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A DIRECT SEARCH APPROACH TO NONLINEAR
PROGRAMMING PROBLEMS USING AN AUGMENTED

LAGRANGIAN METHOD WITH EXPLICIT TREATMENT OF
LINEAR CONSTRAINTS

ROBERT MICHAEL LEWIS∗ AND VIRGINIA TORCZON†

Abstract. We consider solving nonlinear programming problems using an augmented La-
grangian method that makes use of derivative-free generating set search to solve the subproblems.
Our approach is based on the augmented Lagrangian framework of Andreani, Birgin, Mart́ınez, and
Schuverdt which allows one to partition the set of constraints so that one subset can be left explicit,
and thus treated directly when solving the subproblems, while the remaining constraints are incor-
porated in the augmented Lagrangian. Our goal in this paper is to show that using a generating
set search method for solving problems with linear constraints, we can solve the linearly constrained
subproblems with sufficient accuracy to satisfy the analytic requirements of the general framework,
even though we do not have explicit recourse to the gradient of the augmented Lagrangian function.
Thus we inherit the analytical features of the original approach (global convergence and bounded
penalty parameters) while making use of our ability to solve linearly constrained problems effectively
using generating set search methods. We need no assumption of nondegeneracy for the linear con-
straints. Furthermore, our preliminary numerical results demonstrate the benefits of treating the
linear constraints directly, rather than folding them into the augmented Lagrangian.
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generalized pattern search, derivative-free methods.
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1. Introduction. We consider solving nonlinear programming problems (NLPs)
using an augmented Lagrangian approach in which the subproblems are solved inex-
actly via generating set search without the explicit use of derivatives. The optimiza-
tion problem of interest is

minimize f(x)
subject to h(x) = 0,

g(x) ≤ 0,

aTi x = bi for i ∈ E ,
aTi x ≤ bi for i ∈ I,

(1.1)

where f : Rn → R, h : Rn → Rm, g : Rn → Rp, E and I are finite index sets for
the linear equality and inequality constraints, respectively, and ai ∈ Rn and bi ∈ Rn

for all i ∈ E and i ∈ I. We assume that all these functions possess continuous
first derivatives on a sufficiently large open domain. However, we also assume that
neither explicit nor sufficiently accurate estimates of the derivatives of f , h, and g are
available.

To solve problem (1.1), we make use of the augmented Lagrangian framework of
Andreani, Birgin, Mart́ınez, and Schuverdt presented in [1]. This approach allows the
partial elimination of constraints by incorporating them in the augmented Lagrangian
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while retaining the remaining constraints and treating them explicitly. In the case we
consider here, the linear constraints in (1.1) are treated explicitly.

The general structure of augmented Lagrangian methods may be viewed as a dou-
bly nested loop. The outer loop consists of successive approximate minimizations of
an augmented Lagrangian, where the multiplier estimates and penalty parameter may
change from iteration to iteration. The inner loop comprises an iterative minimization
of the augmented Lagrangian to a prescribed degree of accuracy. The framework in [1]
allows one to leave a subset of the constraints out of the augmented Lagrangian and
treat this subset directly in the inner iteration. The idea is that if one has effective
computational methods for handling these so-called lower-level constraints, it is better
to deal with such constraints directly rather than folding them into the augmented
Lagrangian [2, Section 2.4].

Our motivation for partitioning the constraints into two sets, the upper-level non-
linear constraints and the lower-level linear constraints (including bounds), is that we
have an effective implementation [14, 17] of a generating set search (GSS) method for
solving problems with linear constraints [15, 13]. We prefer to leave linear constraints
explicit when solving the subproblems since we can take advantage of their geometric
structure in the search for a Karush–Kuhn–Tucker (KKT) point. Moreover, we can
do so without any assumption of linear independence of the linear constraints active
at the solutions of the subproblems. This direct treatment of the linear constraints
has the obvious further advantage of reducing the number of Lagrange multipliers
that must be explicitly estimated. One goal of this paper is to demonstrate that there
can be a computational advantage to this strategy in the presence of general linear
constraints, particularly when the linear constraints exhibit degeneracy.

This line of algorithmic development continues our work in [16, 12] on combining
augmented Lagrangian approaches and direct search methods. The work presented
here makes use of the desirable analytical properties of the framework outlined in [1];
namely, that feasible limit points which satisfy a fairly mild constraint qualification
must be KKT points and that under suitable local conditions, the penalty parameter
remains bounded. Here we show that generating set search can solve the linearly con-
strained subproblems with sufficient accuracy to satisfy the demands of the analysis
in [1]—even without explicit recourse to derivatives for f , h, and g.

Section 2 describes our previous approaches to solving nonlinear programming
problems using augmented Lagrangian methods and explains the motivation for the
new approach presented here. Section 3 reviews the augmented Lagrangian algo-
rithm framework of [1]. Section 4 presents the salient features of GSS methods for
solving linearly constrained problems. In Section 5 we show that we can minimize
the augmented Lagrangian subproblems with sufficient accuracy using GSS methods.
Section 6 reviews the results in [1] that apply to our approach. Section 7 contains
some preliminary numerical results which illustrate that our approach is not only
analytically sound, but also can be competitive in practice. These results confirm a
long-standing (and eminently sensible) conjecture that direct treatment of the linear
constraints can improve the performance of an augmented Lagrangian approach to
solving NLPs.

Notation. Given vectors u and v, let max(u, v) denote the componentwise maxi-
mum of u and v (i.e., the i-th component of max(u, v) is max{ui, vi}). Unless explicitly
indicated otherwise, ‖ · ‖ denotes the standard Euclidean norm. If K = {kj} ⊂ N
satisfies kj+1 > kj for all j = 0, 1, 2, . . ., then we define limk∈K x(k) = limj→∞ x(kj).
To distinguish between quantities associated with the outer iterations and those asso-
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ciated with the inner iterations required to approximately solve subproblem (2.2), we
use the counter k for the outer iterations and the counter j for the inner iterations.
Quantities associated with the outer iterations are then denoted x(k) while quantities
associated with the inner iterations are denoted xj .

2. Background. We have previously studied augmented Lagrangian approaches
to solving nonlinear programs in the absence of reliable derivative information in
[16, 12]. Throughout we have sought to deal explicitly with those constraints for
which we have efficient solution techniques. But the work here differs in several
respects. We begin with the following augmented Lagrangian L corresponding to the
constraints h(x) = 0 and g(x) ≤ 0: for x ∈ Rn, ρ > 0, λ ∈ Rm, µ ∈ Rp, µ ≥ 0,

L(x;λ, µ, ρ) = f(x) +
ρ

2

(
‖ h(x) + λ/ρ ‖2 + ‖ max(0, g(x) + µ/ρ) ‖2

)
. (2.1)

The lower-level linear constraints in (1.1) are absent from the augmented Lagrangian
since we treat these constraints explicitly.

Our first approach to partitioning the set of constraints into upper- and lower-
level constraints, described in [16], treated the simpler case where only bound con-
straints are dealt with explicitly. All remaining constraints, including general linear
constraints, were folded into the augmented Lagrangian. Generating set search was
then applied to the resulting bound constrained subproblems inside the augmented
Lagrangian framework of [7].

In [12] we combined generating set search with the augmented Lagrangian ap-
proach in [6]. The linearly constrained subproblems

minimize L(x;λ, µ, ρ)
subject to aTi x = bi i ∈ E ,

aTi x ≤ bi i ∈ I,
(2.2)

were then solved using generating set search methods for linearly constrained opti-
mization. The direct search augmented Lagrangian method in the Matlab GADS
Toolbox [21] is based on this approach.

The augmented Lagrangian frameworks of [7, 6], as well as that from [1] of interest
here, require only approximate minimization of the augmented Lagrangian in the
subproblems. The accuracy of the minimization in the subproblems is measured in
terms of stationarity conditions that involve the first derivative of the Lagrangian.

The key to integrating generating set search with such augmented Lagrangian
approaches lies in showing that the subproblems can be solved to sufficient accuracy,
even though we do not have explicit knowledge of the gradient of the Lagrangian. To
do so, we use the fact than when applying generating set search to bound and linearly
constrained problems, at an identifiable subsequence of iterates, suitable measures of
stationarity are O(∆j), where ∆j is an algorithmic parameter used to determine the
lengths of the steps in all GSS algorithms. Thus by monitoring the value of ∆j , we
can ensure that the subproblems are solved to sufficient accuracy, even though we
have no explicit knowledge of the gradient of the Lagrangian.

