pp. 684–685.
[20] P. R. Benyon, Remark AS R15. Function minimization using a simplex procedure, Appl.

Statist., 25 (1976), p. 97.
[21] G. Berman, Minimization by successive approximation, SIAM J. Numer. Anal., 3 (1966),

pp. 123–133.
[22] G. Berman, Lattice approximations to the minima of functions of several variables, J. ACM,

16 (1969), pp. 286–294.
[23] D. Betteridge, A. P. Wade, and A. G. Howard, Reflections on the modified simplex—I,

Talanta, 32 (1985), pp. 709–722.
[24] D. Betteridge, A. P. Wade, and A. G. Howard, Reflections on the modified simplex—II,

Talanta, 32 (1985), pp. 723–734.
[25] C. Bischof, A. Carle, P. Khademi, and A. Mauer, The ADIFOR 2.0 system for the

automatic differentiation of Fortran 77 programs, IEEE Comput. Sci. Engrg., 3 (1996),
pp. 18–32.

[26] C. Bischof, A. Carle, P. Khademi, A. Mauer, and P. Hovland, ADIFOR 2.0 User’s
Guide (Revision C), Tech. Rep. CRPC-95516-S, Center for Research on Parallel Compu-
tation, Rice University, Houston, TX, 1995.

[27] C. Bischof, L. Roh, and A. Mauer, ADIC—An Extensible Automatic Differentiation Tool
for ANSI-C, Tech. Rep. ANL/CS-P626-1196, Mathematics and Computer Science Divi-
sion, Argonne National Laboratory, Argonne, IL, 1996.

[28] C. H. Bischof, A. Carle, G. Corliss, A. O. Griewank, and P. Hovland, ADIFOR:
Generating derivative codes from Fortran programs, Sci. Programming, 1 (1992), pp. 11–
29.

[29] P. T. Boggs and J. E. Dennis, Jr., A stability analysis for perturbed nonlinear iterative
methods, Math. Comp., 30 (1976), pp. 199–215.

[30] A. J. Booker, J. E. Dennis, Jr., P. D. Frank, D. B. Serafini, and V. Torczon, Opti-
mization using surrogate objectives on a helicopter test example, in Optimal Design and
Control, J. Borggaard, J. Burns, E. Cliff, and S. Schreck, eds., Progr. Systems Control
Theory, Birkhäuser, Cambridge, MA, 1998, pp. 49–58.

[31] A. J. Booker, J. E. Dennis, Jr., P. D. Frank, D. B. Serafini, V. Torczon, and M. W.
Trosset, A rigorous framework for optimization of expensive functions by surrogates,
Structural Optimization, 17 (1999), pp. 1–13.

[32] J. Borggaard, D. Pelletier, and K. Vugrin, On Sensitivity Analysis for Problems with
Numerical Noise, AIAA Paper 2002–5553; presented at the 9th AIAA/ISSMO Sympo-
sium on Multidisciplinary Analysis and Optimization, Atlanta, GA, 2002.

[33] D. M. Bortz and C. T. Kelley, The simplex gradient and noisy optimization problems, in
Optimal Design and Control, J. Borggaard, J. Burns, E. Cliff, and S. Schreck, eds., Progr.
Systems Control Theory, Birkhäuser, Cambridge, MA, 1998, pp. 77–90.

[34] G. E. P. Box, The exploration and exploitation of response surfaces: Some general consid-
erations and examples, Biometrics, 10 (1954), pp. 16–60.

[35] G. E. P. Box, Evolutionary operation: A method for increasing industrial productivity, Appl.
Statist., 6 (1957), pp. 81–101.

[36] G. E. P. Box and N. R. Draper, Empirical Model-Building and Response Surfaces, Wiley,
New York, 1987.

[37] G. E. P. Box and N. R. Draper, Evolutionary Operation: A Statistical Method for Process
Improvement, Wiley, New York, 1998.

[38] G. E. P. Box and K. B. Wilson, On the experimental attainment of optimum conditions,
J. Roy. Statist. Soc. Ser. B, 13 (1951), pp. 1–45.

[39] M. J. Box, A new method of constrained optimization and a comparison with other methods,
Comput. J., 8 (1965), pp. 42–52.

[40] M. J. Box, A comparison of several current optimization methods, and the use of transfor-
mations in constrained problems, Comput. J., 9 (1966), pp. 67–77.

[41] M. J. Box, D. Davies, and W. H. Swann, Non-linear Optimization Techniques, ICI Mono-
graph 5, Oliver & Boyd, Edinburgh, UK, 1969.

[42] R. P. Brent, Algorithms for Minimization without Derivatives, Prentice-Hall, Englewood
Cliffs, NJ, 1973; reissued by Dover Publications, Mineaola, NY, 2002.

[43] G. F. Brissey, R. B. Spencer, and C. L. Wilkins, High-speed algorithm for simplex opti-
mization calculations, Analytical Chem., 51 (1979), pp. 2295–2297.

[44] K. W. Brodlie, A new direction set method for unconstrained minimization without evalu-
ating derivatives, J. Inst. Math. Appl., 15 (1975), pp. 385–396.

474 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

[45] A. Brooke, D. Kendrick, and A. Meeraus, GAMS: A Users’ Guide, The Scientific Press,
Danvers, MA, 1988.

[46] S. H. Brooks, A comparison of maximum-seeking methods, Oper. Res., 7 (1959), pp. 430–457.
[47] S. H. Brooks and M. R. Mickey, Optimum estimation of gradient direction in steepest

ascent experiments, Biometrics, 17 (1961), pp. 48–56.
[48] C. G. Broyden, A class of methods for solving nonlinear simultaneous equations, Math.

Comp., 19 (1965), pp. 577–593.
[49] A. G. Buckley and H. Ma, A Derivative-Free Algorithm for Parallel and Sequential Opti-

mization, tech. rep., Computer Science Department, University of Victoria, BC, Canada,
1994.

[50] J. Burkardt, M. Gunzburger, and J. Peterson, Insensitive functionals, inconsistent gra-
dients, spurious minima, and regularized functionals in flow optimization problems, Int.
J. Comput. Fluid Dyn., 16 (2002), pp. 171–185.

