CS423 Finite Automata \& Theory of Computation

TTh 12:30-13:50 in Small Physics Lab 111 (section 1) TTh 9:30-10:50 in Blow 331 (section 2)

Prof. Weizhen Mao, wxmaox@wm.edu, wm@cs.wm.edu

General Information

- Office Hours: TTh 11:00-12:00 in 114 McGl and W 2:303:00 on zoom or by email
- Grader: TBD for section 1 (office hour TBD on BB)
- Grader: TBD for section 2 (office hour TBD on BB)
- Textbook: Intro to the theory of computation (any edition), Michael Sipser. An e-book in PDF maybe available online.
- Prerequisites/background: Linear algebra, Data structures and algorithms, and Discrete math

Complexity Theory:

- Computability Theory is the study of what can or cannot be computed by a TM/algorithm, among all problems.
- Complexity Theory is the study of what can or cannot be computed efficiently by a TM/algorithm, among all decidable/solvable problems.
- For the set of all solvable problems, it is further classified into various complexity classes based on the efficiency of algorithms solving these problems.
- Complexity Theory is the study of the definition and properties of these classes.

TDL

TDL

Figure 1: Three complexity classes if $\mathrm{P}=\mathrm{NP}$ or $\mathrm{P} \neq \mathrm{NP}$

11.1 I ne class or P (Sipser /.2)

- Definition: \mathbf{P} is the class of problems solvable in polynomial time (number of steps) by deterministic TMs. Polynomial $O\left(n^{c}\right)$, where n is input size and c is a constant. Problems in \mathbf{P} are "tractable" (not so hard).
- Why use polynomial as the criterion?
- If a problem is not in \mathbf{P}, it often requires unreasonably long time to solve for large-size inputs.
- \mathbf{P} is independent of all models of computation, except nondeterministic TM.
- Problems in P: Sorting, Searching, Selecting, Minimum Spanning Tree, Shortest Path, Matrix Multiplication, etc.
- Review of asymptotic notation: $\mathrm{O}, \Omega, \Theta$
- Examples of polynomial and polylog functions: $O(1), O(n)$, $O\left(n^{2}\right), O\left(n^{d}\right), O(\log n), O\left((\log n)^{c}\right), O\left(n^{3} \log n\right)$, $O\left(n^{c}(\log n)^{d}\right)$
11.2 The class of NP (Sipser 7.3)
- An NTM is an unrealistic (unreasonable) model of computing which can be simulated by other models with an exponential loss of efficiency. It is a useful concept that has had great impact on the theory of computation.
- NTM $N=\left(Q, \Sigma, \Gamma, \delta, q_{0}, q_{\text {accept }}, q_{\text {reject }}\right)$, where $\delta: Q \times \Gamma \rightarrow 2^{P}$ for $P=Q \times \Gamma \times\{L, R\}$.
- $\delta(q, X)$ is a set a moves. Which one to choose? This is nondeterminism. The computation can be illustrated by a tree, with each node representing a configuration.
- Nondeterminism can be viewed as a kind of parallel computation wherein multiple independent processes or threads can be running concurrently.
When a nondeterministic machine splits into several choices, that corresponds to a process forking into several children, each then proceeding separately. If at least one process accepts, then the entire computation accepts.
- Time complexity of nondeterministic TMs (NTMs): Let N be an NTM that is a decider (where all computation paths halt in the tree for any input). The time complexity of N, $f(n)$, is the maximum number of steps that N uses on any computation path for any input of length n. In other words, $f(n)$ is the maximum height of all computation trees for all input of length n.
- An unreasonable model of computation:

Theorem; Every $T(n)$-time multi-tape TM has an equivalent $O\left(T^{2}(n)\right.$)-time single-tape TM.
Theorem: Every $T(n)$-time single-tape NTM has an equivalent $O\left(2^{O(T(n))}\right.$)-time single-tape DTM.