In the present work we make use of the stationarity results from [17] and the
more general augmented Lagrangian framework proposed in [1]. From our perspec-
tive the latter enjoys two clear advantages. The first advantage is that [1] establishes
first-order stationarity using a weaker constraint qualification than that used in [7, 6].
Specifically, the result [1, Theorem 4.2], which appears here as Theorem 6.2, makes
use of the constant positive linear dependence (CPLD) constraint qualification [20]
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rather than the linear independence constraint qualification (LICQ) used in [7, 6].
The second advantage of the approach in [1] is that boundedness of the multiplier es-
timates is enforced, as discussed in [1, Sections 1–2]. This second feature has salutary
theoretical and computational consequences, which we review in Section 3.2.

3. Description of the augmented Lagrangian framework. We next re-
view the augmented Lagrangian framework presented in [1, Section 3], found here as
Algorithm 3.1.

Step 0. Set up. Let x(0) ∈ Rn be an arbitrary initial point. Let τ ∈ [0, 1),
γ > 1, ρ(1) > 0, −∞ < λ̄min ≤ λ̄(1) ≤ λ̄max < ∞, 0 ≤ µ̄(1) ≤ µ̄max < ∞.
Finally, let {ε(k)} ⊂ R, ε(k) ≥ 0, be a sequence of tolerance parameters
such that limk→∞ ε(k) = 0.

Step 1. Initialization. Set k = 1 and σ(0) = max
(
0, g(x(0))

)
.

Step 2. Solving the subproblem. Find (if possible) an x(k) ∈ Rn for the
problem (2.2) such that there exist v(k) and u(k) satisfying (3.1)–(3.4).
If it is not possible to find an x(k) satisfying (3.1)–(3.4), terminate.

Step 3. Update the multiplier estimates.

– Set λ(k+1) = λ̄(k) + ρ(k)h(x(k)).

– From λ(k+1) compute λ̄(k+1) satisfying λ̄min ≤ λ̄(k+1) ≤ λ̄max, e.g., by
projecting λ(k+1) onto

{
λ̄ | λ̄min ≤ λ̄ ≤ λ̄max

}
.

– Set

σ(k) = max
(
g(x(k)), −µ̄(k)/ρ(k)

)
,

µ(k+1) = max
(
0, µ̄(k) + ρ(k)g(x(k))

)
.

– From µ(k+1) compute µ̄(k+1) satisfying 0 ≤ µ̄(k+1) ≤ µ̄max, e.g., by
projecting µ(k+1) onto { µ̄ | 0 ≤ µ̄ ≤ µ̄max }.

Step 4. Update the penalty parameter. If

max
{∥∥∥ h(x(k))

∥∥∥
∞

,
∥∥∥ σ(k)

∥∥∥
∞

}
≤ τ max

{∥∥∥ h(x(k−1))
∥∥∥
∞

,
∥∥∥ σ(k−1)

∥∥∥
∞

}

then ρ(k+1) = ρ(k); else, ρ(k+1) = γρ(k).

Step 5. Begin a new outer iteration. Set k = k + 1. Go to Step 2.

Algorithm 3.1
The augmented Lagrangian framework.

Given the definition in (2.1) of the augmented Lagrangian with respect to the
upper-level constraints, at each outer iteration of the augmented Lagrangian algo-
rithm, the task of the inner iteration is that of solving inexactly, but to a suitable
degree, the subproblem (2.2) using bounded Lagrangian multiplier estimates λ̄ and
µ̄ along with a penalty parameter ρ. Next we discuss the conditions on the inexact
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solution of (2.2) and then review how boundedness of λ̄ and µ̄ is enforced.

3.1. Conditions on the inexact solution of the subproblem. At each outer
iteration k, the inner iteration is required to solve (2.2) inexactly. Specifically, for the
analysis in [1] to hold, the inner iteration must find an x(k) ∈ Rn such that there exist
v(k) ∈ R| E | and u(k) ∈ R| I | satisfying

∥∥∥∥∥ ∇L(x(k); λ̄(k), µ̄(k), ρ(k)) +
∑

i∈E
v(k)i ai +

∑

i∈I
u(k)
i ai

∥∥∥∥∥ ≤ ε(k)1 , (3.1)

where

u(k)
i ≥ 0 and aTi x

(k) − bi ≤ ε(k)2 ∀ i ∈ I, (3.2)

aTi x
(k) − bi < −ε(k)2 ⇒ u(k)

i = 0 ∀ i ∈ I, (3.3)

and

(
∑

i∈E
(aTi x

(k) − bi)
2

)1/2

≤ ε(k)3 , (3.4)

where 0 ≤ ε(k)1 , ε(k)2 , ε(k)3 ≤ ε(k). These conditions are relaxations of the KKT con-
ditions for the problem of minimizing the augmented Lagrangian L subject to the
condition x ∈

{
x ∈ Rn | aTi x = bi, i ∈ E , and aTi x ≤ bi, i ∈ I

}
.

3.2. Bounding the Lagrange multiplier estimates. As discussed in [1, Sec-
tion 3], the bounded Lagrange multiplier estimates, denoted by λ̄ and µ̄, are required
to satisfy

λ̄min ≤ λ̄ ≤ λ̄max < ∞ and 0 ≤ µ̄ ≤ µ̄max < ∞.

This is enforced by projecting the updated multiplier estimates onto a compact box
at the end of each outer iteration. Among other things, enforcing the boundedness
of the multiplier estimates ensures that the augmented Lagrangian approach will, in
the worst case, behave like a quadratic penalty function.

3.3. Progress in terms of feasibility and complementarity. We close by
recapping the observations in [1, Section 2] on assessing progress towards both feasibil-
ity and complementarity with respect to the upper-level constraints. For the equality
constraints h(x) = 0, complementarity is not an issue and infeasibility with respect
to any given equality constraint hi is measured simply by |hi(x) |.

Matters are more complicated for the inequality constraints g(x) ≤ 0 because of
the need to address the issue of complementarity; to wit, µi = 0 if gi(x) < 0. This
leads to the following measure of infeasibility and noncomplementarity with respect
to the inequality constraints g(x):

σ(x, µ, ρ) = max(g(x),−µ/ρ). (3.5)

Given the requirements µ ≥ 0 and ρ > 0 it follows that µ/ρ ≥ 0. Then σi(x, µ, ρ) = 0
when either gi(x) = 0 (i.e., x is feasible with respect to the constraint gi) or gi(x) < 0
and µi = 0 (i.e., strict complementarity holds for the constraint gi). Thus, σi is a
measure of the trade-off between feasibility and complementarity with respect to the
constraint gi.
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If the inner iteration has not made sufficient progress in terms of both feasibility
(with respect to h and g) and complementarity (with respect to g), then the penalty
parameter ρ is increased by a fixed factor before proceeding to the next outer itera-
tion.

4. GSS methods for linearly constrained problems. We consider GSS ap-
plied to the linearly constrained problem

minimize Φ(x)
subject to aTi x = bi, i ∈ E ,

aTi x ≤ bi, i ∈ I.
(4.1)

Let Ψ = x ∈
{
x ∈ Rn | aTi x = bi, i ∈ E , and aTi x ≤ bi, i ∈ I

}
denote the feasible re-

gion for (4.1). Detailed descriptions of GSS methods for solving linearly constrained
problems appear in [15, 13, 14, 17]. The presentation here is based on [17, Algorithm
4.1], which is restated as Algorithm 4.1. The introduction of the parameter θmin,
discussed in Section 5, makes Algorithm 4.1 a slight specialization of [17, Algorithm
4.1].

We recall those features needed to confirm that it is possible to produce an inex-
act solution to (2.2) that satisfies (3.1)–(3.4). GSS methods for linearly constrained
problems are feasible iterates methods, so at every iteration they enforce x ∈ Ψ. If an
infeasible initial iterate is given, it is replaced by computing a feasible initial iterate
x0 from which the actual search begins. For instance, if x0 is infeasible it can be
replaced by its Euclidean projection onto the feasible polyhedron [14, Section 8.1].

Maintaining feasibility with respect to the linear equality constraints is straight-
forward [14, Section 4]. The key to ensuring feasibility with respect to the linear
inequality constraints lies in constructing a set of search directions that ensures it is
possible to take a sufficiently long step from the iterate x, while remaining feasible.
To do so, we monitor the constraints that are active near x. Specifically, for i ∈ I let
Ci =

{
y | aTi y = bi

}
, the affine subspace associated with the ith inequality constraint.

