ON THE CONVERGENCE OF PATTERN SEARCH ALGORITHMS*

VIRGINIA TORCZONt

Abstract. We introduce an abstract definition of pattern search methods for solving nonlinear
unconstrained optimization problems. Our definition unifies an important collection of optimization
methods that neither compute nor explicitly approximate derivatives. We exploit our characterization
of pattern search methods to establish a global convergence theory that does not enforce a notion of
sufficient decrease. Our analysis is possible because the iterates of a pattern search method lie on a
scaled, translated integer lattice. This allows us to relax the classical requirements on the acceptance
of the step, at the expense of stronger conditions on the form of the step, and still guarantee global
convergence.
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1. Introduction. We consider the familiar problem of minimizing a continu-
ously differentiable function f : R® — R. Direct search methods for this problem
are methods that neither compute nor explicitly approximate derivatives of f. Our
interest is in a particular subset of direct search methods that we will call pattern
search methods. Our purpose is to generalize these methods and to present a global
convergence theory for them. To our knowledge, this is the first convergence result
for some of these methods and the first general convergence theory for all of them.

Examples of pattern search methods include such classical direct search algo-
rithms as coordinate search with fixed step sizes, evolutionary operation using facto-
rial designs (first proposed by G. E. P. Box [2, 3, 13]), and the original pattern search
algorithm of Hooke and Jeeves [7]. A more recent example is the multidirectional
search algorithm of Dennis and Torczon [6, 15]. For some time, it has been apparent
to us that the unifying theme that distinguishes these algorithms from other direct
search methods is that each of them performs a search using a “pattern” of points
that is independent of the objective function f. This informal insight is the basis for
our general definition of pattern search methods—it turns out that each of the above
pattern search methods is an instance of our general model.

Formally, our definition of pattern search methods requires the existence of a
lattice T" such that, if {1, -, 2x} are the first N iterates generated by a pattern
search method, then there exists a scale factor ¢ such that the steps {1 — 2o, 29 —
z1,-- &Ny — an—1} all lie in the scaled lattice ¢nT". The lattice depends on the
pattern that defines the individual method and on the initial choice of the step length
control parameter, but it is independent of the objective function f. The scaling
depends solely on the sequence of updates that have been applied to the step length
control parameter.
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Despite isolated convergence results ([4], [11], and [16]) for certain individual
pattern search methods, a general theory of convergence for the class of such methods
remained elusive for some time. The standard convergence theory for line search
and trust region methods depends crucially on some notion of sufficient decrease, but
pattern search methods do not enforce any such notion. Therefore, attempts such
as [18] to apply the standard theory to pattern search methods arbitrarily introduce
some notion of sufficient decrease, thereby modifying the original algorithms. Thus,
the challenge was to develop a general convergence theory for pattern search methods
without redefining what they are.

Our convergence analysis is guided by that found in Torczon [16] for the mul-
tidirectional search algorithm; however, the present level of abstraction makes the
important elements of that analysis easier to appreciate. The present paper also
includes a correction to the specification of the scaling factors found in [16].

There are three key points to our analysis. First, we show that pattern search
methods are descent methods. Second, we prove that pattern search methods are
gradient-related methods in the sense of [10]. Finally, we demonstrate that pattern
search methods cannot terminate prematurely due to inadequate step length control
mechanisms. The crucial element of this analysis is the fact that pattern search
methods are able to relax the conditions on accepting a step by enforcing stronger
conditions on the step itself. The lattice T', together with the way in which the step
length control parameter is updated, prevent a pathological choice of steps: steps of
arbitrary lengths along arbitrary search directions are not permitted.

We are able to guarantee that, if the function f is continuously differentiable, then
liminfy— 4o [[Vf(2r)|| = 0 without an explicit representation of the gradient or the
directional derivative. In particular, we prove global convergence for pattern search
methods despite the fact that they do not explicitly enforce a notion of sufficient
decrease on their iterates, such as fraction of Cauchy decrease, fraction of optimal de-
crease, or the Armijo—Goldstein—Wolfe conditions. However, our convergence analysis
does share certain characteristics with the classical convergence analysis of both line
search and trust region methods. This connection is both subtle and unexpected.

Our convergence analysis for pattern search methods makes it clear why these
methods are as robust as their proponents have long claimed, while clarifying some of
the limitations that have long been ascribed to them. In addition, having identified
the common structure of these methods, it is now possible to develop new pattern
search methods with guaranteed global convergence.

In §2 we establish the notation and general specification of pattern search meth-
ods. In §3, we prove that, if the function to be minimized is continuously differentiable,
then pattern search methods guarantee that liminfy .4 ||V f(2x)|| = 0. In addition,
we identify the modifications that must be made to pattern search methods to obtain
the stronger result limg_. 4o ||V f(21)]] = 0. In §4 we show that the classical pattern
search methods mentioned above, as well as the newer multidirectional search algo-
rithm of Dennis and Torczon, conform to the general specification for pattern search
methods. In §5, we give some concluding remarks; §6 contains technical results needed
for the proofs of §3.

Notation. We denote by R, Q, Z, and N the sets of real, rational, integer, and
natural numbers, respectively.
All norms are Euclidean vector norms or the associated operator norm. We define

L(y) ={z: f(z) < f(y)}, Cly) = {2 : f(2) = f(y)}, and X, = {z: Vf(z) = 0}.
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2. Pattern Search Methods. We begin by introducing the following abstrac-
tion of pattern search methods. We defer to §4 demonstrations that the pattern search
methods mentioned above fall comfortably within this abstraction.

2.1. The Pattern. To define a pattern we need two components, a basis matriz
and a generating matriz.

The basis matrix can be any nonsingular matrix B € R?*".

The generating matrix is a matrix Cj, € Z"*P, where p > 2n. We partition the
generating matrix into components

(1) Co=[My —My Ly]=[Ts Ly].

We require that My € M C Z"*", where M is a finite set of nonsingular matrices,
and that L € Z"*(P=27) and contains at least one column, the column of zeros.

A pattern Py is then defined by the columns of the matrix P, = BC}. Because
both B and Cj have rank n, the columns of Pj span R”. For convenience, we use the
partition of the generating matrix Cj, given in (1) to partition Py as follows:

(2) P, =BCy =[BM, —BM; BL,]=][Bly BL].
Given A, € R, A > 0, we define a trial step 52 to be any vector of the form
(3) st = ApBct

where ¢&, denotes a column of Cj, = [c} - - - ¢}]. Note that Bct, determines the direction
of the step, while Ay serves as a step length parameter.

At iteration k, we define a trial point as any point of the form x% =y —i—sﬁc, where
xp 1s the current iterate.

2.2. The Exploratory Moves. Pattern search methods proceed by conducting
a series of exploratory moves about the current iterate before declaring a new iterate
and updating the associated information. These moves can be viewed as sampling the
function about the current iterate z; in a well-defined deterministic fashion in search of
anew iterate zpy1 = zp+s; with a lower function value. The individual pattern search
methods are distinguished, in part, by the manner in which these exploratory moves
are conducted. To allow the broadest possible choice of exploratory moves, and yet still
maintain the properties required to prove convergence for the pattern search methods,
we place two requirements on the exploratory moves associated with any particular
pattern search method. These requirements are given in the following Hypotheses on
Exploratory Moves. (Please note an abuse of notation that is nonetheless convenient:
y € A means that the vector y is contained in the set of columns of the matrix A4.)

Hypotheses on Exploratory Moves.
1. s € AP = A BCr = Ay [BFk BLk]
2. f min{f(zr +vy), vy € ApBTr} < f(xr), then f(ar + sp) < f(zg).