[51] K. W. C. Burton and G. Nickless, Optimisation via simplex: Part I. Background, defi-
nitions and a simple application, Chemometrics and Intelligent Laboratory Systems, 1
(1987), pp. 135–149.

[52] P. H. Calamai and J. J. Moré, Projected gradient methods for linearly constrained problems,
Math. Programming, 39 (1987), pp. 93–116.

[53] F. M. Callier and P. L. Toint, Recent results on the accelerating property of an algorithm
for function minimization without calculating derivatives, in Survey of Mathematical
Programming, A. Prekopa, ed., Hungarian Academy of Sciences, Budapest, 1977, pp. 369–
376.

[54] C. W. Carroll, The created response surface technique for optimizing nonlinear, restrained
systems, Oper. Res., 9 (1961), pp. 169–185; with “Comments on the Preceding Paper”
by Anthony V. Fiacco.

[55] M. R. Cave, An improved simplex algorithm for dealing with boundary conditions, Analytica
Chimica Acta, 181 (1986), pp. 107–116.

[56] J. Céa, Optimisation: Théorie et algorithmes, Dunod, Paris, 1971.
[57] J. M. Chambers and J. E. Ertel, Remark AS R11. A remark on algorithm AS 47 ‘Function

minimization using a simplex procedure,’ Appl. Statist., 23 (1974), pp. 250–251.
[58] J. P. Chandler, SIMPLEX—finds local minima of a function of several parameters (note),

Behavioral Sci., 14 (1969), p. 82.
[59] J. P. Chandler, STEPT: A family of routines for optimization and the fitting of data,

Tech. Rep. QCPE 307, Quantum Chemistry Program Exchange, Chemistry Department,
Indiana University, Bloomington, IN, 1975.

[60] D. Chazan and W. Miranker, Chaotic relaxation, Linear Algebra Appl., 2 (1969), pp. 199–
222.

[61] D. Chazan and W. L. Miranker, A nongradient and parallel algorithm for unconstrained
minimization, SIAM J. Control, 8 (1970), pp. 207–217.

[62] D. H. Chen, Z. Saleem, and D. W. Grace, A new simplex procedure for function mini-
mization, Internat. J. Modelling & Simulation, 6 (1986), pp. 81–85.

[63] K.-Z. Chen and Y.-P. Wang, A New Direct Search Algorithm and Its Convergence, De-
partment of Applied Mathematics, Northwest Telecommunication Engineering Institute,
Xi’an, China.

[64] F. L. Chernous’ko, A local variation method for the numerical solution of variational prob-
lems, U.S.S.R. Comput. Math. and Math. Phys., 5 (1965), pp. 234–242.

[65] T. D. Choi and C. T. Kelley, Superlinear convergence and implicit filtering, SIAM J.
Optim., 10 (2000), pp. 1149–1162.

[66] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983; reissued as
Classics Appl. Math. 5, SIAM, Philadelphia, 1990.

[67] A. R. Conn, N. I. M. Gould, and P. L. Toint, Global convergence of a class of trust
region algorithms for optimization with simple bounds, SIAM J. Numer. Anal., 25 (1988),
pp. 433–460.

[68] A. R. Conn, N. I. M. Gould, and P. L. Toint, A globally convergent augmented Lagrangian
algorithm for optimization with general constraints and simple bounds, SIAM J. Numer.
Anal., 28 (1991), pp. 545–572.

[69] A. R. Conn, N. I. M. Gould, and P. L. Toint, Trust-Region Methods, MPS/SIAM Ser.
Optim. 1, SIAM, Philadelphia, 2000.

[70] A. R. Conn, K. Scheinberg, and P. L. Toint, DFO (Derivative Free Optimization); soft-
ware available at http://oss.software.ibm.com/developerworks/opensource/coin/.

[71] A. R. Conn, K. Scheinberg, and P. L. Toint, On the convergence of derivative-free methods
for unconstrained optimization, in Approximation Theory and Optimization: Tributes

OPTIMIZATION BY DIRECT SEARCH 475

to M.J.D. Powell, M. D. Buhmann and A. Iserles, eds., Cambridge University Press,
Cambridge, UK, 1997, pp. 83–108.

[72] A. R. Conn, K. Scheinberg, and P. L. Toint, Recent progress in unconstrained nonlinear
optimization without derivatives, in Lectures on Mathematical Programming: ismp97,
T. M. Liebling and D. de Werra, eds., Mathematical Programming 79, Series B, Elsevier,
Amsterdam, 1997, pp. 397–414.

[73] A. R. Conn, K. Scheinberg, and P. L. Toint, A derivative free optimization algorithm in
practice, in Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multi-
disciplinary Analysis and Optimization, St. Louis, MO, 1998.

[74] A. R. Conn and P. L. Toint, An algorithm using quadratic interpolation for unconstrained
derivative free optimization, in Nonlinear Optimization and Applications, G. Di Pillo and
F. Giannessi, eds., Kluwer Academic/Plenum Publishers, New York, 1996, pp. 27–47.

[75] I. Coope and C. Price, Frame-based methods for unconstrained optimization, J. Optim.
Theory Appl., 107 (2000), pp. 261–274.

[76] I. D. Coope and C. J. Price, A direct search conjugate directions algorithm for unconstrained
minimization, ANZIAM J., 42 (2000), pp. C478–498.

[77] I. D. Coope and C. J. Price, On the convergence of grid-based methods for unconstrained
optimization, SIAM J. Optim., 11 (2001), pp. 859–869.

[78] I. D. Coope and C. J. Price, Positive bases in numerical optimization, Comput. Optim.
Appl., 21 (2002), pp. 169–175.

[79] R. J. Craig, The Simplex Search in Statistical Optimization Problems, Ph.D. thesis, Univer-
sity of Kentucky, Lexington, KY, 1980.

[80] R. J. Craig, J. W. Evans, and D. M. Allen, The Simplex-Search in Non-linear Estimation,
Tech. Rep. 155, Department of Statistics, University of Kentucky, Lexington, KY, 1980.

[81] A. P. Dambrowski, Variable-step simplex optimization procedures, Tdch. Kibern., 1 (1970),
p. 33.

[82] W. C. Davidon, Variable Metric Method for Minimization, Tech. Rep. 5990, Argonne Na-
tional Laboratory, Argonne, IL, 1959.