Given x ∈ Ψ and r ≥ 0, let I(x, r) =
{
i ∈ I | dist(x, Ci) =

∣∣ bi − aTi x
∣∣ / ‖ ai ‖ ≤ r

}
.

The vectors ai for i ∈ I(x, r) are outward-pointing normals to the inequality con-
straints that contribute to determining the boundary of Ψ within distance r of x. We
then define the r-normal cone N(x, r) to be the cone




 z ∈ Rn | z =
∑

i∈E
viai +

∑

i∈I(x,r)

uiai, vi, ui ∈ R, ui ≥ 0




 . (4.2)

The r-tangent cone T (x, r) is defined to be the cone polar to N(x, r). These two cones
are illustrated in Figure 4.1.

What is required, at a minimum, for each iteration j of a GSS method is that the
set of possible search directions Dj contains a core set of search directions, denoted
Gj , which consists of generators for T (xj , rj). Here we assume that the directions in
Gj have been normalized; this is not necessary, as discussed in [13], but it simplifies
both our discussion and the analysis without any apparent detriment to performance
(see the numerical results in [17, Section 6]). We then use the step-length control
parameter ∆j ≥ 0 to control the length of the steps defined by the directions in
Dj . Further, if we require rj = ∆j , then we ensure that at least for the directions
d ∈ Gj a step of length ∆j is feasible [13, Proposition 2.2]; this can be seen in
Figure 4.1(a). When the search is unable to find sufficient decrease at any of the trial
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Step 0. Initialization. Let x0 ∈ Ψ be the initial iterate. Let ∆tol > 0 be the
tolerance used to test for convergence. Let ∆0 > ∆tol be the initial
value of the step-length control parameter. Let ∆0 ≤ ∆max < ∞ be an
upper bound on the step-length control parameter. Let rmax > ∆tol be
the maximum distance used to identify nearby constraints (rmax = +∞
is permissible). Let α > 0. Let ϕj(∆j) = αmax

{∣∣Φtyp
∣∣ , |Φ(xj) |

}
∆2

j ,
where Φtyp '= 0 is some value that reflects the typical magnitude of the
objective for x ∈ Ψ. Let 1 ≤ φmax < ∞. Let 0 < θmin ≤ θmax < 1. Set
S = U = UT = ∅.

Step 1. Choose search directions. Let rj = min{rmax,∆j}. Choose a set of
search directions Dj = Gj ∪Hj satisfying Condition 4.1. Normalize the
core search directions in Gj so that ‖ d ‖ = 1 for all d ∈ Gj .

Step 2. Look for decrease. Consider trial steps of the form xj + ∆̃(d)d for
d ∈ Dj , where ∆̃(d) is as defined in (4.3), until either finding a dj ∈ Dj

that satisfies (4.4) (a successful iteration) or determining that (4.4) is
not satisfied for any d ∈ Gj (an unsuccessful iteration).

Step 3. Successful Iteration. If there exists dj ∈ Dj such that (4.4) holds,
then:

– Set xj+1 = xj + ∆̃(dj)dj .

– Set ∆j+1 = min{∆max,φj∆j}, where 1 ≤ φj ≤ φmax.

– Set S = S ∪ {j}.

– If during Step 2 it was determined that (4.4) is not satisfied for any
d ∈ Gj , set UT = UT ∪ {j}.

Step 4. Unsuccessful Iteration. Otherwise,

– Set xj+1 = xj .

– Set ∆j+1 = θj∆j , where θmin ≤ θj ≤ θmax < 1.

– Set U = U ∪ {j}.

– Set UT = UT ∪ {j}.

If ∆j+1 < ∆tol, then terminate.

Step 5. Advance. Increment j by one and go to Step 1.

Algorithm 4.1
A linearly constrained GSS algorithm.

steps defined by ∆jd, d ∈ Gj , we keep track of such iterations by adding j to the set
UT which contains the indices of those iterations for which the search was tangentially
unsuccessful. Note that it is possible to have an iteration that is both successful and
tangentially unsuccessfully if sufficient decrease is found for a d ∈ Hj but not for any
d ∈ Gj . If the search is unable to find sufficient decrease at any of the trial steps
defined by d ∈ Dj , then ∆j is reduced. A traditional strategy is to halve ∆j .

In order to ensure convergence of linearly constrained GSS, we need to place
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T(x,r)

N(x,r)

r
x

Ψ

(a) The r-normal and r-tangent
cones N(x, r) and T (x, r). We
use ! to denote the trial steps
defined by ∆ = r and the nor-
malized generators for T (x, r).

T(x,r)

N(x,r)

r−∇Φ(x) x

Ψ

(b) Asymptotically, the norm
of the projection of −∇Φ(x)
onto T (x, r) is less than some
constant times ∆ = r.

T(x,r)

N(x,r)

r−∇Φ(x) x

Ψ

(c) By the polar decomposition,
the projection of −∇Φ(x) onto
T (x, r) is equal to −∇Φ(x) less
its projection onto N(x, r).

Fig. 4.1. The geometry of linear constraints.

Condition 4.1 on the sequence of core sets {Gj}. Condition 4.1 makes use of the
quantity κ(G), which appears in [13, (2.1)] and is a generalization of that given in
[11, (3.10)]. We make use of the following notation: if K ⊆ Rn is a convex cone and
z ∈ Rn, then denote the Euclidean norm projection of z onto K by [z]K . Now, for
any finite set of vectors G define

κ(G) = inf
z∈Rn

[z]K "=0

max
d∈G

zT d

‖ [z]K ‖ ‖ d ‖ , where K is the cone generated by G.

We place the following condition on the set of search directions Gj .

Condition 4.1. There exists a constant κmin > 0, independent of j, such that
for every j, Gj generates T (xj , rj), and if Gj -= {0}, then κ(Gj) ≥ κmin.

In the event that T (xj , rj) contains a nontrivial lineality space we have freedom in
our choice of generators for T (xj , rj). The lower bound κmin precludes a subsequence
of {Gj} for which κ(Gj) → 0. For further discussion of κ(·), see [17, Section 4.1].

Next, we refine the step-length control mechanism to handle those search direc-
tions d ∈ Hj = Dj \ Gj , since feasibility of xj +∆jd is ensured only for the directions
d ∈ Gj . Define

∆̃(d) = max {∆ ∈ [0,∆j ] | xj +∆d ∈ Ψ } . (4.3)

Then for any d ∈ Dj , the associated trial point is xj + ∆̃(d)d. This construction
ensures that the full step (with respect to ∆j) is taken if the resulting trial point is
feasible. Otherwise, the trial point is found by taking the longest possible feasible
step from xj along d.

Finally, we define the sufficient decrease condition we use. A trial point is con-
sidered acceptable only if it satisfies

Φ(xj + ∆̃(d)d) < Φ(xj)− ϕj(∆j). (4.4)

There is considerable latitude in the choice of ϕj ; we use ϕj(∆) = αj∆2 where the
sequence {αj} is bounded away from zero for all j. In our current implementation
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[17], we use

αj = αmax
{
|Φtyp|, |Φ(xj)|

}
, (4.5)

where α > 0 is fixed and Φtyp -= 0 is some fixed value that reflects the typical
magnitude of the objective for feasible inputs. Our default choice is Φtyp = 1.

We are ready now to state the following results from [17].
Theorem 4.2. [17, Theorem 4.2] Suppose that ∇Φ is Lipschitz continuous with

constant M on Ψ. Consider the iterates produced by the linearly constrained GSS
Algorithm 4.1. If j ∈ UT and rj satisfies rj = ∆j, then

∥∥ [−∇Φ(xj)]T (xj ,rj)

∥∥ ≤ 1

κmin
(M + αj)∆j , (4.6)

where κmin is from Condition 4.1 and αj is from (4.5).
Theorem 4.2 yields a bound on the relative size of the projection of −∇Φ(xj)

onto T (xj , rj): if the sequence {Φ(xj)} is bounded below, then there exists C > 0
such that for all j ∈ UT we have

∥∥ [−∇Φ(xj)]T (xj ,rj)

∥∥ ≤ C∆j ,

where C depends on κmin, M , α,
∣∣Φtyp

∣∣, and the upper bound on {|Φ(xj) |}. The
relationship

∥∥ [−∇Φ(xj)]T (xj ,rj)

∥∥ = O(∆j) is illustrated in Figure 4.1(b).
The asymptotic behavior of the sequence {∆j} is described by Theorem 4.3.
Theorem 4.3. [17, Theorem 4.3] Consider the iterates produced by the linearly

constrained GSS Algorithm 4.1. Then either limj→∞ ∆j = 0 or limj→∞ Φ(xj) = −∞.
Theorems 4.2 and 4.3 yield the following first-order stationarity result for (4.1).