- Definition: NP is the class of problems solvable in polynomial time by nondeterministic TMs.
- Another definition of nondeterministic TMs (algorithms):
- Guessing phase: Guess a solution (always on target).
- Verifying phase: Verify the solution.

Example: TSP (DEC) is in NP.
INSTANCE: An edge-weighted graph $G(V, E, w)$ and a bound $B \geq 0$.

QUESTION: Is there a tour (a cycle that passes through each node exactly once) in G with total weight no more than B ?
Define the following NTM N to solve TSP in polynomial time.
NTM $N=$ "On input $<G, B>$

1. Nondeterministically guess a tour $T \quad O(|V|)$
2. Verify if T includes every node once
$O(|V|)$
3. Compute sum $\leftarrow \sum_{e \in T} w(e) \quad O(|V|)$
4. Verify if sum $\leq B$. If true, answer yes; else No

Note 1: The time complexity of N is $O(|V|)$.
Note 2: If the answer to the QUESTION is "Yes", N guarantees that the right T will be guessed in step 1 .

Note 3: The acceptance of an input by a nondeterministic machine is determined by whether there is an accepting computation among all, possibly exponentially many, computations.

In the above proof, if there is a solution, i.e., a tour with total weight no more than B, it will always be generated by the Turing machine. This is like that a nondeterministic machine has a guessing power.

A tour can only be found by a deterministic machine in exponential time, however, it can be found by a nondeterministic machine in just linear steps. Any nondeterministic proof should always contain two stages: Guessing and verifying.

What needs to be guessed? What needs to be verified? What is the time complexity?

Example: Graph Coloring (GC) is in NP.
INSTANCE: Graph $G=(V, E)$, and $B \geq 0$
QUESTION: Is there a coloring scheme of the nodes that uses no more than B colors such that no two nodes connected by an edge are given the same color?

NTM $N=$ "On input $<G, B>$

1. Guess a coloring scheme (in polynomial time) $c: V \rightarrow C$
2. Verify if (1) $|C| \leq B$ and (2) $\forall(u, v) \in E, c(u) \neq c(v)$
3. if true, answer yes; else answer no

So we have a nondeterministic algorithm (or TM) that guesses a coloring scheme (or function) and verifies that (1) for any $(u, v) \in E, c(u) \neq c(v)$ and that (2) the number of colors used is no more than B, and further, all these can be done in polynomial time of $O(|V|)+O(|E|)$. So $G C$ is in NP.

- Theorem: $\mathbf{P} \subseteq \mathbf{N P}$.(Two possibilities: $\mathbf{P} \subset \mathbf{N P}$ or $\mathbf{P}=\mathbf{N P}$) Any deterministic TM is a special case of nondeterministic TMs.
- Theorem: Any $\Pi \in \mathbf{N P}$ can be solved by a deterministic TM in time $O\left(c^{p(n)}\right)$ for some $c>0$ and polynomial $p(n)$.
- Open problem: $\mathbf{P}=\mathbf{N P}$?

The west wall bricks on the CS building at Princeton,1989: x1010000x
x0111101x
x1001110x
x1010000x
x0111111x

- Definition of Polynomial Reduction $\leq_{p}\left(\mathrm{cf} . \leq_{m}\right.$ and $\left.\leq\right)$ Let Π_{1} and Π_{2} be two decision problems, and $\left\{I_{1}\right\}$ and $\left\{I_{2}\right\}$ be sets of instances for Π_{1} and Π_{2}, respectively. We say there is a polynomial reduction from Π_{1} to Π_{2}, or $\Pi_{1} \leq_{p} \Pi_{2}$, if there is $f:\left\{I_{1}\right\} \rightarrow\left\{I_{2}\right\}$ such that
(1) f can be computed in polynomial time and
(2) I_{1} has a "yes" solution if and only if $f\left(I_{1}\right)$ has a "yes" solution.
- Theorem: If $\Pi_{1} \leq_{p} \Pi_{2}$, then $\Pi_{2} \in \mathbf{P}$ implies $\Pi_{1} \in \mathbf{P}$.
- Theorem: If $\Pi_{1} \leq_{p} \Pi_{2}$ and $\Pi_{2} \leq_{p} \Pi_{3}$, then $\Pi_{1} \leq_{p} \Pi_{3}$.
- Remark: \leq_{p} means "no harder than".