[83] W. C. Davidon, Variable metric method for minimization, SIAM J. Optim., 1 (1991), pp. 1–
17; with a belated preface for ANL 5990.

[84] D. Davies and W. H. Swann, Review of constrained optimization, in Optimization,
R. Fletcher, ed., Academic Press, New York, 1969, pp. 187–202.

[85] O. L. Davies, The Design and Analysis of Industrial Experiments, Hafner Publishing, New
York, 1954.

[86] C. Davis, Theory of positive linear dependence, Amer. J. Math., 76 (1954), pp. 733–746.
[87] R. De Leone, M. Gaudioso, and L. Grippo, Stopping criteria for linesearch methods without

derivatives, Math. Programming, 30 (1984), pp. 285–300.
[88] R. De Vogelaere, Remark on algorithm 178, Comm. ACM, 11 (1968), p. 498.
[89] S. N. Deming and S. L. Morgan, Simplex optimization of variables in analytical chemistry,

Analytical Chem., 45 (1973), pp. 278A–283A.
[90] S. N. Deming and L. R. Parker, Jr., A review of simplex optimization in analytical chem-

istry, CRC Critical Rev. Analytical Chem., 7 (1978), pp. 187–202.
[91] J. E. Dennis and V. Torczon, Managing approximation models in optimization, in Multidis-

ciplinary Design Optimization: State of the Art, N. M. Alexandrov and M. Y. Hussaini,
eds., SIAM, Philadelphia, 1997, pp. 330–347.

[92] J. E. Dennis, Jr. and R. B. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Prentice-Hall, Englewood Cliffs, NJ, 1983; reissued as Classics
Appl. Math. 16, SIAM, Philadelphia, 1996.

[93] J. E. Dennis, Jr. and V. Torczon, Direct search methods on parallel machines, SIAM J.
Optim., 1 (1991), pp. 448–474.

[94] J. E. Dennis, Jr. and D. J. Woods, Optimization on microcomputers: The Nelder–Mead
simplex algorithm, in New Computing Environments: Microcomputers in Large-Scale
Computing, A. Wouk, ed., SIAM, Philadelphia, 1987, pp. 116–122.

[95] L. C. W. Dixon, ACSIM—An accelerated constrained simplex technique, Comput. Aided
Design, 5 (1973), pp. 22–32.

[96] E. Dolan, A. Gurson, A. Shepherd, C. Siefert, V. Torczon, and A. Yates, DirectSearch
classes; software available at http://www.cs.wm.edu/̃ va/software/DirectSearch.

[97] E. D. Dolan, Pattern Search Behavior in Nonlinear Optimization, Honors Thesis, Depart-
ment of Computer Science, College of William & Mary, Williamsburg, VA, 1999.

[98] E. D. Dolan, R. M. Lewis, and V. J. Torczon, On the local convergence properties of
pattern search, SIAM J. Optim., to appear.

476 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

[99] J. C. Dunn, Global and asymptotic convergence rate estimates for a class of projected gradient
processes, SIAM J. Control Optim., 19 (1981), pp. 368–400.

[100] C. Elster and A. Neumaier, A grid algorithm for bound constrained optimization of noisy
functions, IMA J. Numer. Anal., 15 (1995), pp. 585–608.

[101] S. V. Emel’yanov, S. K. Korovin, and A. S. Rykov, Design principles and properties of
locally optimal simplicial direct-search procedures, Soviet Phys. Dokl., 24 (1979), pp. 532–
534.

[102] F. E. Emery and M. O’Hagan, Optimal design of matching networks for microwave tran-
sistor amplifiers, IEEE Trans. Microwave Theory Tech., 14 (1966), pp. 696–698.

[103] J. W. Evans, Computer augmentation of experimental designs to maximize |X′X|, Techno-
metrics, 21 (1979), pp. 321–330.

[104] P. G. Fajer, R. L. H. Bennett, C. F. Polnaszek, E. A. Fajer, and D. D. Thomas,
General method for multiparameter fitting of high-resolution EPR-spectra using a simplex
algorithm, J. Magnetic Resonance, 88 (1990), pp. 111–125.

[105] E. Fermi and N. Metropolis, Los Alamos Unclassified Report LS–1492, tech. rep., Los
Alamos National Laboratory, Los Alamos, NM, 1952.

[106] A. V. Fiacco and G. P. McCormick, Nonlinear Programming: Sequential Unconstrained
Minimization Techniques, Wiley, New York, 1968; reissued as Classics Appl. Math. 4,
SIAM, Philadelphia, 1990.

[107] R. Fletcher, Function minimization without evaluating derivatives—A review, Comput. J.,
8 (1965), pp. 33–41.

[108] R. Fletcher and S. Leyffer, Nonlinear programming without a penalty function, Math.
Programming, Ser. A, 91 (2002), pp. 239–269.

[109] R. Fletcher, S. Leyffer, and P. L. Toint, On the global convergence of a filter–SQP
algorithm, SIAM J. Optim., 13 (2002), pp. 44–59.

[110] R. Fletcher and M. J. D. Powell, A rapidly convergent descent method for minimization,
Comput. J., 6 (1963), pp. 163–168.

[111] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling Language for Mathe-
matical Programming, 2nd ed., Thomson/Brooks/Cole, Pacific Grove, CA, 2003.

[112] B. Franck, Private communication, Department of Experimental and Clinical Audiology,
Academic Medical Centre, Amsterdam, 2002.

[113] P. Friedman and K. L. Pinder, Optimization of a simulation model of a chemical plan,
Industrial & Engineering Chemistry Process Design and Development, 11 (1972), pp. 512–
520.

[114] J. Gablonsky and C. T. Kelley, A locally-biased form of the DIRECT algorithm, J. Global
Optim., 21 (2001), pp. 27–37.

[115] U. M. Garćıa-Palomares and J. F. Rodŕıguez, New sequential and parallel derivative-free
algorithms for unconstrained minimization, SIAM J. Optim., 13 (2002), pp. 79–96.

[116] U. M. Garćıa-Palomares and J. F. Rodŕıguez, Second-order information in the adap-
tive search exploration algorithm, in Proceedings of the 8th AIAA/USAF/NASA/ISSMO
Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA, 2000,
AIAA Paper 2000-4765.

