7 Sorting Algorithms

7.1 \(O(n^2)\) sorting algorithms

Reading: MAW 7.1 and 7.2

- Insertion sort:

\[
\begin{array}{cccc}
4 & 1 & 3 & 2 \\
1 & 4 & 3 & 2 \\
1 & 3 & 4 & 2 \\
1 & 2 & 3 & 4 \\
\end{array}
\]

Worst-case time: \(O(n^2)\).

- Selection sort:

\[
\begin{array}{cccc}
4 & 1 & 3 & 2 \\
1 & 4 & 3 & 2 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
\end{array}
\]

Worst-case time: \(O(n^2)\).

- Bubble sort:

\[
\begin{array}{cccc}
4 & 1 & 3 & 2 \\
1 & 3 & 2 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
\end{array}
\]

Worst-case time: \(O(n^2)\).

7.2 Shell sort

Reading: MAW 7.4

- Introduction:

Shell sort, also called diminishing increment sort, was designed by Donald Shell (1959). It is the first sorting algorithm to break the \(n^2\) barrier. Subquadratic time complexity has been proved recently.

- Idea:

Define a sequence: \(h_t > h_{t-1} > \cdots > h_2 > h_1 = 1\).

Pass 1: \(h_t\)-sort the array, i.e., \(A[i] \leq A[i + h_t]\) for any \(i\).

Pass 2: \(h_{t-1}\)-sort the array, i.e., \(a A[i] \leq A[i + h_{t-1}]\) for any \(i\).

\[\cdots\]

Pass \(t\): \(h_1\)-sort the array, i.e., \(A[i] \leq A[i + 1]\) for any \(i\).

In each pass, use a modified insertion sort.

- Example: Use sequence 5, 3, 1.

\[
\begin{array}{cccccccccccccccc}
81 & 94 & 11 & 96 & 12 & 35 & 17 & 95 & 28 & 58 & 41 & 75 & 15 \\
35 & 17 & 11 & 28 & 12 & 41 & 75 & 15 & 96 & 58 & 81 & 94 & 95 \\
28 & 12 & 11 & 35 & 15 & 41 & 58 & 17 & 94 & 75 & 81 & 96 & 95 \\
11 & 12 & 15 & 17 & 28 & 35 & 41 & 58 & 75 & 81 & 94 & 95 & 96 \\
\end{array}
\]
• How to define the h-sequence:

 – Shell’s sequence: $h_t = \left\lfloor \frac{t}{2} \right\rfloor$ and $h_k = \left\lfloor \frac{h_{k-1}}{2} \right\rfloor$ for $k = t - 1, \ldots, 1$. For example, when $n = 13$, the sequence is 6, 3, 1.
 – Hibbard’s sequence: $2^t - 1, \ldots, 15, 7, 3, 1$.

• Time complexity: Determined by the sequence used.

 – Shell’s sequence: $O(n^2)$.
 – Hibbard’s sequence: $O(n^{1.5})$.
 – No sequence gives $O(n \log n)$ time complexity.

7.3 $O(n \log n)$ sorting algorithms

Reading: MAW 7.5 and 7.6

• Heap sort: Use a max heap.

 4 1 3 2 16 9 10 14 8 7
 16 14 10 8 7 9 3 2 4 1
 1 14 10 8 7 9 3 2 4 (16)
 14 8 10 4 7 9 3 2 1 (16)
 1 8 10 4 7 9 3 2 (14 16)
 10 8 9 4 7 1 3 2 (14 16)
 2 8 9 4 7 1 3 (10 14 16)
 ……

HeapSort(A)
 initialize array A into a heap
 for i=n to 2
 swap A[1] and A[i]
 make A[1..i-1] into a heap by calling RebuildHeap

Time complexity:
$O(n) + nO(\log n) = O(n \log n)$.

• Merge sort:

 – Recursive implementation: Top-down

 (8 3 5 7)
 (8 3) (5 7)
 (8) (3) (5) (7)
 (3 8) (5 7)
 (3 5 7 8)

MergeSort(A, 1, u)
 if 1 < u
 mid = (l + u) / 2
 MergeSort(A, 1, mid)
 MergeSort(A, mid + 1, u)
 merge the sorted A[1..mid] and the sorted A[mid+1..u]
 into one sorted array
How to merge two sorted lists into one?

Time complexity:
\[T(n) = 2T\left(\frac{n}{2}\right) + n = O(n \log n) . \]

- Nonrecursive implementation: Bottom-up

\[
(3 \ 5 \ 7 \ 8) \\
(3 \ 8) (5 \ 7) \\
(8) (3) (5) (7)
\]

7.4 Quick sort

Reading: MAW 7.7

 \(A \) is divided into \(A_1 \) and \(A_2 \) such that for any \(x \) in \(A_1 \) and any \(y \) in \(A_2 \), we have \(x \leq y \).

