6 Priority Queues

6.1 Model and simple implementations

Reading: MAW 6.1 and 6.2

- A data structure H that supports $\text{Insert}(H, x)$ and $\text{DeleteMin}(H)$.
- Implementations:

<table>
<thead>
<tr>
<th>Implementation</th>
<th>Insert</th>
<th>DeleteMin</th>
</tr>
</thead>
<tbody>
<tr>
<td>array</td>
<td>$O(1)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>sorted array</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>BST</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>AVL</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
</tbody>
</table>

Question: Can we use an array for data storage to achieve $O(\log n)$ worst-case time for both operations?

6.2 Heap: An implementation of priority queues

Reading: MAW 6.3

- What is a heap?
 - A left-complete binary tree;
 - Each node has a number (key); and
 - Heap-order property (for min heaps): Parent \leq children.

Example: The left tree in Figure 6.5 on page 215.

- How is a heap implemented?
 Array: top-down, level-by-level, and left-right.

For example, the heap in our previous example can be represented by array H: 13, 21, 16, 24, 31, 19, 68, 65, 26, 32. In general, for $H[i]$, its left child is $H[2i]$, its right child is $H[2i+1]$, and its parent is $H[\lfloor i/2 \rfloor]$.

- Height of a heap with n nodes:
 Height $h = \lfloor \log n \rfloor + 1 = O(\log n)$.

For example,

<table>
<thead>
<tr>
<th>n</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 = $\lfloor \log 1 \rfloor + 1$</td>
</tr>
<tr>
<td>2</td>
<td>2 = $\lfloor \log 2 \rfloor + 1$</td>
</tr>
<tr>
<td>3</td>
<td>2 = $\lfloor \log 3 \rfloor + 1$</td>
</tr>
<tr>
<td>4</td>
<td>3 = $\lfloor \log 4 \rfloor + 1$</td>
</tr>
</tbody>
</table>

- Rebuilding a heap:
 Assumptions:
 - The left subtree of $H[i]$ is a heap;
 - The right subtree of $H[i]$ is a heap; but
 - The heap-order property is not satisfied at $H[i]$, i.e., $H[i] > H[2i]$ or $H[i] > H[2i+1]$.

Question: How can we rebuild the tree rooted at $H[i]$ into a heap?

Example: 10, 5, 6, 7, 8 \rightarrow 5, 7, 6, 10, 8.
RebuildHeap(H, i)
 if H[i] is not a leaf
 if H[i] > H[2i] or H[i] > H[2i+1]
 if H[2i] < H[2i+1]
 j = 2i
 else j = 2i+1
 swap H[i] and H[j]
 RebuildHeap(H, j)

Worst-case time: $O(\log n)$.

• Insert (H, x):
 Example: Insert 14 to 13, 21, 16, 24, 31, 19, 68, 65, 26, 32.

 Insert (H, x)
 i = size + 1
 H[i] = x
 parent = i / 2
 while parent > 0 and H[i] < H[parent]
 swap H[i] and H[parent]
 i = parent
 parent = i / 2
 size ++

Worst-case time: $O(\log n)$.

• DeleteMin (H):
 By the heap property of a min heap, the minimum is at the root of the heap, which is $H[1]$.
 Example: Delete the minimum from 13, 14, 16, 24, 21, 19, 68, 65, 26, 32, 31.

 DeleteMin (H)
 min = H[1]
 H[1] = H[size]
 size --
 RebuildHeap(H, 1)
 return min

Worst-case time: $O(\log n)$.

• Initialization:
 Example: Input array 150, 80, 40, 30, 10, 70, 110, 100, 20, 90, 60, 50, 120, 140, 130.

 Initialization (H)
 for i = size / 2 to 1
 RebuildHeap(H, i)

Worst-case time: $O(n)$. (See page 223 for proof)

Note: Another method for initialization is to insert the keys one by one into an initially empty heap. What is the time complexity?
6.3 Applications

Reading: MAW 6.4

• Operating system: Scheduling jobs on processors to run based on priorities.
 When a new job comes, if the processors are all busy, the job is inserted into a waiting queue based on its priority.
 When a processor becomes idle, if the waiting queue is not empty, the job with the highest priority is removed from
 the queue to start execution on the processor.

• The selection problem: Finding the kth largest number among n.
 – Algorithm 1: Sort and then select.
 Time complexity: \(O(n^2) \) or \(O(n \log n) \).
 – Algorithm 2: Sort \(A[1..k] \) into decreasing order. We call the sorted list \(S \). \(S[k] \) is therefore the smallest of the k
 numbers.) For \(i = k + 1..n \), if \(A[i] > S[k] \), \(S[k] \) is removed and \(A[i] \) is inserted into the correct position in \(S \). At
 the end, return \(S[k] \) as the kth largest.
 Time complexity: \(O(k \log k + (n - k)k) = O(nk) \).
 – Algorithm 3: Initialize into a max heap in \(O(n) \) time and then perform \(\text{DeleteMax} \) \(k \) times.
 Time complexity: \(O(n + k \log n) \).
 – Algorithm 4: Similar idea to Algorithm 2, but maintain \(S \) as a min heap instead of a sorted list. \(A[1..k] \) is first
 initialized into a heap \(S \). For \(i = k + 1..n \), if \(A[i] > S[1] \), do \(\text{DeleteMin}(H) \) and \(\text{Insert}(S,A[i]) \). At the end, return
 \(S[1] \).
 Time complexity: \(O(k + (n - k) \log k) = O(n \log k) \).