[117] P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization, Academic Press,
London, 1981.

[118] P. Gilmore, T. Choi, O. Eslinger, C. T. Kelley, H. A. Patrick, and J. Gablon-
sky, IFFCO (Implicit Filtering For Constrained Optimization); software available at
http://www4.ncsu.edu/̃ ctk/iffco.html.

[119] P. Gilmore and C. T. Kelley, An implicit filtering algorithm for optimization of functions
with many local minima, SIAM J. Optim., 5 (1995), pp. 269–285.

[120] P. Gilmore, C. T. Kelly, C. T. Miller, and G. A. Williams, Implicit filtering and optimal
design problems, in Optimal Design and Control, J. Borggaard, J. Burkhardt, M. Gun-
zberger, and J. Peterson, eds., Progr. Systems Control Theory 19, Birkhäuser, Cambridge,
MA, 1995, pp. 159–176.

[121] T. Glad and A. Goldstein, Optimization of functions whose values are subject to small
errors, BIT, 17 (1977), pp. 160–169.

[122] H. Glass and L. Cooper, Sequential search: A method for solving constrained optimization
problems, J. ACM, 12 (1965), pp. 71–82.

[123] R. W. Glass and D. F. Bruley, REFLEX method for empirical optimization, Industrial
and Engineering Chemistry Process Design and Development, 12 (1973), pp. 6–10.

[124] R. Glowinski and A. J. Kearsley, On the simulation and control of some friction con-
strained motions, SIAM J. Optim., 5 (1995), pp. 681–694.

[125] A. A. Goldstein, Constructive Real Analysis, Harper & Row, New York, 1967.

OPTIMIZATION BY DIRECT SEARCH 477

[126] A. O. Griewank, On automatic differentiation, in Mathematical Programming: Recent De-
velopments and Applications, M. Iri and K. Tanabe, eds., Kluwer Academic, Dordrecht,
The Netherlands, 1989, pp. 83–108.

[127] L. Grippo, F. Lampariello, and S. Lucidi, Global convergence and stabilization of uncon-
strained minimization methods without derivatives, J. Optim. Theory Appl., 56 (1988),
pp. 385–406.

[128] J. A. Guin, Discussion and correspondence—modification of the complex method of con-
strained optima, Comput. J., 10 (1968), pp. 416–417.

[129] A. P. Gurson, Simplex Search Behavior in Nonlinear Optimization, Honors Thesis, Depart-
ment of Computer Science, College of William & Mary, Williamsburg, VA, 2000.

[130] A. Gustavsson and J.-E. Sundkvist, Design and optimization of modified simplex methods,
Analytica Chimica Acta, 167 (1985), pp. 1–10.

[131] W. E. Hart, Evolutionary Pattern Search Algorithms, Tech. Rep. SAND95–2293, Sandia
National Laboratories, Albuquerque, NM, 1995.

[132] W. E. Hart, A stationary point convergence theory for evolutionary algorithms, in Founda-
tions of Genetic Algorithms 4, Morgan Kaufmann, San Francisco, CA, 1996, pp. 325–342.

[133] W. E. Hart, A generalized stationary point convergence theory for evolutionary algorithms, in
Proceedings of the International Conference on Genetic Algorithms, Morgan Kaufmann,
San Francisco, CA, 1997, pp. 127–134.

[134] P. Hedlund and A. Gustavsson, Design and evaluation of modified simplex methods having
enhanced convergence ability, Analytica Chimica Acta, 259 (1992), pp. 243–256.

[135] M. R. Hestenes, Multiplier and gradient methods, J. Optim. Theory Appl., 4 (1969), pp. 303–
320.

[136] I. D. Hill, Remark AS R28. A remark on algorithm AS 47: Function minimization using a
simplex procedure, Appl. Statist., 27 (1978), pp. 380–382.

[137] D. M. Himmelblau, Applied Nonlinear Programming, McGraw–Hill, New York, 1972.
[138] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms

I, Springer-Verlag, Berlin, 1993.
[139] R. Hooke and T. A. Jeeves, Direct search solution of numerical and statistical problems, J.

ACM, 8 (1961), pp. 212–229.
[140] P. D. Hough, T. G. Kolda, and V. J. Torczon, Asynchronous parallel pattern search for

nonlinear optimization, SIAM J. Sci. Comput., 23 (2001), pp. 134–156.
[141] P. D. Hough and J. C. Meza, A class of trust-region methods for parallel optimization,

SIAM J. Optim., 13 (2002), pp. 264–282.
[142] E. C. Housos and O. Wing, Pseudo-conjugate directions for the solution of the nonlinear

unconstrained optimization problem on a parallel computer, J. Optim. Theory Appl., 42
(1984).

[143] P. Hovland, Automatic Differentiation and Its Role in Simulation-Based Optimization, IMA
Workshop, Minneapolis, MN, 2003.

[144] F. Y. Izakov, Practical example of simplex-planning for seeking the optimal regimes of tech-
nological processes, Industrial Laboratory, 37 (1971), pp. 420–422.

[145] F. James and M. Roos, MINUIT—A system for function minimization and analysis of the
parameter errors and correlations, Comput. Phys. Comm., 10 (1975), pp. 343–367.

[146] M. G. Johnson, Nonlinear optimization using the algorithm of Hooke and Jeeves; software
available in the Netlib Repository at http://www.netlib.org/opt/hooke.c, 1994.

[147] A. Jones, Spiral—A new algorithm for non-linear parameter estimation using least squares,
Comput. J., 13 (1970), pp. 301–308.

[148] D. R. Jones, C. D. Perttunen, and B. E. Stuckman, Lipschitzian optimization without
the Lipschitz constant, J. Optim. Theory Appl., 79 (1993), pp. 157–181.

[149] A. F. Kaupe, Jr., Algorithm 178: Direct search, Comm. ACM, 6 (1963), pp. 313–314.
[150] A. J. Keane, OPTIONS design exploration system, Computational Engineering and Design

Centre, School of Engineering Sciences, Mechanical Engineering, University of Southamp-
ton, Highfield, Southampton, UK; software available at http://www.soton.ac.uk/̃ ajk/
options/welcome.html.