The choice of exploratory moves must ensure two things:
1. The direction of any step s; accepted at iteration k is defined by the pattern
P and its length is determined by Ay.
2. If simple decrease on the function value at the current iterate can be found
among any of the 2n trial steps defined by Ay BIj, then the exploratory
moves must produce a step sy that also gives simple decrease on the function
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value at the current iterate. In particular, f(zj + si) need not be less than
or equal to min{f(zy +y), y € Ay BT}
Thus, a legitimate Exploratory Moves algorithm would be one that somehow
guesses which of the steps defined by Ap P will produce simple decrease
and then evaluates the function at only one such step. (And that step may
be contained in ApBLj rather than in ApBT.) At the other extreme, a
legitimate Exploratory Moves algorithm would be one that evaluates all p
steps defined by Ay Py and returns the step that produced the least function
value.
These are the properties of the exploratory moves that enable us to prove
tim nf [V f (1) = 0,
even though we only require simple decrease on f. Thus we avoid the necessity
of enforcing either fraction of Cauchy decrease, fraction of optimal decrease, or the
Armijo-Goldstein—Wolfe conditions on the iterates. To obtain

Jim [V =0

we need to place stronger hypotheses on the exploratory moves, as well as placing a
boundedness condition on the columns of the generating matrices. These extensions
will be discussed further in §3.3.2.

2.3. The Generalized Pattern Search Method. Algorithm 1 states the gen-
eralized pattern search method for unconstrained minimization.

Algorithm 1. The Generalized Pattern Search Method.
Let zp € R™ and Ay > 0 be given.
For k=0,1,---,
a) Compute f(z).
b) Determine a step sp using an ezploratory moves algorithm.
¢) Compute pr, = f(zr) — f(xr + si).
d) If pr, > 0 then xp41 = xp + sp. Otherwise w41 = 2p.
e) Update C}y and Ay,

To define a particular pattern search method, it is necessary to specify the basis
matrix B, the generating matrix C}, the exploratory moves to be used to produce a
step sg, and the algorithms for updating Cy and Ayg.

2.4. The Updates. Algorithm 2 specifies the requirements for updating Ay.
The aim of the updating algorithm for Ay is to force pr > 0. An iteration with
pr > 0 is successful, otherwise, the iteration is unsuccessful. Again we note that to
accept a step we only require simple, as opposed to sufficient, decrease.

Algorithm 2. Updating Ay.
Given 7 € Q, let § = 7% and Ay, € A = {r¥t,.-- 7¥L} where 7 > 1 and
{wo, w1, -, wr} CZ, L =|A| < 400, wp < 0,and w; >0,i=1,--- L.

a) If pr < 0 then Agtpq = 0Ay.

b) If pr >0 then Ak+1 = A Ap.

The conditions on § and A ensure that 0 < 8 < 1 and A; > 1 for all A; € A. Thus,
if an iteration is successful it may be possible to increase the step length parameter
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Ayg, but Ag is not allowed to decrease. Not surprisingly, this is crucial to the success
of the analysis. Also crucial to the analysis is the relationship (overlooked in [16])
between # and the elements of A.

The algorithm for updating C% depends on the pattern search method. For theo-
retical purposes, it is sufficient to choose the columns of Cj, so that they satisfy (1) and
the conditions we have placed on the matrices My, € M C Z"*" and Ly € Znx(p—2n)

3. The Convergence Theory. Having set up the machinery to define pattern
search methods, we are now ready to analyze these methods. This analysis produces
theorems of several types. The first, developed in §3.1, demonstrates an algebraic
fact about the nature of pattern search methods that requires no assumption on the
function f. This theorem is critical to the proof of the convergence results for it shows
that we only need require simple decrease in f to ensure global convergence. The
second theorem, developed in §3.2, describes the limiting behavior of the step length
control parameter Ay if we place only a very mild condition on the function f and
exploit the interaction of the simple decrease condition for the generalized pattern
search method with the algorithm for updating Ag. Finally, the third and fourth
theorems, developed in §3.3, give the global convergence results. The first theorem
guarantees liminfy_ 1o ||V f(2)|| = O for any generalized pattern search method that
satisfies the specifications given in §2. This is significant since the theorem applies
to all the pattern search methods we discuss in §4 without the need to impose any
modifications on the methods as originally stated. The second theorem is equivalent
to convergence results for line search and trust-region globalization strategies. We can
guarantee limy_. 4o ||V f(25)|| = 0, but to do so requires placing stronger conditions
on the specifications for generalized pattern search methods. We could certainly
impose these stronger conditions on the pattern search methods presented in §4—
none of them are unreasonable to suggest or to enforce—but we would do so at the
expense of attractive algorithmic features found in the original methods.

3.1. The Algebraic Structure of the Iterates. The results found in this
section are purely algebraic facts about the nature of pattern search methods; they
are also independent of the function to be optimized. It is the algebraic structure
of the iterates that allows us to prove global convergence for pattern search methods
without imposing a notion of sufficient decrease on the iterates.

We begin by showing in what sense Ay is a step length parameter.

LEMMA 3.1. There exists a constant {x > 0, independent of k, such that for any
trial step 52 # 0 produced by a generalized pattern search method (Algorithm 1) we
have

st > oA

Proof. From (3) we have si = Achfc. The conditions we have placed on the
generating matrix Cy insure that ¢} € Z".
Let 0,(B) denote the smallest singular value of B. Then

Istll = Axll Begll 2 Akon(B)llcll > Apon(B).

The last inequality holds because at least one of the components of ci is a nonzero
integer, and hence ||ci|| > 1. O

From Lemma 3.1 we can see that the role of A} as a step length parameter is to
regulate backtracking and thus prevent excessively short steps.
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THEOREM 3.2. Any iterate xy produced by a generalized pattern search method
(Algorithm 1) can be expressed in the following form:

N-1
ey = 2o+ (BPa”"VB) AgB E 2k,
k=0
where
e xq ts the initial guess,
o B/a = 7, with o, € N and relatively prime, and 7 is as defined in the
algorithm for updating Ay, (Algorithm 2),
e rrg and ryp depend on N,
o Ay s the initial choice for the step length control parameter,
e B is the basis matriz, and
ez €2, k=0,---,N—1.
Proof. The generalized pattern search algorithm, as stated in Algorithm 1, guar-
antees that any iterate zn is of the form

N-1
4) mN:mo—l—Zsk.
k=0

(We adopt the convention that s; = 0 if iteration k is unsuccessful.) We also know
that the step s, must come from the set of trial steps st, i = 1,---,p. The trial steps
are of the form si = Achi.

Consider the step length parameter Ag. For any k£ > 0, the update for A given
in Algorithm 2 guarantees that Ay is of the form

(5) Ag = 0% AT AL AT A,
where ¢¢ € Z and ¢& > 0. (Recall that L = |A|.) We have also placed the following
restrictions on the form of § and );: for a given 7 € Q, 7 > 1, and {wq, w1, -, wr} C

Z,0=1" wyg<0and \; = 7%, w; >0,i=1,---, L. We can thus rewrite (5) as:

(6) Ap = (Twu)qg (Tw1)‘1i (Twz)‘Ji . (T’LUL)Q£ Ay = TrkAO,
where r, € Z. Let

7 = 1 = .

(7) TLB Og}clgN{rk} TUB OISI}CELXN{Tk}

Then from (4) and (6) we have
N-1 N-1
TN = Zo+ Z ApBep = g + AogB Z "k ey
k=0 k=0

Since 7 is rational, we can express T as T = g, where «, f € N are relatively prime.

Then, using (7),

N-1
(8) IN = Zo —|— <6TLBCY_TUB) AOB Z 2k,

k=0
where z, € Z. 0

Theorem 3.2 synthesizes the requirements we have placed on the pattern, the

definition of the trial steps, and the algorithm for updating Aj. Note that this means
that for a fixed N, all the iterates lie on a translated integer lattice generated by zg
and the columns of "2Ba~"VBA(B.
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3.2. The Limiting Behavior of the Step Length Control Parameter.
The next theorem combines the strict algebraic structure of the iterates with the
simple decrease condition of the generalized pattern search algorithm, along with the
algorithm for updating Ay, to give us a useful fact about the limiting behavior of Ay.