Theorem 4.4. [17, Theorem 4.4] Let ∇Φ be Lipschitz continuous with constant
M on Ψ and let {xj} be the sequence of iterates produced by the linearly constrained
GSS Algorithm 4.1 with rj satisfying rj = ∆j. If {xj} is bounded, or if Φ is bounded
below on Ψ, then

lim
j∈UT→∞

∥∥∥ [−∇Φ(xj)]T (xj ,rj)

∥∥∥ = 0.

5. The GSS augmented Lagrangian algorithm. In this section we discuss
additional considerations that arise when using GSS methods for solving the linearly
constrained subproblem (2.2) within the augmented Lagrangian framework of [1]. We
first show the connection between the stationarity condition (4.6) and the stationarity
conditions (3.1)–(3.4). Afterwords we consider the dependence of the right-hand side
of the bound (4.6) on the multiplier estimates and penalty parameter. Algorithm 5.1
is the resulting augmented Lagrangian method.

Proposition 5.1 rewrites the projection of −∇Φ(x) onto T (x, r) in terms of the
Lagrangian for (4.1).

Proposition 5.1. Let xj be an iterate produced by the linearly constrained GSS
Algorithm 4.1 applied to (4.1). Then there exist scalars vi, i ∈ E, and ui, i ∈ I, such
that ui ≥ 0 for all i ∈ I, ui = 0 if i -∈ I(xj , rj),

[−∇Φ(xj)]T (xj ,rj) = −∇Φ(xj)−
∑

i∈E
viai −

∑

i∈I
uiai,

9



Step 0. Set up. Let x(0) ∈ Rn be an arbitrary initial point. Let τ ∈ [0, 1),
γ > 1, ρ(1) > 0, −∞ < λ̄min ≤ λ̄(1) ≤ λ̄max < ∞, and
0 ≤ µ̄(1) ≤ µ̄max < ∞. Let 0 < ξmin ≤ ξmax < 1 and ∆(1)

tol > 0. Let

δ(λ̄, µ̄, ρ) be as discussed in connection with the update rule (5.4).

Step 1. Initialization. Set k = 1 and σ(0) = max(0, g(x(0))).

Step 2. Solving the subproblem. Apply Algorithm 4.1 to

minimize L(x; λ̄(k), µ̄(k), ρ(k))
subject to aT

i x = bi i ∈ E ,
aT
i x ≤ bi i ∈ I

until the stopping criterion ∆j < ∆(k)

tol is satisfied. Let x
(k) be the

approximate minimizer so computed; then there exist v(k) and u(k)

satisfying (3.1)–(3.4) and (5.1)–(5.3). If it is not possible to find an x(k)

satisfying the stopping criterion, terminate.

Step 3. Update the multiplier estimates.

– Set λ(k+1) = λ̄(k) + ρ(k)h(x(k)).

– Compute λ̄(k+1) by projecting λ(k+1) onto
{
λ | λ̄min ≤ λ ≤ λ̄max

}
.

– Set

σ(k) = max
(
g(x(k)), −µ̄(k)/ρ(k)

)
,

µ(k+1) = max
(
0, µ̄(k) + ρ(k)g(x(k))

)
.

– Compute µ̄(k+1) by projecting µ(k+1) onto {µ | 0 ≤ µ ≤ µ̄max }.

Step 4. Update the penalty parameter. If

max
{∥∥∥ h(x(k))

∥∥∥
∞

,
∥∥∥ σ(k)

∥∥∥
∞

}
≤ τ max

{∥∥∥ h(x(k−1))
∥∥∥
∞

,
∥∥∥ σ(k−1)

∥∥∥
∞

}

then ρ(k+1) = ρ(k); else, ρ(k+1) = γρ(k).

Step 5. Update the subproblem stopping tolerance. Choose ξ(k) satisfying
ξmin ≤ ξ(k) ≤ ξmax, and set

∆(k+1)

tol = ξ(k)∆(k)

tol/δ(λ̄
(k+1), µ̄(k+1), ρ(k+1)).

Step 6. Begin a new outer iteration. Set k = k + 1. Go to Step 2.

Algorithm 5.1
The augmented Lagrangian framework incorporating GSS.

and

ui ≥ 0 and aTi xj − bi ≤ 0 ∀ i ∈ I,
aTi xj − bi < −rj ‖ ai ‖ ⇒ ui = 0 ∀ i ∈ I.

10



Moreover, aTi xj − bi = 0 for all i ∈ E.
Proof. By the polar decomposition [19] we have

[−∇Φ(xj)]T (xj ,rj) = −∇Φ(xj)− [−∇Φ(xj)]N(xj ,rj)

(as illustrated in Figure 4.1(c)). From the definition of N(xj , rj) in (4.2) it follows
that there exist vi (unrestricted in sign) and ui ≥ 0 such that

[−∇Φ(xj)]N(xj ,rj) =
∑

i∈E
viai +

∑

i∈I(xj ,rj)

uiai.

Thus, if we set ui = 0 for i ∈ I \ I(xj , rj), then

[−∇Φ(xj)]T (xj ,rj) = −∇Φ(xj)−
∑

i∈E
viai −

∑

i∈I
uiai,

where ui ≥ 0 for all i ∈ I.
Since Algorithm 4.1 produces only iterates that are feasible with respect to the

linear constraints, we are guaranteed to have aTi x−bi ≤ 0 for all i ∈ I and aTi x−bi = 0
for all i ∈ E . In addition, from the definition of I(xj , rj) it follows that

i ∈ I \ I(xj , rj) ⇐⇒ aTi xj − bi < −rj ‖ ai ‖ .

Proposition 5.2 results from applying Theorem 4.2 to Φ(x) = L(x; λ̄, µ̄, ρ).
Proposition 5.2. Consider the sequence of iterates {xj} produced by the linearly

constrained GSS Algorithm 4.1 applied to (2.2). Suppose that M(λ̄, µ̄, ρ) is a Lipschitz
constant (in x) for ∇L(x; λ̄, µ̄, ρ) on Ψ. Let κmin be as in Condition 4.1 and αj as in
(4.5). If j ∈ UT and rj satisfies rj = ∆j, then

∥∥ [−∇L(xj ; λ̄, µ̄, ρ)]T (xj ,rj)

∥∥ ≤ 1

κmin

(
M(λ̄, µ̄, ρ) + αj

)
∆j .

Proposition 5.1 and Proposition 5.2 then yield the following.
Proposition 5.3. Consider the sequence of iterates {xj} produced by the linearly

constrained GSS Algorithm 4.1 applied to (2.2). Suppose that M(λ̄, µ̄, ρ) is a Lipschitz
constant (in x) for ∇L(x; λ̄, µ̄, ρ) on Ψ. Under the hypotheses of Theorem 4.2, if
j ∈ UT then there exist scalars vi, i ∈ E, and ui, i ∈ I, such that ui ≥ 0 for all i ∈ I,
ui = 0 if i -∈ I(xj , rj),

∥∥∥∥∥ ∇L(xj ; λ̄, µ̄, ρ) +
∑

i∈E
viai +

∑

i∈I
uiai

∥∥∥∥∥ ≤ 1

κmin

(
M(λ̄, µ̄, ρ) + αj

)
∆j ,

and

ui ≥ 0 and aTi x− bi ≤ 0 ∀ i ∈ I,
aTi x− bi < −rj ‖ ai ‖ ⇒ ui = 0 ∀ i ∈ I,

aTi x− bi = 0 ∀ i ∈ E .

Note that in the context of GSS methods we do not know the specific values of the
vi and ui, only that they exist.

11



It remains to impose a suitable stopping tolerance ∆(k)
tol for subproblem k in the

outer loop of the augmented Lagrangian method. Suppose that we use the linearly

constrained GSS Algorithm 4.1 to minimize L(x; λ̄(k), µ̄(k), ρ(k)). Let j(k)∗ be the
unsuccessful iteration after which the stopping criterion is satisfied (i.e., ∆

j(k)
∗ +1

=

θ
j(k)
∗

∆
j(k)
∗

< ∆(k)
tol ). Let amax = maxi∈I{‖ ai ‖}. In addition, suppose we use the

choice rj = ∆j for all j. Then Proposition 5.3 tells us that (3.1)–(3.4) hold with

ε(k)1 =
1

κmin
(M(λ̄(k), µ̄(k), ρ(k)) + α

j(k)
∗

)
1

θ
j(k)
∗

∆(k)
tol , (5.1)

ε(k)2 = amax
1

θ
j(k)
∗

∆(k)
tol (5.2)

ε(k)3 = 0. (5.3)

To ensure convergence of the augmented Lagrangian scheme we must ensure that

ε(k) = max{ε(k)1 , ε(k)2 , ε(k)3 } → 0. We will do so by ensuring that ∆(k)
tol → 0 under the

following condition.
Condition 5.4. There exists C ≥ 0 such that for all k,

M(λ̄(k), µ̄(k), ρ(k)) ≤ C
(
1 +

∥∥∥ λ̄(k)
∥∥∥+

∥∥∥ µ̄(k)
∥∥∥+ ρ(k)

)
.