Figure 2: Polynomial reduction $\Pi_{1} \leq{ }_{p} \Pi_{2}$
11.4 The class of NPC (Sipser 7.4)

- Definition 1: NPC (NP-complete) is the class of the hardest problems in NP
- Definition 2: $\Pi \in \mathbf{N P C}$ if $\Pi \in \mathbf{N P}$ and $\forall \Pi^{\prime} \in \mathbf{N P}, \Pi^{\prime} \leq_{p} \Pi$.
- Definition 3: $\Pi \in \mathbf{N P C}$ if $\Pi \in \mathbf{N P}$ and $\exists \Pi^{\prime} \in \mathbf{N P C}$ such that $\Pi^{\prime} \leq{ }_{p} \Pi$
- Theorem: If $\exists \Pi \in \mathbf{N P C}$ such that $\Pi \in \mathbf{P}$, then $\mathbf{P}=\mathbf{N P}$.
- Theorem: If $\exists \Pi \in \mathbf{N P C}$ such that $\Pi \notin \mathbf{P}$, then $\mathbf{P} \neq \mathbf{N P}$.

Some most important classes: Definitions and proofs

- P: class of problems solvable in polynomial-time by DTM. To prove $\Pi \in \mathbf{P}$, design a polynomial-time algorithm.
- NP: class of problems solvable in polynomial-time by NTM. To prove $\Pi \in \mathbf{N P}$, design a polynomial-time nondeterministic algorithm of two steps: guess and verify.
- NPC: class of all hardest problems in NP. To prove $\Pi \in \mathbf{N P C}$, prove (1) $\Pi \in \mathbf{N P}$ and (2) $\exists \Pi^{\prime} \in \mathbf{N P C}$ s.t. $\Pi^{\prime} \leq_{p} \Pi$
- NP-hard: A problem X is NP-hard, if there is an NP-complete problem Y , such that Y is reducible to X in polynomial time. (Note X does not need to be in NP)
Possible relations among P, NP, NP-complete, NP-hard:
$\mathbf{P} \subset \mathbf{N P}, \mathbf{N P} \cap$ NP-hard $=$ NP-complete, $\mathbf{P} \cup$ NP-complete $=\emptyset$

Satisfiability (SAT):
INSTANCE: A boolean formula ϕ in CNF with variables
x_{1}, \ldots, x_{n} and clauses c_{1}, \ldots, c_{m}
QUESTION: Is ϕ satisfiable? (Is there a truth assignment A to x_{1}, \ldots, x_{n} such that ϕ is true?)
$L_{S A T}=\{\langle\phi\rangle \mid \exists A$ that satisfies $\phi\}$
Example of an instance for SAT:

- Variables: $x_{1}, x_{2}, x_{3}, x_{4}$
- Literals: Any variables and their negations, such as $x_{1}, \overline{x_{3}}$
- Clauses: $c_{1}=x_{1} \vee \overline{x_{2}} \vee x_{3}, c_{2}=x_{1} \vee x_{2}, c_{3}=\overline{x_{1}} \vee x_{2} \vee \overline{x_{3}} \vee x_{4}$
- Function/formula: $\phi=c_{1} \wedge c_{2} \wedge c_{3}$
- The instance ϕ is T by assignment $x_{1}=T, x_{2}=x_{3}=x_{4}=F$. Note: Many assignments satisfy ϕ, but we only need one.

Cook's Theorem: SAT \in NPC. (Need to prove (1) SAT $\in \mathbf{N P}$ and (2) $\forall \Pi \in \mathbf{N P}, \Pi \leq_{p} S A T$.)