THEOREM 3.3. Assume that L(xg) is compact. Then liminfy_ 4o Ap = 0.

Proof. The proof is by contradiction. Suppose 0 < Arp < Ay, for all k. From (6)
we know that Ay can be written as Ay = 7% Aq, where r; € Z.

The hypothesis that App < Ay for all k means that the sequence {77} is bounded
away from zero. Meanwhile, we also know that the sequence {A} is bounded above
because all the iterates z; must lie inside the set L(zo) = {z : f(2) < f(zo)} and the
latter set is compact; Lemma 3.1 then guarantees an upper bound Aypg for {A}.
This, in turn, means that the sequence {7"*} is bounded above. Consequently, the
sequence {7"*} is a finite set. Equivalently, the sequence {ry} is bounded above and
below.

Let

9) rLB = og%lirioo{r’“} ryB = OSI??_}EOO{T'I«}

Then (8) now holds for the bounds given in (9), rather than (7), and we see that for
all k, zp lies in the translated integer lattice G generated by z and the columns of
67'LB a—TUBAOB.

The intersection of the compact set L(zg) with the translated integer lattice G is
finite. Thus, there must exist at least one point z, in the lattice for which z; = .
for infinitely many k.

We appeal to the simple decrease condition in the generalized pattern search
method (Algorithm 1 (d)), which guarantees that a lattice point cannot be revisited
infinitely many times since we accept a new step s if and only if f(zg) > f(zx + k).
Thus there exists an N such that for all £ > N, z; = z., which implies that py = 0.

We now appeal to the algorithm for updating Ay (Algorithm 2 (a)) to see that
Ap — 0, thus leading to a contradiction. 0O

3.3. Global Convergence. Throughout the discussion in this section, we as-
sume that f is continuously differentiable on a neighborhood of L(z); however, this
assumption can be weakened, using the same style of argument found in [16].

3.3.1. The General Result. To prove Theorem 3.5 we need Proposition 3.4.
We defer the proof of Proposition 3.4 to §6 in part because we wish to discuss there
several other issues that are tangential to the proof of Theorem 3.5. It is also the
case that the proofs for the results in §6 are similar to those given for the equivalent
results found in [16], though now restated more succinctly in terms of the machinery
developed in §2.

PROPOSITION 3.4. Assume that L(zg) is compact, that f is continuously differ-
entiable on a neighborhood of L(xg), and that liminfy_ 1o ||V f(2r)|| # 0. Then there
exists a constant Apg > 0 such that for all k, Ay > Arp.

We emphasize that the existence of a positive lower bound App for Ay is guaranteed
only under the null hypothesis that liminf;_. 1 ||V f(25)|] # 0.

THEOREM 3.5. Assume that L(zg) is compact and that f is continuously differ-
entiable on a neighborhood of L(zg). Then for the sequence of iterates {ap} produced
by the generalized pattern search method (Algorithm 1),

lim inf ||V f(z)]| = 0.
lim inf ||V £ (z)]| = 0



8 VIRGINIA TORCZON

Proof. The proof is by contradiction. Suppose that liminfy_ o ||V f(zr)|| # 0.
Then Proposition 3.4 tells us that there exists Aypp > 0 such that for all k, Ay, > Arp.
But this contradicts Theorem 3.3. 0O

3.3.2. The Stronger Result. We can strengthen the result given in Theo-
rem 3.5 at the expense of wider applicability. To begin with, we must add three
further restrictions: one on the pattern matrix, one on the Hypotheses on Exploratory
Moves, and one on the limiting behavior of the step length control parameter Ay.

First, we must ensure that the columns of the generating matrix C} are bounded
in norm, i.e., that there exists a constant C > 0 such that for all k, C > ||c%]|, for all
t=1,---,p. Given this bound, we can place an upper bound, in terms of A, on the
norm of any trial step st .

LEMMA 3.6. Given a constant C > 0 such that for all k, C > ||ct||, for all
t=1,---,p, there exists a constant 1. > 0, independent of k, such that for any trial
step 32 produced by a generalized pattern search method (Algorithm 1) we have

A 2 ullsil]

Proof. From (3) we have st = AgBcl. Then ||si|| = Ag||Bct|] < Agl|Bll||ck]| <
ALC||B||. Set ¥, = ﬁ. O

Note that the columns of My € M are bounded by the assumption that |M| <
400; we use this fact in the proof of Proposition 6.4. The stronger boundedness
condition on the columns of Cy = [My —My L] is needed to monitor the behavior of
Lg.

Second, we must replace the original Hypotheses on Exploratory Moves with a
stronger version, as given below. Together, Lemma 3.6 and the Strong Hypotheses
on Exploratory Moves allow us to tie decrease in f to the norm of the gradient when
the step sizes get small enough. This is the import of Corollary 6.5, which is given in

§6.

Strong Hypotheses on Exploratory Moves.
1. s € AP = Ay BCr = Ay [BFk BLk]
2. If min{f(zr +vy), y € ABT} < f(xy), then
fler + sp) <min{f(zr + y), y € ApBI':}.

Third, we require that limgp_ 4. Ar = 0. We can use the algorithm for updating
Ay (Algorithm 2) to ensure that this condition holds. For instance, we can force Ay
to be nonincreasing by requiring w; = 0, ¢ = 1,---, L, which when taken together
with Theorem 3.3 guarantees that limy_. 1o Ar = 0. All the algorithms we consider
in §4, except the multidirectional search algorithm, enforce this condition by limiting
A = {1} = {r°}. However, it is not necessary to force the steps to be nonincreasing;
we need only require that in the limit the step length control parameter goes to zero,
which, in conjunction with Lemmas 3.1 and 3.6, has the effect of ultimately forcing
the steps to zero.

THEOREM 3.7. Assume that L(zg) is compact and that f is continuously differ-
entiable on a neighborhood of L(zg). In addition, assume that the columns of the gen-
erating matrices are bounded in norm, that limg_ 4o Ar = 0, and that the generalized
pattern search method (Algorithm 1) enforces the Strong Hypotheses on Ezploratory
Moves. Then for the sequence of iterates {xy} produced by the generalized patiern
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search method,

Jim [Vl =0,

Proof. The proof is by contradiction. Suppose limsup,_ 4. ||V f(zz)|| # 0. Let
¢ > 0 be such that there exists a subsequence ||V f(xm,)|| > €. Since

lim inf ||V f( =0
lim inf ||V £(z0)]| = 0,
given any 0 < n < ¢, there exists an associated subsequence /; such that

[Vf(zp)|| >n for my <k <l, ||Vf(z,)

| <.

Then, since Ay, — 0, we can appeal to Corollary 6.5 to obtain for m; < k < [, ¢
sufficiently large,

fzr) = f(@et1) 2 o[V F@e)llllsell = onllsell,
where o > 0. Then the telescoping sum:

L

(f(@m) = F@me40)) + (F@mp1) = F@mea2)) -+ (Frn-1) = f@) = Y onlls]

k=m;

gives us

F@m) = F(@1) 2 e, onllsell 2 ¢llem, — 2.

Since f is bounded below, f(zp,) — f(21,) — 0 as i — 400, 80 ||2m, — 21,]] — 0 as
t — +00. Then, because V f is uniformly continuous,

IVf(2m,) = V@)l <,
for i sufficiently large. However,
(10) IVf@m)ll < IV f(@m,) = Vf(21,)

Since (10) must hold for any 5, 0 <5 < ¢, we have a contradiction (e.g., try n = £).
d

|+ IV f(2)

| < 2n.

The proof of Theorem 3.7 is almost identical to that of an equivalent result for
trust-region methods that was first given by Thomas [14] and which is included, in a
more general form, in the survey by Moré [8§].