 Then \(A_1 \) and \(A_2 \) are sorted recursively with the same method.

- Algorithm:

  ```plaintext
  QuickSort(A, l, u)
  if l < u
    partition A[l..u] into
    A[l..k] and A[k+1..u]
    QuickSort(A, l, k)
    QuickSort(A, k+1, u)
  ```

- How to partition \(A \):

 Method 1: Pick a number from \(A \), called a pivot \(p \). Create two new arrays \(A_1 \) and \(A_2 \). For numbers in \(A \) less than \(p \), add to \(A_1 \). For numbers in \(A \) greater than or equal to \(p \), add to \(A_2 \). Write \(A_1 \) back to \(A[l..k] \) and \(A_2 \) back to \(A[k+1..u] \).

 Note that \(k \) is determined by the number of items in \(A_1 \).

 Method 2: Without using auxiliary memory.

  ```plaintext
  Partition(A, l, u)
  pivot = A[l]
  i = l - 1
  j = u + 1
  while true
    repeat
      i ++
      until A[i] >= pivot
    repeat
      j --
      until A[j] <= pivot
    if i < j swap A[i] and A[j]
    else return j as k
  ```

 Time: \(O(n) \).

 Space: \(O(1) \).

 Example: \(5 \ 3 \ 2 \ 6 \ 4 \ 1 \ 3 \ 7 \rightarrow (3 \ 3 \ 2 \ 1 \ 4) \ (6 \ 5 \ 7) \)

- Analysis of quick sort:

 - Worst-case: When \(A \) is already sorted and \(pivot \) is always the first number, \(O(n^2) \).
– Best-case: When \textit{pivot} is chosen such that the partition always yields two sublists of roughly the same size, \(T(n) = 2T(n/2) + O(n) \), giving \(O(n \log n) \).
– Average-case: \(O(n \log n) \).

- Choosing the pivot:
 – Random choice among all in the array, or
 – Median-of-three random choices.

7.5 \(O(n) \) sorting algorithms

\textit{Reading:} MAW 7.10 and 3.2

- Count sort (called Bucket sort by MAW):
 Let \(A \) be the input array with \(A[i] \) being an integer in \([1, k]\) for some known \(k \).
 Let \(B \) be the output array (sorted).
 For each \(i \) in \([1, k]\), determine \(C[i] \), the number of copies of \(i \) in \(A \).

\begin{verbatim}
CountSort(A)
 for i = 1 to k
 C[i] = 0
 for j = 1 to n
 C[A[j]] = C[A[j]] + 1
 for i = 1 to k
 for l = 1 to C[i]
 B[j] = i
 j ++
\end{verbatim}

Time complexity:
\(O(k + n) = O(n) \) if \(k = O(n) \).

- Radix sort:
 Let \(A \) be the input array, where \(A[i] \) is an integer with \(d \) digits in base-\(k \) representation, i.e., \(A[i] = b_{d}b_{d-1} \cdots b_{1}b_{0} \).

\begin{verbatim}
RadixSort(A)
 for j = 0 to k-1
 initialize queue Q[j]
 for j = 1 to d
 for i = 1 to n
 insert A[i] to Q[b_{j}(i)]
 for i = 0 to k-1
 delete from Q[i]
 write the numbers back to A
\end{verbatim}

Example:
329 427 839 436 720 355
720 355 436 427 329 839
720 427 329 436 839 355
329 355 427 436 720 839

Time complexity:
\(O(d(n + k)) = O(n) \) if \(d = O(1) \) and \(k = O(n) \).
Bucket sort:
Let $A[1..n]$ be the input array with $A[i]$ in $[0, 1)$ for all i. Let $B[0..n-1]$ be an array of pointers with $B[i]$ pointing to a list of numbers in the range of $[\frac{i}{n}, \frac{i+1}{n})$. The algorithm contains three steps:

- Distribute the numbers in A into the linked lists in B.
- Sort each linked list.
- Concatenate the linked lists into one sorted array for output.

\[\text{BucketSort}(A)\]
\[\text{for } i = 1 \text{ to } n\]
\[\quad \text{insert } A[i] \text{ into the list pointed by } B[j], \text{ where } j \text{ is the integer part of } nA[i]\]
\[\text{for } i = 0 \text{ to } n-1\]
\[\quad \text{sort list pointed by } B[i]\]
\[\text{concatenate lists } B[0], ..., B[n-1]\]

Example: A is $0.78, 0.17, 0.39, 0.26, 0.72, 0.94, 0.61$ with $n = 7$.

Time: On average, when all the numbers in A are randomly generated and distributed uniformly in $[0, 1)$, each linked list will have length 1, yielding $O(n)$ for the average case.

What is the worst-case time complexity?