[151] A. J. Kearsley, The Use of Optimization Techniques in the Solution of Partial Differential
Equations from Science and Engineering, Ph.D. thesis, Department of Computational and
Applied Mathematics, Rice University, Houston, TX, 1996; available as Tech. Rep. 96–11,
Department of Computational and Applied Mathematics, Rice University, Houston, TX,
1996.

[152] D. L. Keefer, Simpat: Self-bounding direct search method for optimization, Industrial and
Engineering Chemistry Process Design and Development, 12 (1973), pp. 92–99.

478 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

[153] C. T. Kelley, Detection and remediation of stagnation in the Nelder–Mead algorithm using
a sufficient decrease condition, SIAM J. Optim., 10 (1999), pp. 43–55.

[154] C. T. Kelley, Iterative Methods for Optimization, Frontiers Appl. Math. 18, SIAM, Philadel-
phia, 1999.

[155] J. Kiefer, Optimum sequential search and approximation methods under minimum regularity
assumptions, J. Soc. Indust. Appl. Math., 5 (1957), pp. 105–136.

[156] P. G. King and S. N. Deming, UNIPLEX: Single-factor optimization of response in the
presence of error, Analytical Chem., 46 (1974), pp. 1476–1481.

[157] W. R. Klingman and D. M. Himmelblau, Nonlinear programming with the aid of a multiple-
gradient summation technique, J. ACM, 11 (1964), pp. 400–415.

[158] M. Kokkolaras, C. Audet, and J. E. Dennis, Jr., Mixed variable optimization of the
number and composition of heat intercepts in a thermal insulation system, Optim. and
Engrg., 2 (2001), pp. 5–29.

[159] T. G. Kolda, P. D. Hough, G. Gray, S. Brown, D. Dunlavy, and H. A. Patrick,
APPSPACK (Asynchronous Parallel Pattern Search package); software available at
http://software.sandia.gov/appspack.

[160] T. G. Kolda, R. M. Lewis, and V. J. Torczon, Stationarity results for generating set search
for linearly constrained optimization, in preparation, 2003.

[161] T. G. Kolda and V. J. Torczon, On the Convergence of Asynchronous Parallel Pattern
Search, Tech. Rep. SAND2001–8696, Sandia National Laboratories, Livermore, CA, 2002;
SIAM J. Optim., submitted.

[162] T. G. Kolda and V. J. Torczon, Understanding asynchronous parallel pattern search, in
High Performance Algorithms and Software for Nonlinear Optimization, G. DiPillo and
A. Murli, eds., Kluwer Academic, Dordrecht, The Netherlands, 2003, pp. 316–335.

[163] P. Krolak and L. Cooper, An extension of Fibonaccian search to several variables, Comm.
ACM, 6 (1963), pp. 639–641.

[164] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, Convergence properties of
the Nelder–Mead simplex method in low dimensions, SIAM J. Optim., 9 (1998), pp. 112–
147.

[165] J. P. Lawrence III and F. P. Emad, An adaptive randomized pattern search, in Proceed-
ings of 1972 IEEE Conference on Decision Control and 11th Symposium on Adaptive
Processes, New Orleans, 1972, pp. 421–425.

[166] R. M. Lewis and V. Torczon, Rank Ordering and Positive Bases in Pattern Search Algo-
rithms, Tech. Rep. 96–71, Institute for Computer Applications in Science and Engineering,
NASA Langley Research Center, Hampton, VA, 1996.

[167] R. M. Lewis and V. Torczon, Pattern search algorithms for bound constrained minimiza-
tion, SIAM J. Optim., 9 (1999), pp. 1082–1099.

[168] R. M. Lewis and V. Torczon, Pattern search methods for linearly constrained minimization,
SIAM J. Optim., 10 (2000), pp. 917–941.

[169] R. M. Lewis and V. Torczon, A globally convergent augmented Lagrangian pattern search
algorithm for optimization with general constraints and simple bounds, SIAM J. Optim.,
12 (2002), pp. 1075–1089.

[170] R. M. Lewis, V. Torczon, and M. W. Trosset, Why pattern search works, Optima, 59
(1998), pp. 1–7; also available as ICASE Tech. Rep. 98–57, Institute for Computer Ap-
plications in Science and Engineering, NASA Langley Research Center, Hampton, VA,
1998.

[171] R. M. Lewis, V. Torczon, and M. W. Trosset, Direct search methods: Then and now, J.
Comput. Appl. Math., 124 (2000), pp. 191–207.

[172] S. Lucidi and M. Sciandrone, Numerical results for unconstrained optimization without
derivatives, in Nonlinear Optimization and Applications, G. Di Pillo and F. Giannessi,
eds., Kluwer Academic/Plenum Publishers, New York, 1996, pp. 261–270.

[173] S. Lucidi and M. Sciandrone, A derivative-free algorithm for bound constrained optimiza-
tion, Comput. Optim. Appl., 21 (2002), pp. 119–142.

[174] S. Lucidi and M. Sciandrone, On the global convergence of derivative-free methods for
unconstrained optimization, SIAM J. Optim., 13 (2002), pp. 97–116.

[175] S. Lucidi, M. Sciandrone, and P. Tseng, Objective-derivative-free methods for constrained
optimization, Math. Program., 92 (2002), pp. 37–59.

[176] R. Luus and T. H. I. Jaakola, Optimization by direct search and systematic reduction of
the size of the search region, AIChE J., 19 (1973), pp. 760–766.

[177] M. Marazzi and J. Nocedal, Wedge trust region methods for derivative free optimization,
Math. Program., 91 (2002), pp. 289–305.

OPTIMIZATION BY DIRECT SEARCH 479

[178] J. H. May, Linearly Constrained Nonlinear Programming: A Solution Method That Does
Not Require Analytic Derivatives, Ph.D. thesis, Yale University, New Haven, CT, 1974.

[179] K. I. M. McKinnon, Convergence of the Nelder–Mead simplex method to a nonstationary
point, SIAM J. Optim., 9 (1998), pp. 148–158.

[180] J. C. Meza, R. S. Judson, T. R. Faulkner, and A. M. Treasurywala, A comparison of a
direct search method and a genetic algorithm for conformational searching, J. Comput.
Chem., 17 (1996), pp. 1142–1151.