One final note: the hypotheses of Theorem 3.7 suggest that in the absence of
any explicit higher-order information about the function to be minimized, it makes
sense to terminate a generalized pattern search algorithm when Ay is less than some
reasonably small tolerance. In fact, this is a common stopping condition for algorithms
of this sort and the one implemented for the multidirectional search algorithm [17].

4. The Particular Pattern Search Methods. In §2 we stated the conditions
an algorithm must satisfy to be a pattern search method. We now illustrate these
conditions by considering the following specific algorithms:

e coordinate search with fixed step lengths,
e evolutionary operation using factorial designs ([2] and [3, 13]),
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e the original pattern search method of Hooke and Jeeves [7], and

e the multidirectional search algorithm of Dennis and Torczon ([6] and [15]).
We will show that these algorithms satisfy the conditions that define pattern search
methods and thus are special cases of the generalized pattern search method presented
as Algorithm 1. Then we can appeal to Theorem 3.5 to claim global convergence for
these methods.

There are other algorithms for which the abstraction and accompanying analy-
sis holds—including various modifications to the algorithms presented—but we shall
confine our investigation to these, the best known of the pattern search methods, to
illustrate the power of our abstract approach to pattern search methods.

4.1. Coordinate Search with Fixed Step Lengths. The method of coordi-
nate search is perhaps the simplest and most obvious of all the pattern search meth-
ods. Davidon describes it concisely in the opening of his belated preface to Argonne
National Laboratory Research and Development Report 5990 [5]:

Enrico Fermi and Nicholas Metropolis used one of the first digital
computers, the Los Alamos Maniac, to determine which values of
certain theoretical parameters (phase shifts) best fit experimental
data (scattering cross sections). They varied one theoretical param-
eter at a time by steps of the same magnitude, and when no such
increase or decrease in any one parameter further improved the fit
to the experimental data, they halved the step size and repeated the
process until the steps were deemed sufficiently small. Their simple
procedure was slow but sure....

This simple search method enjoys many names, among them alternating direc-
tions, alternating variable search, azial relazation, and local variation. We shall refer
to it as coordinate search.

Perhaps less obvious is that coordinate search is a pattern search method. To see
this, we begin by considering all possible outcomes for a single iteration of coordinate
search when n = 2, as shown in Fig. 1. We mark the current iterate z;. The 2%’s
denote trial points considered during the course of the iteration. The next iterate xj41
is marked. Solid circles indicate successful intermediate steps taken during the course
of the exploratory moves while open circles indicate points at which the function was
evaluated but that did not produce further decrease in the value of the objective
function. Thus, in the first scenario shown a step from zj, to z} resulted in a decrease
in the objective function, so the step from z}, to zy41 was tried and led to a further
decrease in the objective function value. The iteration was then terminated with a
new point zp4+1 that satisfies the simple decrease condition f(zr4+1) < f(zy). In the
worst case, the last scenario shown, 2n trial points were evaluated (z}, x,lcl, 22, and
r%) without producing decrease in the function value at the current iterate z. In
this case, xr4+1 = 2 and the step size must be reduced for the next iteration.

We now show this algorithm is an instance of a generalized pattern search method.

4.1.1. The Matrices. Coordinate search is usually defined so that the basis
matrix is the identity matrix; i.e., B = I. However, knowledge of the problem may
lead to a different choice for the basis matrix. It may make sense to search using
a different coordinate system. For instance, if the variables are known to differ by
several orders of magnitude, this can be taken into account in the choice of the basis
matrix (though, as we will see in §6.2, this may have a significant effect on the behavior

of the method).
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Fic. 1. All possible subsets of the steps for coordinate search in R2.

The generating matrix for coordinate search is fixed across all iterations of the
method. The generating matrix C} = C' contains in its columns all possible combi-
nations of {—1,0,1}. Thus, C has p = 3" columns. In particular, the columns of C
contain both I and —7, as well as a column of zeros. We define M = I; L consists
of the remaining 3" — 2n columns of C'. Since C' is fixed across all iterations of the
method, there is no need for an update algorithm.

For n = 2 we have

= 1 0 -1 0 1 1 -1 -1 0
-1 o 1 0 -1 1 -1 -1 1 0
Thus, when n = 2, all possible trial points defined by the pattern P = BC, for a
given step length Ay, can be seen in Fig. 2. Note that the pattern includes all the
possible trial points enumerated in Fig. 1.

4.1.2. The Exploratory Moves. The exploratory moves for coordinate search
are given in Algorithm 3, where the e;’s denote the unit coordinate vectors.

The exploratory moves are executed sequentially in the sense that the selection of
the next trial step is based on the success or failure of the previous trial step. Thus,
while there are 3" possible trial steps, we may compute as few as n trial steps, but
we compute no more than 2n at any given iteration, as we saw in Fig. 1.

From the perspective of the theory, there are two conditions that need to be met
by the exploratory moves algorithm. First, as Figs. 1 and 2 illustrate, all possible
trial steps are contained in A P.
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Ay

Lk

L] L ]
F1G. 2. The pattern for coordinate search in R? with a given step length control parameter Ay.

Algorithm 3. Exploratory Moves Algorithm for Coordinate Search.
Given zy, Ay, f(zp), and B, set s =0, pr = 0, and min = f(zy).
Fori=1,---,ndo
a) sﬁc = s + ApBe; and 1‘2 =r; + 52. Compute f(x}c)
b) If f(z}) < min then py = f(zr) — f(2%), min = f(z}), and s = s%.
Otherwise,
i) 52 = sp — ApBe; and :L‘;c =+ 52. Compute f(zt).
ii) If f(z%) < min then py = f(zx) — f(2%), min = f(2%), and s = st.
Return.

The second condition on the exploratory moves is the more interesting; coordinate
search demonstrates the laxity of this second hypothesis. For instance, in the first
scenario shown in Fig. 1, decrease in the objective function was realized for the first

trial step
S]lC = AkI (é) s
so the second trial step

1 1 0
=) () ()

was tried, and accepted. It is certainly possible that greater decrease in the value of
the objective function might have been realized for the trial step

s5p = Ayl (?) ,

which is defined by a column in the matrix M (the step s? is defined by a column in the
matrix L), but 5;6 is not tried when simple decrease is realized by the step si. However,
in the worst case, as seen in Fig. 1, the algorithm for coordinate search ensures that
all 2n steps defined by Ay BT = Ay B[M — M| = ApB[I —1I] are tried before returning
the step s = 0. In other words, the exploratory moves given in Algorithm 3 examines
all 2n steps defined by Ay BT unless a step satisfying f(z + sx) < f(zy) is found.

4.1.3. Updating the Step Length. The update for Ay is exactly as given in
Algorithm 2. As noted by Davidon, the usual practice is to continue with steps of
the same magnitude until no further decrease in the objective function is realized, at
which point the step size is halved. This corresponds to setting § = 1/2 and A = {1}.
Thus, 7= 2, wg = —1, and w; = 0.

This suffices to verify that coordinate search with fixed step length is a pat-
tern search method. Theorem 3.5 thus holds. The exploratory moves algorithm for
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coordinate search would need to be modified to satisfy the Strong Hypotheses on
Exploratory Moves for the conditions of Theorem 3.7 to be met.

4.2. Evolutionary Operation using Factorial Designs. In 1957 G. E. P.
Box [2] introduced the notion of evolutionary operation as a method for increasing
industrial productivity. The ideas were developed within the context of the on-line
management of industrial processes, but Box recognized that the technique had more
general applicability. Subsequent authors [3, 13] argued that the basic technique was
readily applicable to general unconstrained optimization and it is within this context
that we examine the ideas here.

In its simplest form, evolutionary operation is based on using two-level factorial
designs: evaluate the function at the vertices of a hypercube centered about the
current iterate. (G. E. P. Box refers to this as one of a variety of “pattern of variants”
[2].) If simple decrease in the value of the objective function is observed at one of
the vertices, it becomes the new iterate. Otherwise, the lengths of the edges in the
hypercube are halved and the process is repeated.