Condition 5.4 will hold, for instance, if there exists a compact set on which ∇f , ∇h,
and ∇g are Lipschitz continuous and which contains, for all k, the sequence of iterates

{x(k)
j } produced by the linearly constrained GSS Algorithm 4.1 applied to (2.2).

From (5.1)–(5.3) we see that ensuring that ε(k) → 0 as k → ∞ requires not just

∆(k)
tol → 0 but also (M(λ̄(k), µ̄(k), ρ(k))+α

j(k)
∗

)∆(k)
tol → 0. Since both M(λ̄(k), µ̄(k), ρ(k))

and α
j(k)
∗

will grow with
∥∥ λ̄(k)

∥∥,
∥∥ µ̄(k)

∥∥, and ρ(k), we must guard against the pos-
sibility that any of the latter quantities grows without bound. The augmented La-
grangian framework in Algorithm 3.1 explicitly enforces boundedness of the multiplier
estimates λ̄(k) and µ̄(k). However, there remains the possibility that the sequence of
penalty parameters {ρ(k)} is unbounded. If this occurs, the augmented Lagrangian
will become increasingly nonlinear.

As λ̄(k), µ̄(k), and ρ(k) increase in magnitude, the GSS stopping tolerance ∆(k)
tol for

the inner iteration should be tightened to ensure (3.1) holds for a reasonably small ε(k)1 .
Consequently, we have the following update rule for the subproblem stopping toler-
ance. First, choose a function δ(λ̄, µ̄, ρ) such that

(∥∥ λ̄
∥∥+ ‖ µ̄ ‖+ ρ

)
= O(δ(λ̄, µ̄, ρ))

as
(∥∥ λ̄

∥∥+ ‖ µ̄ ‖+ ρ
)
→ ∞. The subproblem stopping tolerance can then be updated

as follows: Choose ξmin and ξmax, independent of k, satisfying 0 < ξmin ≤ ξmax < 1.
Choose ξ(k) satisfying ξmin ≤ ξ(k) ≤ ξmax. Set

∆(k+1)
tol = ξ(k)∆(k)

tol/δ(λ̄
(k+1), µ̄(k+1), ρ(k+1)).

With this update rule, Condition 5.4 and the requirement that δj ≥ δmin > 0 guaran-

tee that ε(k) = max{ε(k)1 , ε(k)2 , ε(k)3 } → 0 as ∆(k)
tol → 0. For instance, we could choose

δtol > 0 and let

δ(λ̄, µ̄, ρ) = max{1, (1 +
∥∥ λ̄

∥∥+ ‖ µ̄ ‖+ ρ)/δtol}. (5.4)

A similar update rule appears in [12]. The threshold trigger δtol is intended to pre-

vent overly aggressive reductions in ∆(k)
tol . We are indebted to Rakesh Kumar of The

12



MathWorks for relating to us his experience, from implementing and testing the Mat-
lab GADS Toolbox version of the GSS augmented Lagrangian algorithm from [16],

that decreasing ∆(k+1)
tol too aggressively leads to computational inefficiency. Further

discussion of the stopping tolerance update may be found in [12].
Recall that we are working under the assumption that exact derivatives (or suffi-

ciently accurate estimates) of f , g, and h are unavailable; hence, our need to tighten
the stopping criterion in reaction to increased nonlinearity of the augmented La-
grangian due to growth in the multipliers or the penalty parameter. The same issue
would arise if one were to minimize the augmented Lagrangian using finite differences
to estimate the Jacobian of the constraints. In the latter case, the nonlinearity sur-
faces in the truncation error of the finite difference estimates. If the multipliers or
the penalty parameter become large, then the finite difference perturbation used will
need to be decreased appreciably in order to control the truncation error and retain
assurance that if the finite difference approximation of ∇L satisfies (3.1), then the
exact gradient ∇L does as well.

6. Analytical results for the augmented Lagrangian approach. In [1],
there are two sets of results relating to the general version of Algorithm 3.1. The first
set of results assumes that the inner iteration always finds an x(k) satisfying (3.1)–
(3.4) and then examines global convergence results that use the CPLD constraint
qualification. The second set of results considers the boundedness of the penalty
parameters. We recap these results in the specific context of our Algorithm 5.1,
where the subproblem is linearly constrained.

6.1. Global convergence. In addition to the assumption that an x(k) satisfying
(3.1)–(3.4) can always be found, the results in [1, Section 4] also assume the existence
of at least one limit point of the sequence {x(k)} generated by Algorithm 3.1.

The first result shows that either a limit point is feasible or it is a KKT point
over Ψ of the sum of squares of the infeasibilities for the upper-level constraints.
Theorem 6.1 is a special case of the result [1, Theorem 4.1] on which it is based
that takes into account that since the lower-level constraints are linear, the CPLD
constraint qualification necessarily holds for the lower-level constraints.

Theorem 6.1. Let {x(k)} be a sequence generated by Algorithm 5.1. Let x(!) be
a limit point of {x(k)}. Then, if the sequence of penalty parameters {ρ(k)} is bounded,
the limit point x(!) is feasible. Otherwise, the limit point x(!) is a KKT point of the
problem

minimize 1
2

(
‖ h(x) ‖2 + ‖ max (0, g(x)) ‖2

)

subject to x ∈ Ψ.

The next result says that under the CPLD constraint qualification, feasible limit
points are KKT points of (1.1). Moreover, if the stronger Mangasarian-Fromowitz
constraint qualification (MFCQ) [18] is also satisfied, then the unprojected multiplier
estimates associated with any subsequence of iterates converging to x(!) are bounded.
Let Ω = {x | h(x) = 0, g(x) ≤ 0 } denote the feasible region with respect to the upper-
level constraints.

Theorem 6.2. [1, Theorem 4.2] Let {x(k)}k∈N be a sequence generated by
Algorithm 5.1. Suppose x(!) ∈ Ω∩Ψ is a limit point that satisfies the CPLD constraint
qualification related to Ω∩Ψ. Then, x(!) is a KKT point of the original problem (1.1).
Moreover, if x(!) satisfies the MFCQ and {x(k)}k∈K is a subsequence that converges
to x(!), the set {

∥∥ λ(k+1)
∥∥ ,

∥∥ µ(k+1)
∥∥ ,

∥∥ v(k)
∥∥ ,

∥∥ u(k)
∥∥}k∈K is bounded.
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6.2. Boundedness of the penalty parameters. As noted in [1], study of
conditions under which the penalty parameters are bounded is important since if the
penalty parameters are too large, the subproblems tend to be ill-conditioned and thus
more difficult to solve. The results in [1, Section 5] are split into two sections: those
for equality constraints (only) and those for general constraints. The technique for
proving the boundedness of the penalty parameters in the case of general constraints
is to reduce (1.1) to a problem consisting only of equality constraints. The equality
constraints of the new (reduced) problem are the active constraints at the limit point
x(!). The boundedness of the penalty parameters then follows from the results for
problems with equality constraints only. Here we simply recap the result for the
general case.

The following assumptions serve as the sufficient conditions for the case of general
constraints.

Assumption 6.3. [1, Assumption 7] The sequence {x(k)} is generated by the
application of Algorithm 5.1 to problem (1.1) and limk→∞ x(k) = x(!).

Assumption 6.4. [1, Assumption 8] The point x(!) is feasible.
Assumption 6.5. [1, Assumption 9] LICQ holds at x(!): the set of vectors

{ ∇hi(x(!)) | i = 1, . . . ,m } ∪ { ∇gi(x(!)) | gi(x(!)) = 0 } ∪ { ai | i ∈
E } ∪ { ai | i ∈ I, aTi x(!) = bi } is linearly independent.

Assumption 6.6. [1, Assumption 10] The functions f , h, and g admit continuous
second derivatives in a neighborhood of x(!).