[181] R. Mifflin, A superlinearly convergent algorithm for minimization without evaluating deriva-
tives, Math. Programming, 9 (1975), pp. 100–117.

[182] R. Mifflin and J.-J. Strodiot, A bracketing technique to ensure desirable convergence in
univariate minimization, Math. Programming, 43 (1989), pp. 117–130.

[183] R. Mifflin and J.-J. Strodiot, A rapidly convergent five-point algorithm for univariate
minimization, Math. Programming, 62 (1993), pp. 299–319.

[184] R. A. Mitchell and J. L. Kaplan, Nonlinear constrained optimization by a nonrandom
complex method, J. Res. Nat. Bur. Standards, 72C (1968), pp. 249–258.

[185] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, Testing unconstrained optimization
software, ACM Trans. Math. Software, 7 (1981), pp. 17–41.

[186] J. J. Moreau, Décomposition orthgonale d’un espace hilbertien selon deux cônes mutuelle-
ment polaires, C. R. Acad. Sci. Paris, 255 (1962), pp. 238–240.

[187] E. Morgan, K. W. Burton, and G. Nickless, Optimization using the modified simplex
method, Chemometrics and Intelligent Laboratory Systems, 7 (1990), pp. 209–222.

[188] E. Morgan, K. W. Burton, and G. Nickless, Optimization using the super-modified simplex
method, Chemometrics and Intelligent Laboratory Systems, 8 (1990), pp. 97–107.

[189] S. L. Morgan and S. N. Deming, Simplex optimization of analytical chemical methods,
Analytical Chem., 46 (1974), pp. 1170–1181.

[190] R. A. Mugele, A program for optimal control of nonlinear processes, IBM Systems J., 1
(1962), pp. 2–17.

[191] MultiSimplexTM 2.0. Grabitech Solutions AB, Sundsvall, Sweden; software available at
http://www.multisimplex.com, 2000.

[192] S. G. Nash and A. Sofer, Linear and Nonlinear Programming, McGraw–Hill, New York,
1996.

[193] L. Nazareth and P. Tseng, Gilding the lily: A variant of the Nelder–Mead algorithm based
on golden-section search, Comput. Optim. Appl., 22 (2002), pp. 133–144.

[194] J. A. Nelder and R. Mead, A simplex method for function minimization, Comput. J., 7
(1965), pp. 308–313.

[195] L. S. Nelson, A sequential simplex procedure for non-linear least-squares estimation and
other function minimization problems, in ASQC Technical Conference Transactions—
Cleveland, 1972, American Society for Quality Control, Milwaukee, WI, pp. 107–117.

[196] J. Nocedal, Theory of algorithms for unconstrained optimization, Acta Numer., 1 (1992),
pp. 199–242.

[197] J. Nocedal and S. Wright, Numerical Optimization, Springer Ser. Oper. Res., Springer-
Verlag, New York, 1999.

[198] T. Öberg, Importance of the first design matrix in experimental simplex optimization,
Chemometrics and Intelligent Laboratory Systems, 44 (1998), pp. 147–151.

[199] D. M. Olsson and L. S. Nelson, The Nelder–Mead simplex procedure for function mini-
mization, Technometrics, 17 (1975), pp. 45–51.

[200] R. O’Neill, Algorithm AS 47. Function minimization using a simplex procedure, Appl.
Statist., 20 (1971), pp. 338–345.

[201] R. O’Neill, Corrigendum. Algorithm AS 47. Function minimization using a simplex proce-
dure, Appl. Statist., 23 (1974), p. 252.

[202] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several
Variables, Academic Press, New York, 1970; reissued as Classics Appl. Math. 30, SIAM,
Philadelphia, 2000.

[203] J. R. Palmer, An improved procedure for orthogonalising the search vectors in Rosenbrock’s
and Swann’s direct search optimisation methods, Comput. J., 12 (1969), pp. 69–71.

[204] L.-R. Parker Jr., M. R. Cave, and R. M. Barnes, Comparison of simplex algorithms,
Analytica Chimica Acta, 175 (1985), pp. 231–237.

[205] J. M. Parkinson and D. Hutchinson, A consideration of non-gradient algorithms for the
unconstrained optimization of functions of high dimensionality, in Numerical Methods
for Non-linear Optimization, F. A. Lootsma, ed., Academic Press, London, New York,
1972, pp. 99–113.

480 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

[206] J. M. Parkinson and D. Hutchinson, An investigation into the efficiency of variants on
the simplex method, in Numerical Methods for Non-linear Optimization, F. A. Lootsma,
ed., Academic Press, London, New York, 1972, pp. 115–135.

[207] D. Paviani and D. M. Himmelblau, Constrained nonlinear optimization by heuristic pro-
gramming, Oper. Res., 17 (1969), pp. 872–882.

[208] G. Peckham, A new method for minimising a sum of squares without calculating gradients,
Comput. J., 13 (1970), pp. 418–420.

[209] D. A. Phillips, A preliminary investigation of function optimisation by a combination of
methods, Comput. J., 17 (1974), pp. 75–79.

[210] C. Pillers Dobler, A matrix approach to finding a set of generators and finding the polar
(dual) of a class of polyhedral cones, SIAM J. Matrix Anal. Appl., 15 (1994), pp. 796–803.

[211] E. Polak, Computational Methods in Optimization: A Unified Approach, Academic Press,
New York, 1971.

[212] E. Polak and M. Wetter, Generalized Pattern Search Algorithms with Adaptive Precision
Function Evaluations, Department of Electrical Engineering, University of California at
Berkeley, and Simulation Research Group, Building Technologies Department, Environ-
mental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley,
CA, 2001.

[213] M. J. D. Powell, An efficient method for finding the minimum of a function of several
variables without calculating derivatives, Comput. J., 7 (1964), pp. 155–162.

[214] M. J. D. Powell, A method for minimizing a sum of squares of non-linear functions without
calculating derivatives, Comput. J., 7 (1965), pp. 303–307.

[215] M. J. D. Powell, A method for nonlinear constraints in minimization problems, in Opti-
mization, R. Fletcher, ed., Academic Press, New York, 1969, pp. 283–298.