4.2.1. The Matrices. As with coordinate search, the usual choice for the basis
matrix is B = I, though, as with coordinate search, other choices may be made to
reflect information known about the problem to be solved.

The generating matrix for response surface methodology is fixed across all iter-
ations of the method. The generating matrix C = C contains in its columns all
possible combinations of {—1,1}; to this we append a column of zeros. Thus C has
p=2"+1 columns.

We take M to be any linearly independent subset of n columns of C'; —M nec-
essarily will be contained in C'. Once again, L is fixed and consists of the remaining
(2" 4+ 1) — 2n columns of C.

Since the generating matrix is fixed, there is no need for an algorithm to update

C.

4.2.2. The Exploratory Moves. The exploratory moves given in Algorithm
4 are simultaneous in the sense that every possible trial step 52 € AP = AyBC is
computed at each iteration. It is then the case that every trial step si is contained in
A P. The second observation of note is that since

sp = argmin{ f(zp + 52)},
SiEAkP

then, if min{f(zr + y),y € A BT} < f(2r), we have f(zr + sx) < f(zr), regardless
of our choice of M (and thus, by extension, our choice of T'). Furthermore, we are
guaranteed that the Strong Hypotheses on Exploratory Moves are satisfied.

Algorithm 4. Exploratory Moves Algorithm for Response Surface Methodology.
Given zy, Ay, f(zr), B, and C = [cl . ~cp], set s =0, pr, = 0, and min = f(zy).
Fori=1,---,2" do

a) st = ApBc' and 2t = z; + st. Compute f(z}).

b) If f(z%) < min then py = f(zr) — f(2%), min = f(z}), and s = st.
Return.

4.2.3. Updating the Step Length. The algorithm for updating Ay is exactly
as given in Algorithm 2, with 6 usually set to 1/2 and A = {1}.
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Since we have shown that response surface methodology satisfies all the necessary
requirements, we can therefore conclude that it, too, is a pattern search method, so
Theorem 3.5 holds. The algorithm, as stated above, also satisfies the conditions of
Theorem 3.7.

4.3. Hooke and Jeeves’ Pattern Search Algorithm. In addition to intro-
ducing the general notion of a “direct search” method, Hooke and Jeeves introduced
the pattern search method, a specific kind of search strategy [7]. The pattern search
of Hooke and Jeeves is a variant of coordinate search that incorporates a pattern step
in an attempt to accelerate the progress of the algorithm by exploiting information
gained from the search during previous successful iterations.

The Hooke and Jeeves pattern search algorithm is opportunistic. If the previous
iteration was successful (i.e., pr—1 > 0), then the current iteration begins by conduct-
ing coordinate search about a speculative iterate xj + (2 — 2—1), rather than about
the current iterate xp. This is the pattern step. The idea is to investigate whether
further progress is possible in the general direction zp — x—1 (since, if z; # xp-1,
then zp — 2—1 is clearly a promising direction).

To make this a little clearer, we consider the example shown in Fig. 3. Given

o 2p+ (2p —2p_1)

Lk

Tp—1

FiG. 3. The pattern step in R?, given zy, # x_1, k > 0.

zp—1 and zp (we assume, for now, that k > 0 and that z; # 2;—1), the pattern search
algorithm takes the step zy — z;—1 from zj. The function is evaluated at this trial
step and the trial step is accepted, temporarily, even if f(zp + (25 — 2p-1)) > f(zk).
The Hooke and Jeeves pattern search algorithm then proceeds to conduct coordinate
search about the temporary iterate zj + (zx — zx—1). Thus, in R?, the exploratory
moves are exactly as shown in Fig. 1, but with z; + (25 — 2_1) substituted for zy.

If coordinate search about the temporary iterate zy + (x5 — ¢5—1) is successful,
then the point returned by coordinate search about the temporary iterate is accepted
as the new iterate zp41. If not, ie., f((2r + (xx — 2x—1)) + sx) > f(xr), then the
pattern step is deemed unsuccessful, and the method reduces to coordinate search
about zp. For the two dimensional case, then, the exploratory moves would simply
resort to the possibilities shown in Fig. 1.

If the previous iteration was not successful, so z, = 51 and (zp—2x—1) = 0, then
the iteration is limited to coordinate search about zj. In this instance, though, the
updating algorithm for Ay will have reduced the size of the step (i.e., Ay = 0A_1).

The algorithm does not execute the pattern step when k& = 0.

To express the pattern search algorithm within the framework we have developed,
we use all the machinery required for coordinate search. Once again, the basis matrix
is usually defined to be B = I. We append to the generating matrix another set of
3" columns to capture the effect of the pattern step and we change the exploratory
moves algorithm, as detailed below.
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4.3.1. The Generating Matrix. Recall that the generating matrix for coordi-
nate search consists of all possible combinations of {—1,0,1} and is never changed.
For the Hooke and Jeeves pattern search method, we allow the generating matrix to
change from iteration to iteration to capture the effect of the pattern step. We append
another set of 3” columns, consisting of all possible combinations of {—1,0,1}, to the
initial generating matrix for coordinate search. Thus Cj has p = 2 - 3" columns. The
additional 3" columns allow us to express the effect of the pattern step with respect
to ap, rather than with respect to the temporary iterate zy + (2 — 2—1), which is
how the Hooke and Jeeves pattern search method usually is described. The matrix
M is unchanged; M = I. Now, however, Ly € Z"*(P=2%) ig allowed to vary, though
only in the 3" columns associated with the pattern step. For n = 2,

1 0-1 01 1-1-1 0

10 01 1-1-1 0
01 0-11-1-1 1 0 01 -1

(11) Co = 1-1-1 1 0]°

-1
0
For notational convenience, we require that the last column of Cyy, which we denote

as c¢l', be the column of zeros. In both the algorithm for updating Cy (Algorithm 5)
and the algorithm for the exploratory moves (Algorithm 6), we use the column ¢} to
measure the accumulation of a sequence of successful pattern steps. This can be seen,
in (12), for our example from Fig. 3. In this example, we have the generating matrix
(12) Cp = 1 0-1 01 1-1-10 ?

1012 2 001
01 0-1 1-1-1 1 0 210 2 00 2 1|
The pattern step (z; — xx_1) is represented by the vector (1 1)¥ seen in the last
column of Cy. Note that the only difference between the columns of Cy given in (11)
and the columns of Cj given in (12) is that (1 1) has been added to the last 37
columns of Cf.

The algorithm for updating the generating matrix updates the last 3" columns
of Cy; the first 3" columns remain unchanged, as in coordinate search. The purpose
of the updating algorithm is to incorporate the result of the search at the current
iteration into the pattern for the next iteration. This is done using Algorithm 5. Note
the distinguished role of ¢}, the last column of Cj, which represents the pattern step

(.Z‘k — mk—l)-

Algorithm 5. Updating Cf.
Fori=3"+1,---,2-3" do

C§c+1 =c, + (I/Ak)sk — C]f.
Return.

Since (1/Apg)sy is necessarily a column of C, and Cy € Z"*P, an argument by
induction shows that the update algorithm for C} ensures that the columns of Cj
always consist of integers.

4.3.2. The Exploratory Moves. In Algorithm 6, the e;’s denote the unit co-
ordinate vectors and c,f denotes the last column of Cy. We set p_; = 0 so that pr_1
is defined when k& = 0.

A useful example for working through the logic of the algorithm can be found in
[1], though the presentation and notation differ somewhat from that given here.