Assumption 6.7. [1, Assumption 11] Define the tangent subspace T as the set
of z satisfying

1. ∇hi(x(!))T z = 0, i = 1, . . . ,m,
2. ∇gi(x(!))T z = 0 for all i such that gi(x(!)) = 0, and
3. aTi z = 0 for all i ∈ E and i ∈ I such that aTi x

(!) = bi.
Then, for all z ∈ T , z -= 0,

zT
(
∇2f(x(!)) +

m∑

i=1

λ(!)
i ∇2hi(x

(!)) +
p∑

i=1

µ(!)
i ∇2gi(x

(!))

)
z > 0.

Assumption 6.8. [1, Assumption 12] The Lagrange multipliers λ(!) ∈ Rm and
µ(!) ∈ Rp satisfy λ̄min ≤ λ(!) ≤ λ̄max and 0 ≤ µ(!) ≤ µ̄max.

Assumption 6.9. [1, Assumption 13] Strict complementarity holds at x(!) for
the inequality constraints g(x(!)).
The authors note in [1] that Assumption 6.7 is weaker than the usual second-order
sufficiency assumption. Assumption 6.9 requires strict complementarity only for the
upper-level inequality constraints.

Theorem 6.10. [1, Theorem 5.5] Suppose that Assumptions 6.3–6.9 are satisfied
and assume that there exists a sequence η(k) → 0 such that for all k ∈ N, ε(k) ≤
η(k) max

{∥∥ h(x(k))
∥∥
∞ ,

∥∥ σ(k)
∥∥
∞
}
. Then the sequence of penalty parameters {ρ(k)}

is bounded.

7. Preliminary numerical results. We report numerical results for two sets
of problems. In the first set we compare results we obtained with results reported
in [1, Section 6.1] for five small test problems chosen because of known pathologies
meant to test both the analysis and the comparable performance for Ipopt [22, 24],
a well-regarded implementation of an interior-point method. In the second part, we
report preliminary results for some problems taken from the CUTEr test suite [9].
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In the numerical tests reported in [1, Section 6.1], Gencan [3], a solver for uncon-
strained and bound-constrained problems that uses second derivatives and a conjugate
gradient preconditioner, was used for the inner iterations. For our tests we used our
implementation of a linearly constrained GSS method described in [14, 17].

All tests were run on an Apple MacBook with a 2 GHz Intel Core 2 Duo processor
and 1 GB memory running Mac OS X, Version 10.4.11 and using Matlab R2008b.

For the test results reported in Section 7.1, we used the same parameter values
for Algorithm 5.1 as those reported in [1, Section 6] so that the results could be
compared. Specifically, we initialized the penalty parameter to

ρ(1) = max

{
10−6, min

{
10,

2
∣∣ f(x(0))

∣∣
∥∥ h(x(0))

∥∥
2
+

∥∥ max(0, g(x(0)))
∥∥
2

}}
(7.1)

and used τ = 0.5 and γ = 10 for testing and updating ρ(k). For the bounds on the
multipliers, we used λ̄min = −1020 and λ̄max = µ̄max = 1020; we set λ̄(1) = 0 and
µ̄(1) = 0. For all k, ε(k) = 10−4. Algorithm 5.1 was terminated when

max
{∥∥∥ h(x(k))

∥∥∥
∞

,
∥∥∥ σ(k)

∥∥∥
∞

}
≤ 10−4. (7.2)

The definition of σ(k) given in (3.5) ensures that if
∥∥ σ(k)

∥∥
∞ ≤ 10−4, then gi(x(k)) ≤

10−4 for all i ∈ {1, . . . , p} and µ(k)
i = 0 whenever gi(x(k)) < 10−4.

For the results reported in Section 7.2 we made two changes to the values of the
algorithmic parameters. First, we replaced the value 10−6 in (7.1) with the value 1.0
since in our preliminary experiments we found that the value ρ(1) = 10−6 (as was often
the case) put too little weight on achieving feasibility in the initial rounds of the search
and thus triggered more outer iterations than were necessary to achieve acceptable
solutions. Second, we replaced ±1020 with ±Inf as bounds on the multipliers since
Matlab gracefully handles the unambiguous floating point infinity.

7.1. Tests of the convergence analysis. Here we compare results with those
given in the section of the same name in [1, Section 6.1]. We repeat the experiments on
these simple but pathological problems for the following reason. In the tests done in [1]
using the augmented Lagrangian algorithm Algorithm 3.1, the tolerance parameters
ε(k) are monotonically decreasing. In the GSS adaptation Algorithm 5.1, we are not
guaranteed monotonic decrease. It is natural to wonder whether this difference would
cause different behavior on pathological problems, or whether if we could solve the
subproblems to sufficient accuracy, we would attain equivalent results. The latter
turns out to be the case.

Example 1. Convergence to KKT points that do not satisfy MFCQ. In
this problem, no feasible point satisfies MFCQ, but all feasible points satisfy CPLD:

minimize x1

subject to x2
1 + x2

2 − 1 ≤ 0
−x2

1 − x2
2 + 1 ≤ 0.

The global solution is x(!) = (−1, 0)T .
In [1], Algorithm 3.1 was tested using 100 randomly generated starting points

in the square [−10, 10]2 (all 100 trials converged to the global solution), but specific
statistics are given only for the starting point (5, 5)T . Table 7.1 shows that from the
same starting point we achieved comparable results using linearly constrained GSS to
solve the subproblems, at least in terms of the final results and the number of outer
augmented Lagrangian iterations required.
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inner #
method it. initial ρ final ρ multiplier estimates

Gencan 14 4.1649E-03 4.1649E-01 4.998E-01 0.0000E+00
GSS 14 4.1649E-03 4.1649E-01 5.000E-01 0.0000E+00

Table 7.1
Results for Example 1.

Example 2. Convergence to a non-KKT point. For the following problem,
the constraints are linearly dependent for all x ∈ R. In spite of the this, the only
point that satisfies the conditions of Theorem 6.1 is x(!) = 0:

minimize x
subject to x2 = x3 = x4 = 0.

In [1], Algorithm 3.1 was tested using 100 randomly generated starting points
in the interval [−10, 10] (all 100 trials converged to the global solution), but specific
statistics are given only for the starting point 5. Table 7.2 shows that from the same
starting point we again achieved comparable results.

inner #
method it. initial ρ final ρ multiplier estimates

Gencan 20 2.4578e-05 2.4578e+05 5.2855e+01 -2.0317e+00 4.6041e-01
GSS 20 2.4578e-05 2.4578e+05 5.2881e+01 -2.0322e+00 4.6040e-01

Table 7.2
Results for Example 2.

Example 3. Infeasible stationary points [5, 10]. The following problem
has a global solution at x(!) = (0, 0)T , but it also has a stationary point for the
infeasibility at x = (0.5,

√
0.5)T .

minimize 100(x2 − x2
1)

2 + (x1 − 1)2

subject to x1 − x2
2 ≤ 0

x2 − x2
1 ≤ 0

−0.5 ≤ x1 ≤ 0.5
x2 ≤ 1.

In [1], Algorithm 3.1 was tested using 100 randomly generated starting points
in the square [−10, 10]2 (all 100 trials converged to the global solution), but specific
statistics are given only for the starting point (5, 5)T . As can be seen in Table 7.3,
from the same starting point we achieved comparable results. (Note that we report
the starting value for the penalty parameter given in [1], though the value we used
for ρ(1) was obtained from (7.1), the formula given in [1].)

Example 4. Difficult-for-barrier [4, 5, 22]. This problem was selected due
to the observation made in [5] that although the problem is well-posed, many barrier-
SQP methods fail to obtain feasibility for a range of infeasible starting points:

minimize x1

subject to x2
1 − x2

2 + a = 0
x1 − x3 − b = 0
0 ≤ x2

0 ≤ x3.
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inner #
method it. initial ρ final ρ multiplier estimates

Gencan 6 1.0000E+00 1.0000E+01 1.9998E+00 3.3390E-03
GSS 6 1.0000E+01 1.0000E+01 1.9999E+00 4.4878E-03

Table 7.3
Results for Example 3.