[216] M. J. D. Powell, A hybrid method for nonlinear equations, in Numerical Methods for Nonlin-
ear Algebraic Equations, P. Rabinowitz, ed., Gordon & Breach, London, 1970, pp. 87–114.

[217] M. J. D. Powell, On search directions for minimization algorithms, Math. Programming, 4
(1973), pp. 193–201.

[218] M. J. D. Powell, Unconstrained minimization algorithms without computation of deriva-
tives, Boll. Un. Mat. Ital. (4), 9 (1974), pp. 60–69.

[219] M. J. D. Powell, A view of unconstrained minimization algorithms that do not require
derivatives, ACM Trans. Math. Software, 1 (1975), pp. 97–107.

[220] M. J. D. Powell, A direct search optimization method that models the objective and con-
straint functions by linear interpolation, in Advances in Optimization and Numerical
Analysis, Proceedings of the 6th Workshop on Optimization and Numerical Analysis,
Oaxaca, Mexico, S. Gomez and J.-P. Hennart, eds., Math. Appl. 275, Kluwer Academic,
Dordrecht, The Netherlands, 1994, pp. 51–67.

[221] M. J. D. Powell, Direct search algorithms for optimization calculations, Acta Numer., 7
(1998), pp. 287–336.

[222] M. J. D. Powell, On the Lagrange Functions of Quadratic Models That Are Defined by
Interpolation, Tech. Rep. DAMTP 2000/NA10, Department of Applied Mathematics and
Theoretical Physics, University of Cambridge, Cambridge, UK, 2000.

[223] C. J. Price and I. D. Coope, Frame based ray search algorithms in unconstrained optimiza-
tion, J. Optim. Theory Appl., 116 (2003), pp. 259–377.

[224] C. J. Price, I. D. Coope, and D. Byatt, A convergent variant of the Nelder Mead algorithm,
J. Optim. Theory Appl., 113 (2002), pp. 5–19.

[225] W. L. Price, A controlled random search procedure for global optimisation, Comput. J., 20
(1977), pp. 367–370.

[226] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[227] H. H. Rosenbrock, An automatic method for finding the greatest or least value of a function,

Comput. J., 3 (1960), pp. 175–184.
[228] M. W. Routh, P. A. Swartz, and M. B. Denton, Performance of the super modified

simplex, Analytical Chem., 49 (1977), pp. 1422–1428.
[229] T. H. Rowan, Functional Stability Analysis of Numerical Algorithms, Ph.D. thesis, University

of Texas at Austin, 1990.
[230] P. B. Ryan, R. L. Barr, and H. D. Todd, Simplex techniques for nonlinear optimization,

Analytical Chem., 52 (1980), pp. 1460–1467.
[231] A. S. Rykov, Simplex direct search algorithms, Automat. Remote Control, 41 (1980), pp. 784–

793.
[232] A. S. Rykov, Simplex methods of direct search, Engrg. Cybernetics, 18 (1980), pp. 12–18.
[233] A. S. Rykov, A combined penalty-function and projection method, Soviet Phys. Dokl., 28

(1983), pp. 832–833.

OPTIMIZATION BY DIRECT SEARCH 481

[234] A. S. Rykov, Simplex algorithms for unconstrained minimization, Problems Control Inform.
Theory, 12 (1983), pp. 195–208.

[235] R. W. H. Sargent, Minimization without constraints, in Optimization and Design, M. Avriel,
M. J. Rijckaert, and D. J. Wilde, eds., Prentice-Hall, Englewood Cliffs, NJ, 1973, pp. 37–
75.

[236] M. H. Shao, Techniques and performance of the advanced regular simplex method, Analytica
Chimica Acta, 248 (1991), pp. 31–39.

[237] D. E. Shaw, R. W. M. Wedderburn, and A. Miller, MINIM: A program for func-
tion minimization using the simplex method; software available at StatLib: Data,
Software and News from the Statistics Community, Applied Statistics algorithms,
http://lib.stat.cmu.edu/apstat/47, 1991.

[238] H. Shekarforoush, M. Berthod, and J. Zerubia, Direct Search Generalized Simplex Al-
gorithm for Optimization Non-Linear Functions, Tech. Rep. 2535, INRIA, France, 1995.

[239] C. M. Siefert, Model-Assisted Pattern Search, Honors Thesis, Department of Computer
Science, College of William & Mary, Williamsburg, VA, 2000.

[240] C. M. Siefert and A. Yates, MAPS (Model-Assisted Pattern Search); software available at
http://www.cs.wm.edu/̃ va/software/maps.

[241] D. K. Smith, A minimization solver for many parameters, J. Quality Tech., 18 (1986),
pp. 248–254.

[242] L. B. Smith, Remark on algorithm 178, Comm. ACM, 12 (1969), p. 638.
[243] H. A. Spang III, A review of minimization techniques for nonlinear functions, SIAM Rev.,

4 (1962), pp. 343–365.
[244] W. Spendley, Nonlinear least squares fitting using a modified simplex minimization method,

in Optimization, R. Fletcher, ed., Academic Press, New York, 1969, pp. 259–270.
[245] W. Spendley, G. R. Hext, and F. R. Himsworth, Sequential application of simplex designs

in optimisation and evolutionary operation, Technometrics, 4 (1962), pp. 441–461.
[246] M. Strasser, Übertrangung des Optimierungsverfahrens von Nelder und Mead auf re-

stringierte Probleme, Diploma thesis, Numerical Mathematics Group, Technical Univer-
sity of Darmstadt, Germany, 1994.

[247] J. C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, Wadsworth
& Brooks/Cole, Pacific Grove, CA, 1989.

[248] N. Sugie, An extension of Fibonaccian searching to multidimensional cases, IEEE Trans.
Automat. Control, 9 (1964), p. 105.

[249] W. H. Swann, Report on the Development of a New Direct Search Method of Optimization,
Tech. Rep. Research Note 64/3, I.C.I. Central Instrument Lab, 1964.

[250] W. H. Swann, Direct search methods, in Numerical Methods for Unconstrained Optimization,
W. Murray, ed., Academic Press, London, New York, 1972, pp. 13–28.

[251] W. H. Swann, Constrained optimization by direct search, in Numerical Methods for Con-
strained Optimization, P. E. Gill and W. Murray, eds., Academic Press, London, New
York, 1974, pp. 191–217.