All possible steps are contained in Ay Py since Cy contains columns that represent
the “pattern steps” tried at the beginning of the iteration. And, once again, the
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Algorithm 6. Exploratory Moves Algorithm for Hooke and Jeeves.
Given i, Ay, f(zr), B, and pr_1, set pr = pr—1 and min = f(zy).
If pr, > 0 then set s = Ach,f, pr = f(zr) — f(zr + si), and min = f(xr + sp).
Fori=1,---,ndo
a) st = s + AyBe; and 2%, = z; + s;,. Compute f(z%).
b) If f(2%) < min then py = f(zx) — f(2%), min = f(z}), and s = st.
Otherwise,
i) 52 = s; — ApBe; and "732 = + 52. Compute f(:L‘;v)
ii) If f(2) < min then py = f(zx) — f(2%), min = f(z}), and s = st.
If pr < 0 then set s =0, pp = 0, and min = f(x).
Fori=1,---,ndo
a) 52 = sy + ApBe; and Jd}c =z + si. Compute f(]:}c)
b) If f(2) < min then py = f(zx) — f(2%), min = f(z%), and s = st.
Otherwise,
i) 52 = sy — ApBe; and Jd}c =z + si. Compute f(]:}c)
ii) If f(2%) < min then p; = f(zr) — f(zL), min = f(z%), and s; = st.
Return.

exploratory moves given in Algorithm 6 examine all 2n steps defined by Ay BI' unless
a step satisfying f(zp + si) < f(xr) is found.

Since we have shown that the pattern search algorithm of Hooke and Jeeves
satisfies all the necessary requirements, we can therefore conclude that it, too, is a
special case of the generalized pattern search method and Theorem 3.5 holds.

4.4. Multidirectional Search. The multidirectional search algorithm was in-
troduced by Dennis and Torczon in 1989 [15] as a first step towards a general purpose
optimization algorithm with promising properties for parallel computation. While
subsequent work led to a class of algorithms, based on the multidirectional search
algorithm, that allows for more flexible computation ([6] and [17]) one of the unan-
ticipated results of the original research was a global convergence theorem for the
multidirectional search algorithm [16].

The multidirectional search algorithm is a simplex-based algorithm. The pattern
of points can be expressed as a simplex (i.e., n + 1 points, or vertices) based at
the current iterate; as such, multidirectional search owes much in its conception to its
predecessors, the simplex design algorithm of Spendley, Hext, and Himsworth [12] and
the simplex algorithm of Nelder and Mead [9]. However, multidirectional search is a
different algorithm—particularly from a theoretical standpoint. Convergence for the
Spendley, Hext and Himsworth algorithm can be shown only with some modification
of the original algorithm, and then only under the additional assumption that the
function f is convex. There are numerical examples to demonstrate that the Nelder—
Mead simplex algorithm may fail to converge to a stationary point of the function
because the uniform linear independence property (discussed in §6.2), which plays a
key role in the convergence analysis, cannot be guaranteed to hold [15].

The multidirectional search algorithm is described in detail in both [6] and [16].
The formulation given here is different and, in fact, introduces some redundancy that
can be eliminated when actually implementing the algorithm. However, the way of
expressing the algorithm that we use here allows us to make clear the similarities
between this and other pattern search methods.
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4.4.1. The Matrices. It is most natural to express multidirectional search in
terms of multiple basis matrices By and a fixed generating matrix C', which is at odds
with our definition for generalized pattern search methods. As we shall see, however,
it is possible to convert the more natural specification to one that conforms to our
requirements for a pattern search method.

The multidirectional search algorithm centers around a family of basis matrices
B that consists of all matrices representing the edges adjacent to each vertex in a
nondegenerate n-dimensional simplex that the user is allowed to specify. Since the
ordering of the columns is not unique, and typically not preserved in the implemen-
tation of the method, we consider all possible representations of the columns of the
matrices associated with the edges adjacent to the (n+ 1) vertices of the simplex. We
then add the negatives of these (n + 1)! basis matrices to account for the effect of the
reflection step allowed by the multidirectional search algorithm. Thus the cardinality
of the set B is |B| = 2(n + 1)!.

Fortunately, there is no need to construct this unwieldy number of basis matrices
to initialize the method. We can update the basis matrix after each iteration k
by reconstructing the new basis matrix Biy1, given the outcome of the exploratory
moves, from the trial points 1‘2, t = 1,---,n, considered during the course of the
exploratory moves. This procedure is given in Algorithm 8. The scalar scale is
chosen during the course of the exploratory moves (see Algorithm 7) to ensure that
Br4+1 € B by factoring out any change in the size of the simplex introduced by a
change in Ag. This has the further effect of preserving the role of Ay as a step length
parameter.

Algorithm 8. Updating By.
Given By, = [b} b .- -b7], scale, best, and z% for i =0,
If pr > 0 then
For i =0,---,(best — 1) do
b2++11 = scale x (z% — ztest).
For i = (best +1),---,n do
};H = scale x (z& — zbest).
Otherwise
Fori=1,---,ndo
bﬁc+1 =b,.
Return.

Given this use of a family of basis matrices to help define the multidirectional
search algorithm, the generating matrix is then the fixed matrix C = [I —I —ul 0].
Thus, C contains p = 3n 4+ 1 columns, with M = I. To ensure that C € Z"*P we
require pu € Z. Furthermore, to ensure that the role of Ay as a step length parameter
is not lost with the introduction of the ezpansion step represented by —ul, we require
u € A. The algorithm is defined so that A = {7%1 7%2} with g = 7%2. This
requires the further restriction that 7 € N. Again, this is not an onerous restriction.
Multidirectional search usually is specified so that 7 = 2, wy; = 1, and thus g = 2.

Now, to bring this notation into conformity with our definition for a generalized
pattern search method, observe that we can represent all possible basis matrices B, €
B in terms of a single reference matrix B € B so that

B, =BB,, v=1,---|B]|.

A convenient feature of using the edges of a simplex to form the set of basis matrices
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is that the matrices B, consist only of elements from the set {—1,0,1}. The matrices
B, are necessarily nonsingular because of the nondegeneracy of the simplex. We use
B to represent the set of matrices B, and observe that since B is a finite set, the set
B is also finite.

We then observe that

Py=ByC=By [I —I —ul 0]=B[By =By, —uBy 0] = BCy.

Thus we can define the pattern in terms of the single reference matrix B and the
redefined generating matrix

CkE[Bk —Bk —/LBk 0],

with My = B, and M = B. We also have L, = [—uBk 0] and since p € Z,
Ly € 27"+ a5 required.

4.4.2. The Exploratory Moves. The exploratory moves for the multidirec-
tional search method are given in Algorithm 7; the e;’s denote the unit coordinate
vectors. We use the notion of By, € B for consistency with the update algorithm given
in Algorithm 6, but we could just as easily substitute BBy, for By in the algorithm
given below.

Algorithm 7. Exploratory Moves Algorithm for Multidirectional Search.
Given zy, Ay, f(zp), By, and p= 792 € N, set s = 0, pr, = 0, min = f(zp),
Ap = 1, scale = 1/Ay, best =0, and 29 = z.
Fori=1,---,ndo
a) 52 = A Bre; and xf,c = + 5%. Compute f(l}c)
b) If f(2%) < min then py = f(zg) — f(2%), min = f(ab), s;, = s&, and best = i.
If pr, <0 then
Fori=1,---,ndo
a) st = —AyBre; and i =z + si. Compute f(z%).
b) If f(2%) < min then py = f(zg) — f(2%), min = f(ab), s;, = s&, and best = i.
If pr, > 0 then set scale = 1/uAy.
Fori=1,---,ndo
a) 52 = —pAgBie; and J:j,C =z + s;. Compute f(.z’}c)
b) If f(z%) < min then py = f(zx) — f(zL), min = f(z}), sp = s, best = i,
and Ap = p.
Return.

Clearly, sy € ApPy. Since the exploratory moves algorithm considers all steps
of the form Ay BTly, unless simple decrease is found after examining only the steps
defined by A BMj, this guarantees we satisfy the condition that if min{f(zr+y),y €
ApBTy} < f(ar), then f(zy + sx) < f(z).