Following the suggestion in [5], Algorithm 3.1 was tested in [1] using two different
values of the parameters a and b and the corresponding initial points. We tested
the choice (a, b) = (−1, 0.5) and x(0) = (−2, 1, 1)T since in this instance Ipopt was
reported to have stopped upon indicating convergence to a stationary point for in-
feasibility. As can be seen in Table 7.4, from the same starting point we achieved
comparable results and converged to the global solution x(!) = (1, 0, 0.5)T . (Once
again we report the starting value for the penalty parameter given in [1], though the
value we used for ρ(1) was obtained from (7.1), the formula given in [1].)

inner #
method it. initial ρ final ρ multiplier estimates

Gencan 5 2.4615E+00 2.4615E+00 -5.0001E-01 -1.3664E-16
GSS 5 2.4615E-01 2.4615E+01 -4.9981e-01 3.0048e-04

Table 7.4
Results for Example 4.

Example 5. Preference for global minimizers. The following problem has
2n local minimizers corresponding to the vertices of the hypercube [−1, 1]n, but a
unique global minimizer at x(!) = (−1, . . . ,−1)T .

minimize
∑n

i=1 xi

subject to x2
i = 1, i = 1, . . . , n.

Following the lead in [1], we set n = 100. We ran from ten different starting
points using the Matlab Mersenne Twister pseudorandom number generator to gen-
erate uniform random values in the hypercube [−100, 100]n. The qualitative behavior
across all ten runs was the same. In all cases we found the global solution with
max(x) ∈ [-9.9997e-01, -9.9996e-01] and f(x) = -1.0000E+02. It took either 19
or 20 outer iterations to satisfy the stopping condition based on the maximum con-
straint violation. At the start, ρ = 1.0E-06 for all ten runs (the norm of the constraint
violation at the starting point was ≈ 1.0E+04 while the absolute value of the objective
at the starting point was ≈ 1.0E+02. Upon termination, ρ = 1.0E+00 when finished
in 19 outer iterations and ρ = 1.0E+01 when finished in 20 outer iterations. Across
all ten runs, min(λ) ∈ [0.49938, 0.49993] and max(λ) ∈ [0.50005, 0.50061].

In [1], the authors report executing 100 runs using the function Uniform01 pro-
vided by AMPL [8] to generate uniform random initial points in the hypercube
[−100, 100]n. They report that their algorithm converged to the global solution in
all cases while Ipopt never found the global solution. When starting from the first
random point, they note that 4 outer iterations were required to satisfy the stop-
ping condition, that the final penalty parameter was 5.0882E+00 (the initial one was
5.0882E-01), and that the final multipliers were all equal to 4.9999E-01.
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When we tried one run that restricted the range of the starting values to the unit
hypercube [−1, 1]n, the value computed for the initial ρ using (7.1) was 2.031458e-01,
which is at least of the same order of magnitude as that reported in [1]. Algorithm 5.1
then converged to the global solution in only 6 outer iterations with a final value
for ρ of 2.031458e+00. Since f is a linear function and there are no bounds on
the variables, regardless of the starting point the degree to which the upper-level
constraint violations are penalized plays a significant role, especially in the progress
made during the first outer iteration.

7.2. CUTEr problems. We report results for a selection of problems from
the CUTEr test suite [9]. Basic characteristics of the problems we used are given
in Table 7.5. The problems selected exhibit a wide range of features. Objective
functions are a mix of linear (“L” in the CUTEr classification scheme), quadratic
(“Q”), sum-of-squares (“S”), and general nonlinear (“O”). All problems have bounds
on at least some of the variables (though only a few have lower and upper bounds
on all of the variables), thus justifying the use of specialized software to handle the
bounds as lower-level constraints. Some problems have linear constraints, which we
also treat explicitly as lower-level constraints. We focused on problems classified as
“real” (“-R”) and “model” (“-M”), as opposed to “academic” (“-A”), as being more
indicative of the types of problems to which derivative-free methods are applied.

# of nonlinear # of linear # of bounds CUTEr
problem n eq. ineq. eq. ineq. lower upper classification

airport 84 0 42 0 0 84 84 SQR2-MN-84-42
cantilvr 5 0 1 0 0 5 0 LOR2-MN-5-1
cresc4 6 0 8 0 0 4 1 OOR2-MY-6-8
cresc50 6 0 100 0 0 4 1 OOR2-MY-6-100
cresc100 6 0 200 0 0 4 1 OOR2-MY-6-200
deconvc 61 1 0 0 0 51 0 SQR2-MN-61-1
dnieper 61 24 0 0 0 56 56 QOR2-MN-61-24
hs107 9 6 0 0 0 5 3 OOR2-MY-9-6
hs114 10 2 4 1 4 10 10 QOR2-MY-10-11
hs69 4 2 0 0 0 4 4 OOR2-MN-4-2
prodpl0 60 0 4 20 5 60 0 LQR2-RY-60-29
prodpl1 60 0 4 20 5 60 0 LQR2-RY-60-29
robot 14 2 0 0 0 7 7 QOR2-MY-14-2
twobars 2 0 2 0 0 2 2 OOR2-MN-2-2

Table 7.5
Summary of problem characteristics.

7.2.1. Starting values for the results reported here. For all problems we
started with the value of x(0) specified by CUTEr. Our software for handling the
lower-level constraints requires that all iterates be feasible with respect to the linear
constraints. The x(0) given in the CUTEr .SIF file for all the problems in Table 7.5
is feasible with respect to the bounds on the variables. However, for those problems
for which there are linear constraints, x(0) was infeasible with respect to the linear
constraints, as shown in Table 7.6. For these three problems, we projected the x(0)

given by CUTEr into Ψ to produce a new x(0) that is feasible to within an acceptable
tolerance, also shown in Table 7.6. Worth noting is that for all three of these prob-
lems, multiple times during the course of the inner iterations, the search encountered
working sets of linear constraints that had a degenerate vertex at the origin. The
latter situation requires special techniques to compute the set of search directions, as
discussed in [14, Section 5.4.2].
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max linear constraint bound violation
before projection into Ψ after projection into Ψ

problem lower upper lower upper
hs114 4.4000e-01 0.0000e+00 0.0000e+00 4.5475e-13
prodpl0 3.3330e+00 0.0000e+00 1.7764e-15 8.8818e-16
prodpl1 3.3330e+00 0.0000e+00 1.7764e-15 8.8818e-16

Table 7.6
Infeasibility of the CUTEr starting point x(0) with respect to the linear constraints.

In Table 7.7 we give the value of f(x(0)) for x(0) ∈ Ψ, the norm of the nonlinear
constraint violations at x(0) ∈ Ψ, and the “best known” objective value flo. In many

problem f(x(0))
∥∥ h(x(0))

∥∥
∞

∥∥ g(x(0))
∥∥
∞ flo

airport 0.0000e+00 — 1.0360e+02 4.7953e+04
cantilvr 3.1200e-01 — 1.2400e+02 1.3400e+00
cresc4 2.8822e+00 — 1.7153e+03 3.9244e+00
cresc50 2.8822e+00 — 1.7118e+03 1.9805e+00
cresc100 2.8822e+00 — 1.7073e+03 6.9621e+01
deconvc 1.1035e+02 9.9570e-01 — 2.5695e-03
dnieper -8.9102e+02 1.5462e+01 — 1.8744e+04
hs107 4.8533e+03 8.0000e-01 — 5.0550e+03
hs114 -8.7435e+02 8.9467e-02 0.0000e+00 -1.7688e+03
hs69 -6.3135e+02 6.8269e-01 — -9.5671e+02
prodpl0 7.5179e+01 — 2.9029e+00 5.8790e+01
prodpl1 7.5179e+01 — 2.1647e+00 3.5739e+01
robot 0.0000e+00 4.0000e+00 — 5.4628e+00
twobars 1.4142e+00 — 5.7826e-01 1.5086e+00

Table 7.7
Starting values for the objective at x(0) ∈ Ψ, max norms of the constraint violations at x(0) ∈ Ψ,

and best known optimal feasible values.

instances, this last value is given in the .SIF file that defines the problem. If not, we
used the value reported in [23]. We qualify “best known” because “best” may well
depend on the amount of infeasibility allowed or tolerated upon termination, and with
respect to which constraints. While the CUTEr .SIF files often contain a best known
(“LO SOLTN”) value, we have not found one that contains any information on the norm
of the constraint violations at the point xlo that produced the value reported for flo.
The norms of the constraint violations reported in [23] vary widely. For instance, the
CUTEr .SIF files for the problems cresc4, cresc50, and cresc100 do not contain
best known values. The values for flo given in [23] for these three problems have
associated constraint violation norms 3.2E+00, 6.6E+03, and 1.5E+04, respectively
(where the violations are respect to all constraints, including bounds on the variables).
Yet for these three problems we obtained both significantly lower objective values and
significantly lower constraint violations, as can be seen in Tables 7.8–7.10.