[252] S. W. Thomas, Sequential Estimation Techniques for Quasi-Newton Methods, Tech. Rep.
TR75227, Department of Computer Science, Cornell University, Ithaca, NY, 1975.

[253] P. L. Toint and F. M. Callier, On the accelerating property of an algorithm for function
minimization without calculating derivatives, J. Optim. Theory Appl., 23 (1977), pp. 531–
547; correction by F. M. Callier and Ph. L. Toint, Optim. Theory Appl., 26 (1978), pp.
465–467.

[254] F. K. Tomlin and L. B. Smith, Remark on algorithm 178, Comm. ACM, 12 (1969), pp. 637–
638.

[255] V. Torczon, Multi-Directional Search: A Direct Search Algorithm for Parallel Machines,
Ph.D. thesis, Department of Mathematical Sciences, Rice University, Houston, TX, 1989;
available as Tech. Rep. 90-07, Department of Computational and Applied Mathematics,
Rice University, Houston, TX, 1990.

[256] V. Torczon, On the convergence of the multidirectional search algorithm, SIAM J. Optim.,
1 (1991), pp. 123–145.

[257] V. Torczon, On the convergence of pattern search algorithms, SIAM J. Optim., 7 (1997),
pp. 1–25.

[258] V. Torczon and M. W. Trosset, From evolutionary operation to parallel direct search:
Pattern search algorithms for numerical optimization, Comput. Sci. Statist., 29 (1998),
pp. 396–401.

[259] M. W. Trosset, I know it when I see it: Toward a definition of direct search methods,
SIAG/OPT Views-and-News: A Forum for the SIAM Activity Group on Optimization,
9 (1997), pp. 7–10.

482 T. G. KOLDA, R. M. LEWIS, AND V. TORCZON

[260] M. W. Trosset, On the Use of Direct Search Methods for Stochastic Optimization, Tech.
Rep. 00–20, Department of Computational and Applied Mathematics, Rice University,
Houston, TX, 2000.

[261] M. W. Trosset and V. Torczon, Numerical Optimization Using Computer Experiments,
Tech. Rep. 97–38, Institute for Computer Applications in Science and Engineering, NASA
Langley Research Center, Hampton, VA, 1997; revised 1999 and available as Tech. Rep.
97-2, Department of Computational & Applied Mathematics, Rice University, Houston,
TX, 1997.

[262] P. Tseng, Fortified-descent simplicial search method: A general approach, SIAM J. Optim.,
10 (1999), pp. 269–288.

[263] P. Tseng, Convergence of block coordinate descent method for nondifferentiable minimiza-
tion, J. Optim. Theory Appl., 109 (2001), pp. 475–494.

[264] T. Umeda and A. Ichikawa, A modified complex method for optimization, Industrial and
Engineering Chemistry Process Design and Development, 10 (1971), pp. 229–236.

[265] P. F. A. van der Wiel, R. Maassen, and G. Kateman, The symmetry-controlled simplex
optimization procedure, Analytica Chimica Acta, 153 (1983), pp. 83–92.

[266] D. A. Walmsley, The Simplex Method for Minimisation of a General Function, Supplemen-
tary Report 686, Assessment Division, Transport Systems Department, Transport and
Road Research Laboratory, Crowthorne, Berkshire, UK, 1981.

[267] F. H. Walters, L. R. Parker, Jr., S. L. Morgan, and S. N. Deming, Sequential Simplex
Optimization, Chemometrics Series, CRC Press, Boca Raton, FL, 1991.

[268] D. Winfield, Function minimization by interpolation in a data table, J. Inst. Math. Appl.,
12 (1973), pp. 339–347.

[269] P. Wolfe, Convergence conditions for ascent methods, SIAM Rev., 11 (1969), pp. 226–235.
[270] C. F. Wood, Review of design optimization techniques, IEEE Trans. Systems Sci. Cybernetics,

1 (1965), pp. 14–20.
[271] D. J. Woods, An Interactive Approach for Solving Multi-Objective Optimization Problems,

Ph.D. thesis, Department of Mathematical Sciences, Rice University, Houston, TX, 1985;
also available as TR85-05, Department of Computational and Applied Mathematics, Rice
University, Houston, TX, 1985.

[272] M. H. Wright, Direct search methods: Once scorned, now respectable, in Numerical Analysis
1995 (Proceedings of the 1995 Dundee Biennial Conference in Numerical Analysis), D. F.
Griffiths and G. A. Watson, eds., Pitman Res. Notes Math. Ser. 344, CRC Press, Boca
Raton, FL, 1996, pp. 191–208.

[273] M. H. Wright, What, If Anything, Is New in Optimization?, Tech. Rep. 00–4–08, Computing
Sciences Research Center, Bell Laboratories, Murray Hill, NJ, 2000.

[274] S. E. Wright, A note on positively spanning sets, Amer. Math. Monthly, 107 (2000), pp. 364–
366.

[275] Y.-X. Yuan, An example of non-convergence of trust region algorithms, in Advances in Non-
linear Programming, Y.-X. Yuan, ed., Kluwer Academic, Dordrecht, The Netherlands,
1998, pp. 205–215.

[276] L. A. Yarbo and S. N. Deming, Selection and preprocessing of factors for simplex optimiza-
tion, Analytica Chimica Acta, 73 (1974), pp. 391–398.

[277] W. Yu, The convergence property of the simplex evolutionary techniques, Scientia Sinica,
Special Issue of Mathematics, 1 (1979), pp. 68–77.

[278] W. Yu, Positive basis and a class of direct search techniques, Scientia Sinica, Special Issue of
Mathematics, 1 (1979), pp. 53–67.

[279] W. I. Zangwill, Minimizing a function without calculating derivatives, Comput. J., 10
(1967), pp. 293–296.

[280] E. H. Zarantonello, Projections on convex sets in Hilbert space and spectral theory, in
Contributions to Nonlinear Functional Analysis, E. H. Zarantonello, ed., Academic Press,
London, New York, 1971, pp. 237–424.

[281] S. K. Zavriev, On the global optimization properties of finite-difference local descent algo-
rithms, J. Global Optim., 3 (1993), pp. 67–78.