4.4.3. Updating the Step Length. The algorithm for updating Ay is that
given in Algorithm 2. In this case, while 6 usually is set to 1/2 so that 7 = 2,
wg = —1, and w; = 0, we also include an expansion factor g = 72, where ws usually
equals one. Thus A = {1, u}, where u is usually 2. The choice of Ay € A is made
during the execution of the exploratory moves.

Since we have shown that the multidirectional search algorithm satisfies all the
necessary requirements, we conclude that it is also a pattern search method and thus
Theorem 3.5 applies. Note that since we allow g > 1, which is a useful algorithmic
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feature, we cannot guarantee that limg_ 4o Ar = 0 and so Theorem 3.7 does not
automatically apply.

5. Conclusions. We have presented a framework in which one can analyze pat-
tern search methods. This framework abstracts and quantifies the similarities of the
classical pattern search methods and enables us to prove liminfy_ 4o ||V f(2r)|| = 0
for this class of algorithms. We also specify the conditions under which limg . 4o |V f(21)|| =
0 can be shown to hold.

These convergence results are perhaps surprising, given the simplicity of pattern
search methods, but derive from the algebraic rigidity imposed on the iterates pro-
duced by pattern search methods. This is gratifying, since while this rigidity originally
was introduced as a heuristic for directing the exploratory moves, it turns out to be
the key to proving convergence as well. This analysis also highlights just how weak
the conditions on the acceptance of the step can be and yet still allow a global conver-
gence analysis, an observation that may prove useful in the analysis of other classes
of optimization methods.

6. Technical Results. We deferred the proof of Proposition 3.4 for several rea-
sons. First, many of the results in this section are generalizations of similar results
to be found in [16]. The abstraction in §2 leads to more succinct proofs. Second, the
proof of Proposition 3.4 is closely related to that of several other results presented in
this section and requires us to introduce several additional notions.

We return to our definition of the pattern as P, = BC} to show that the pattern
contains at least one direction of descent whenever V f(z) # 0.

Recall that we require the columns of C; to contain both My and — M. Thus,
P, can be partitioned as follows:

P.=BCp,=B[My ~My Ly]|=B [Ty L]

We now elaborate on these requirements. Since My is an n X n nonsingular matrix,
and B is nonsingular, we are guaranteed that BM} forms a basis for R?. Further,
we are guaranteed that at any iteration k, if Vf(zy) # 0, o — Bcﬁ'c is a direction of
descent for at least one column cﬁc contained in the block I'y.

6.1. Descent Methods. Of course, the existence of a trial step in a descent
direction is not sufficient to guarantee that decrease in the value of the objective
function will be realized. To guarantee that a pattern search method is a descent
method, we need to guarantee that in a finite number of iterations the method pro-
duces a positive step size A that achieves decrease on the objective function at the
current iterate. We now show that this is the case.

LEMMA 6.1. Suppose that f is continuously differentiable on a neighborhood of
L(zo). If Vf(zr) # 0, then there exists ¢ € Z, ¢ > 0, such that pyyq > 0 (i.e., the
(k + q)'" iteration is successful ).

Proof. A key hypothesis placed on the exploratory moves is that if descent can be
found for some one of the trial steps defined by Ay BI'y, then the exploratory moves
returns a step that produces descent.

Because BC}, has rank n, if Vf(zy) # 0, then there exists at least one trial
direction d = zy — Bcl, where ¢, € T, such that Vf(zx)Td. # 0. But, since
—ct € Ty, without loss of generality, V f(z;)?di < 0. Thus, there exists an hj > 0
such that for 0 < h < hy, f(zr + hdi) < f(zk).

If at iteration k, Ap > hyg, then the iteration may be unsuccessful; that is, pr =
f(zr) — f(zp + sk) < 0. When the iteration is unsuccessful, the generalized pattern
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search method sets z;41 = 2 and the updating algorithm sets Ap41 = 0Ag. Since ¢
is strictly less than one, there exists ¢ € Z, ¢ > 0, such that §¢Ay < hy. Thus we are
guaranteed descent, i.e., a successful iteration, in at most ¢ iterations. 0O

6.2. Uniform Linear Independence. The pattern Py, guarantees the existence
of at least one direction of descent whenever V f(z;) # 0. We now want to guarantee
the existence of a bound on the angle between the direction of descent contained in
BT’} and the negative gradient at zy (whenever V f(zy) # 0). We will show, in fact,
that this bound is uniform across all iterations of the pattern search algorithm. To
do so, we use the notion of uniform linear independence [10].

LEMMA 6.2. For a pattern search algorithm, there exists a constant & > 0 such
that for allk > 0 and z # 0,

(13) max{Mi—l,~~,p}Z§.

llellllzy = zell”

Proof. To demonstrate the existence of £, we first consider the simplest possible
case, B=T and C = [M —M 0] = [I —I 0], and use this to derive a bound for any
choice of B and C} that satisfies the conditions we have imposed.

LEMMA 6.3. Suppose |ly|| = 1. Define 0(y) € [0, 5] by

_ I .
cos(y) = max {v" 61}

where the e;’s are the unit coordinate vectors.

If B=1and C =[I —I 0], then
1

min cosf(y) = —.

yeR» Vn

Proof. We have |yTe;| = |y;|, where y = (y1,--+,yn)T. Since E;:l lyj|* = 1,
we are guaranteed that |y;| > 1/1/n for some j, so |yle;| > 1/+/n for some j. Thus
cosf(y) > 1/y/n.

Now note that cos f(y) attains this lower bound for any y = a1e1 + azea + - +
anén, where o = £1/y/n. O

Thus, if the pattern search is restricted to the coordinate directions defined by
P =1[I —10],&=1/+/n gives the lower bound on the absolute value of the cosine of
the angle between the gradient and a guaranteed direction of descent. We now use
the bound for this particular case to derive a bound for the general case.

Assume a general basis matrix B and a general matrix My € M, where | M| <
+00. We adopt the notation BMy = [y; ---y7]. Then for any z # 0 we have the
following:

‘J:Tyi‘ o |‘17TBMk6]'| . ‘((BMk)Tm>T€j

|cos | = - _
el = TeMTBM ey~ TelTBAe ]

If we set w = (BMy) 'z, so that 2 = (BM)~Tw, we have

lw”e;| lw”e;

>
1(BMy)=Twl[[[BMyej|| = [[(BMg) = [[l|wl|[| BMk|l[le; |

|cos | =
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_ 1 ( |wTej| > B 1 < |wTej| )
I(BM)="([||BMg ]| \ [lwlllle;]] 1(BMyg)=H[|BM|| \|wlllle;]|
1 1

- K(BMk) \/ﬁ’
where k(BM}) is the condition number of the matrix BMj. Thus, we have

1
[cos ] > ————— > 0.

K(BM]C)\/E
To ensure a bound ¢ that is independent of the choice of any particular matrix
M € M, we simply observe that the set M is required to be finite. Thus, £ is taken
to be

) 1
(4 = miy{ v
O

The bound given in (14) points to two features that explain much about the behav-
ior of pattern search methods. Since we never explicitly calculate—or approximate—
the gradient, we are dependent on the fact that in the worst case at least one of our
search directions is not orthogonal to the gradient; & gives us a bound on how far
away we can be. Thus, as either the condition number of the product BMj, increases,
or the dimension of the problem increases, our bound on the angle between the search
direction and the gradient deteriorates. This suggests two things. First, we should
be very careful in our choice of B and M for any particular pattern search method.
Second, we should not be surprised that these methods become less effective as the
dimension of the problem increases.

Nevertheless, even though pattern search methods neither require nor explicitly
approximate the gradient of the function, the uniform linear independence condition
demonstrates that the pattern search methods are, in fact, gradient-related methods,
as defined by Ortega and Rheinboldt [10], which is one reason why we can establish
global convergence.