Because we terminated the outer iterations when ∆(k)
tol fell below 10−4 (analogous

to the criterion ε(k) < 10−4 in [1]), we report no more than five significant decimal
digits. The format used for the .SIF files supports no more than seven significant
decimal digits in the problem specification. We have found that in some .SIF files the
data defining the problem are truncated to only two or three decimal digits. Thus,
demanding full double-precision accuracy is unrealistic.

7.2.2. Results when the linear constraints are treated explicitly. Tables
7.8–7.12 summarize the results we obtained. From [17, Section 6.2] we borrowed a
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measure which we call fraction of optimal improvement to show how much progress
was made toward the best known optimal solution, given the starting values reported
in Table 7.7. Specifically, let f0 be the value f(x(0)) for x(0) ∈ Ψ. Let f sol be the
best objective value found by our method, given the stopping condition imposed (e.g.,
the value of f at termination reported in Table 7.8). Let f lo be the “best known”
value of the objective (e.g., the value flo given in Table 7.7). Then fraction of optimal
improvement, with respect to the value of the objective function, is defined as

|f0− f sol|
|f0− f lo| .

Note that we do not report fraction of optimal improvement for the problems cresc4,
cresc50, and cresc100 since we obtained significantly better solutions than those
reported for ipopt and, as already noted, no values are given in the CUTEr .SIF
files for these three problems.

problem value of f at termination frac. of opt. improvement

airport 4.7953e+04 1.0000e+00
cantilvr 1.3400e+00 1.0000e+00
cresc4 8.7215e-01 —
cresc50 8.0824e-01 —
cresc100 6.4331e-01 —
deconvc 2.6352e-06 1.0000e+00
dnieper 1.8755e+04 1.0006e+00
hs107 5.0546e+03 9.9794e-01
hs114 -1.7677e+03 9.9877e-01
hs69 -9.5669e+02 9.9992e-01
prodpl0 5.8790e+01 9.9996e-01
prodpl1 3.5740e+01 9.9997e-01
robot 5.4628e+00 1.0000e+00
twobars 1.5087e+00 1.0002e+00

Table 7.8
Summary of improvements in the objective values.

Equivalent definitions hold for the fraction of optimal improvement with respect
to the norm of the nonlinear constraint violations, though for these definitions there
is no ambiguity with respect to the optimal value, since it is zero. We include these
values in Table 7.9.

In Table 7.10 we show the maximum constraint violation, with respect to both the
bounds on the variables and the linear constraints, at the solution we obtained. Any
violations are small, as one would expect, since we enforce feasibility with respect to
these constraints (with a tolerance to account for floating-point error). In Table 7.11
we give the number of outer iterations, as well as the initial and final value of the
penalty parameter. Finally, in Table 7.12 we give the minimum and maximum values
of λi and µi upon termination. The purpose is to show that for these problems neither
the penalty parameters nor the multipliers grew excessively large in magnitude.

7.2.3. Results when the linear constraints are folded into the aug-
mented Lagrangian. We are not aware of any published results showing whether
there is an advantage to treating linear constraints explicitly in the context of an aug-
mented Lagrangian approach to solving nonlinear programming problems. We were
therefore curious how our results for the problems listed in Table 7.6 would change if
we folded the linear constraints into the augmented Lagrangian, rather than dealing
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‖ h(x) ‖∞ frac. of opt. ‖ g(x) ‖∞ frac. of opt.
problem at termination improvement at termination improvement

airport — — 1.9708e-05 1.0000e+00
cantilvr — — 0.0000e+00 1.0000e+00
cresc4 — — 2.9285e-05 1.0000e+00
cresc50 — — 0.0000e+00 1.0000e+00
cresc100 — — 4.0980e-06 1.0000e+00
deconvc 2.9241e-05 9.9997e-01 — —
dnieper 7.3508e-05 1.0000e+00 — —
hs107 5.7909e-05 9.9993e-01 — —
hs114 7.4444e-05 9.9917e-01 0.0000e+00 1.0000e+00
hs69 3.4658e-06 9.9999e-01 — —
prodpl0 — — 7.1451e-06 1.0000e+00
prodpl1 — — 8.7444e-06 1.0000e+00
robot 3.0952e-05 9.9999e-01 — —
twobars — — 0.0000e+00 1.0000e+00

Table 7.9
Summary of improvements in the feasibilities for the nonlinear constraints.

maximum constraint violation at solution
bounds on x bounds on Ax

problem lower upper lower upper

airport 0.0000e+00 0.0000e+00 — —
cantilvr 0.0000e+00 0.0000e+00 — —
cresc4 0.0000e+00 0.0000e+00 — —
cresc50 0.0000e+00 0.0000e+00 — —
cresc100 0.0000e+00 0.0000e+00 — —
deconvc 0.0000e+00 0.0000e+00 — —
dnieper 0.0000e+00 0.0000e+00 — —
hs107 0.0000e+00 0.0000e+00 — —
hs114 0.0000e+00 0.0000e+00 0.0000e+00 4.5475e-12
hs69 0.0000e+00 0.0000e+00 — —
prodpl0 1.0760e-15 0.0000e+00 1.9984e-15 1.3323e-15
prodpl1 9.5104e-16 0.0000e+00 2.6645e-15 2.6645e-15
robot 0.0000e+00 0.0000e+00 — —
twobars 0.0000e+00 0.0000e+00 — —

Table 7.10
Summary of feasibility of the linear constraints at termination.

with them explicitly as in the results reported in Section 7.2.2. The results of our
second round of tests are given in Tables 7.13–7.14.

These results suggest that the explicit treatment of the linear constraints is ad-
vantageous, as one would expect. Only one of the three tests, that for prodpl0,
terminated because the stopping criterion (7.2) for Algorithm 5.1 was satisfied. In
the other two instances, the test terminated because the penalty parameter reached
the value 1020, a clear indication that the search had stalled. Even for the problem
prodpl0, the solution obtained is arguably not as good as that obtained when the
linear constraints were handled directly. We conjecture that the difficulties encoun-
tered when including the linear constraints in the augmented Lagrangian is due to
degeneracy of the linear constraints.

8. Conclusions. The work described here combines derivative-free generating
set search methods for linearly constrained optimization and the general augmented
Lagrangian framework of [1]. The approach inherits the favorable analytical properties
(convergence and boundedness of penalty parameters) of the underlying augmented
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penalty parameter # of outer
problem initial at termination iterations

airport 1.0000e+00 1.0000e+08 17
cantilvr 1.0000e+00 1.0000e+04 9
cresc4 1.0000e+00 1.0000e+04 9
cresc50 1.0000e+00 1.0000e+05 10
cresc100 1.0000e+00 1.0000e+04 9
deconvc 1.0000e+01 1.0000e+02 3
dnieper 1.0000e+00 1.0000e+07 18
hs107 1.0000e+01 1.0000e+05 15
hs114 1.0000e+01 1.0000e+06 12
hs69 1.0000e+01 1.0000e+04 10
prodpl0 1.0000e+01 1.0000e+06 11
prodpl1 1.0000e+01 1.0000e+06 12
robot 1.0000e+00 1.0000e+01 6
twobars 8.4585e+00 8.4585e+04 9

Table 7.11
Summary of penalty parameters and number of outer iterations.

λ µ
problem min max min max

airport — — 0.0000e+00 2.8776e+03
cantilvr — — 4.4060e-01 4.4060e-01
cresc4 — — 0.0000e+00 4.6755e-01
cresc50 — — -2.6968e-02 0.0000e+00
cresc100 — — -9.4808e-01 6.8421e-01
deconvc -2.0521e-04 -2.0521e-04 — —
dnieper -3.9246e+03 3.8863e+03 — —
hs107 -1.4789e+00 5.2138e+03 — —
hs114 -3.9894e+01 3.8048e+01 0.0000e+00 0.0000e+00
hs69 -3.4422e+01 4.3971e+01 — —
prodpl0 — — 9.5053e+00 1.2994e+01
prodpl1 — — 0.0000e+00 4.6803e+01
robot -1.0641e-01 2.3434e+00 — —
twobars — — 0.0000e+00 1.4904e+00

Table 7.12
Summary of multipliers obtained.

Lagrangian framework. Moreover, the preliminary numerical results for this approach
are promising. Our numerical results also help confirm that explicit treatment of linear
constraints is beneficial. More work remains to be done on the implementation, how-
ever, and our experience implementing GSS for linearly constrained problems taught
us that an effective implementation requires a great deal of care and experimentation.
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