6.3. The Descent Condition. Having introduced the notion of uniform linear
independence with the bound &, we are now ready to show that pattern search methods
reduce A only when necessary to find descent. To do this we will show that once
the steps 52 = (.7:}c — x1,) are small enough, then a successful step must be returned
by the exploratory moves algorithm. Lemma 3.1 allows us to restate this condition
in terms of Aj. We use the result to prove Proposition 3.4.

PROPOSITION 6.4. Suppose that L(xg) is compact and f is continuously differ-
entiable on a neighborhood of L(xzg). Given € > 0, let

Q. = {x € L(xg) : dist(z, Xs) > €}.

Suppose also that xy € Q.. Then there exists § > 0, independent of k, such that if
zr € Q. and Ay, < 6, then the kth iteration of a generalized pattern search method
(Algorithm 1) will be successful (i.e., pr, = f(z) — f(zr + sg) > 0) and thus Apyq >
Ag.

Proof. We restrict our attention to the steps defined by the columns of A BT.
This is sufficient since the Hypotheses on Exploratory Moves ensure that a step si
satisfying the simple decrease condition p; > 0 must be returned if a trial step defined
by a column of Ay BTl satisfies the simple decrease condition.
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If 32, i=1,---,2n, is a step defined by A;BI'; (we assume that Pj is parti-
tioned as in (2) so that the first 2n columns of Py contain the columns of BTy =
[BMy, —BMj3)), then for some (* > 0, independent of k,

(15) Ikl = 1Ak Bei]] < [IBllllci 1Ak < C*Ag, i=1,--,2n,

since My € M C Z"*" and M is a finite set of matrices. Together, (15) and
Lemma 3.1 yield

AR < ISl < ¢ Ay, i= 1,0, 2m,

Since zg € ., Lemma 6.1 allows us to define N = min{k : z; # 2¢}. Define
d = dist (L(zn),C(20)). Because L(zy) and C(zo) are compact and disjoint, we
know that d > 0. If Ay < d/2¢*, then [|s|| < (*Ay < d/2foralli =1,--- 2n.
Thus z% lies in the interior of L(zg) for all i = 1,---,2n. More precisely, for all
i=1,---,2n, ¢ lies in the ball B(z;,d/2) C L(zo).

Let ¢ = mingeq, ||V f(2)||. By design, @ > 0. Since Vf is continuous on a
neighborhood of L(#zg), Vf is uniformly continuous on a neighborhood of L(xg).
Thus, there exists a constant r > 0, depending only on « and the & from (13), such
that

[|Vf(x) =V (zp)| < 57“ whenever || — zp|| <7 (and z € L(x)).

We define

1 d

We are now assured that if
(17) Ap<é
then
(18) ¥t € B(xy,d/2) C L(xo), i=1,---,2n,
and
A f()t .

(19) |V f(ah) — V(zp)] < OR i=1,---,2n.

We are ready to argue that if at any iteration k > N, z € Q. and (17) is satisfied,
then an acceptable step will be found.

Choose a trial point zi, i = 1,---,2n, that satisfies both V f(z¢)? (2} — z4) < 0
and

V) (o =2l |

IVf(e)lllle}, =l —
The definitions of €, and the pattern Py, together with Lemma 6.2, guarantee the
existence of at least one such =zt .

Since (17) holds by assumption, (18) also holds. We can apply the Mean Value
Theorem to obtain f(z%) — f(zx) = Vf(w)? (2% — 2}) for some w € (zy, 2%), whence

(20)  f(z}) — fzr) = VIze)" (2 — 2) + (VF(w) = V(@) (2}, — 25).
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Consider the first term on the right-hand side of (20). Our choice of zi gives us
|V ()T (2, — 2x)| > €IV F(xn)lllleh — .

Furthermore, since V f(z1)? (2% — z) < 0, we have

(21) V(e (@ — 2x) < €IV F) ek — 2l

Now consider the second term on the right-hand side of (20). The Cauchy—Schwarz
inequality gives us

(22) (VF(w) = V@) (2h — 2e)| <NIVF@) = VF@olllag — 2l
Combine (21) and (22) to rewrite (20) as

$(51) = Slaee) < ~€IVI@Olel = 22l + 1V 5@) = Vo)l = o
= (ZEIVIEll + IV f(w) = Vo) DIz — 2l
Since w € (z,z%), and (17) holds by assumption, (19) also holds. We then have

(23) F(}) = fer) < (SENV )l + SNV F)Dle), -zl < 0.

Thus, when Ay, < 8, f(2%) = f(zr+sL) < f(zy) for at least one st defined by Ay Bct,
i=1,---,2n. The Hypotheses on Exploratory Moves guarantee that if min{f(z; +
Y),y € ApBIy} < f(xx), then f(zr+si) < f(ax). Thus, pp = f(xr)— f(r +51) >0
and the algorithm for updating Ay (Algorithm 2) ensures that Apyq > Ap. O

Proposition 6.4 guarantees that if Ay, is small enough, a generalized pattern search
method realizes simple decrease because there exists at least one step among the 2n
steps defined by Ay By that gives decrease as a function of the norm of the gradient
at the current iterate, as shown in (23); the Hypotheses on Exploratory Moves then
ensure that the exploratory moves algorithm must return a step that satisfies at least
simple decrease. However, there are no guarantees that the step returned by an
exploratory moves algorithm satisfies more than the simple decrease condition.

To tie the amount of actual decrease to the norm of the gradient, we must place
much stronger conditions on the generalized pattern search method, as discussed in
83.3.2. Once we have done so, Corollary 6.5 follows more or less immediately from
Proposition 6.4.

COROLLARY 6.5. Suppose that L(zo) is compact and f is continuously differen-
tiable on a neighborhood of L(xg). Suppose that the columns of the generating matriz
are bounded in norm and that the generalized pattern search method (Algorithm 1)
enforces the Strong Hypotheses on Exploratory Moves. Given € > 0, let

Q. = {x € L(zg) : dist(z, Xs) > €}.

Suppose also that xy € Q.. Then there exist 6 > 0 and 0 > 0, independent of k, such
that for all but finitely many k, if x, € Q. and Ay < 6, then

Faras) < Fox) — oIV Fao)lllsell < fze).
Proof. From Proposition 6.4, (23) says that for £ > N = min{k : 2, # a0}

(Lemma 6.1 guarantees the existence of N), there exists at least one trial step 52 €
Ay BTy, such that once Ay < 8, where ¢ is as defined in (16), we have

Fh) < Faw) = SV F)lllsil < flxe).
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The Strong Hypotheses on Exploratory Moves give us

Flaeer) < fee) = SIVFe)llllsil < f(ak)-

Lemma 3.1 ensures that

F(xrg1) < Flzr) = §GARVF(zr)l| < flap).

Lemma 3.6, which holds only when the columns of the generating matrix are bounded
in norm, gives us

Fleper) < fler) = SV () llllsell < flar).

We define o = %C*’l/)* to complete the proof. O

We now prove Proposition 3.4.

Proof. (Proposition 3.4.) By assumption, liminfy_4eo [V f(2r)|| # 0. Then
we can find Ny and € > 0 such that for all & > Ny, 2 € Q. = {& € L(zg) :
dist(z, Xi) > €¢}. Lemma 6.1 guarantees the existence of Ny = min{k : 2 # 2o}. Let
N = max(Ny, Na).

From Proposition 6.4 we are assured of é > 0 such that if Ay < 6, then the
iteration will be successful. Given Ay, there exists a constant ¢ € Z, ¢ > 0, such
that 02Aq < &, where § € (0,1) and is as defined in the algorithm for updating Ay
(Algorithm 2). Thus, for k > N, 07t Ay < Ay.

Set Arp = 6 min(09Ag, Ay, -+, Ay_1). Then for all k, App < Aj. O
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