First Step: How to prove SAT is in NP?
NTM $N=$ "On input $\langle\phi>$ in CNF

1. Guess a truth assignmnet $A \quad O(n)$
2. Verify if $\phi=T$ under $A \quad O(n+m)$
3. If T, accept; else reject"

SAT is solvable by a NTM in polynomial time, thus in NP.
Second step: How to prove $\forall \Pi \in \mathbf{N P}, \Pi \leq_{p}$ SAT, or equivalently, for any polynomial-time NTM $M, L(M) \leq_{p} L_{S A T}$?
Will not discuss this proof. But if interested, go to the final few pages of this slide set for details.
11.5 NP-complete problems(Sipser 7.5, pp.310-322) How to prove Π_{2} is NP-complete:

- Show that $\Pi_{2} \in \mathbf{N P}$.
- Choose a known NP-complete Π_{1}.
- Construct a reduction f from Π_{1} to Π_{2}.
- Prove that f is a polynomial reduction by showing (1) f can be computed in polynomial time and (2) $\forall I_{1}$ for Π_{1}, I_{1} is a yes-instance for Π_{1} if and only if $f\left(l_{1}\right)$ is a yes-instance for Π_{2}.

Figure 3: Polynomial reduction $\Pi_{1} \leq_{p} \Pi_{2}$

Seven basic NP-complete problems.

- 3-Satisfiability (3SAT): (Reduced from SAT) INSTANCE: A formula α in CNF with each clause having three literals.
QUESTION: Is α satisfiable?
- 3-Dimensional Matching (3DM): (Reduced from 3SAT) INSTANCE: $M \subseteq X \times Y \times Z$, where X, Y, Z are disjoint and of the same size.
QUESTION: Does M contain a matching, which is $M^{\prime} \subseteq M$ with $\left|M^{\prime}\right|=|X|$ such that no two triples in M^{\prime} agree in any coordinate?
- PARTITION: (Reduced from 3DM)

INSTANCE: A finite set A of numbers.
QUESTION: Is there $A^{\prime} \subseteq A$ such that $\sum_{a \in A^{\prime}} a=\sum_{a \in A-A^{\prime}} a$?

- Vertex Cover (VC): (Reduced from 3SAT) INSTANCE: A graph $G=(V, E)$ and $0 \leq k \leq|V|$. QUESTION: Is there a vertex cover of size $\leq k$, where a vertex cover is $V^{\prime} \subseteq V$ such that $\forall(u, v) \in E$, either $u \in V^{\prime}$ or $v \in V^{\prime}$?
- Hamiltonian Circuit (HC): (Reduced from VC) INSTANCE: A graph $G=(V, E)$.
QUESTION: Does G have a Hamiltonian circuit, i.e., a tour that passes through each vertex exactly once?
- CLIQUE: (Reduced from VC) INSTANCE: A graph $G=(V, E)$ and $0 \leq k \leq|V|$. QUESTION: Does G contain a clique (complete subgraph) of size $\geq k$?

Figure 4: Seven basic NP-complete problems

Example to prove reduction: KNAPSACK Problem

INSTANCE: $U=\left\{u_{1}, \ldots, u_{n}\right\}, W$ (max weight knapsack holds), functions $w: U \rightarrow R^{+}$and $v: U \rightarrow R^{+}$, bound $B \geq 0$.
QUESTION: Is there $U^{\prime} \subseteq U$ s.t. $\sum_{u_{i} \in U^{\prime}} w\left(u_{i}\right) \leq W$, and
$\sum_{u_{i} \in U^{\prime}} v\left(u_{i}\right) \geq B$?
Show PARTITION $\leq{ }_{p}$ KNAPSACK.
For any instance $\left\{a_{1}, \ldots, a_{n}\right\}$ in PARTITION, define the following instance for KNAPSACK:

- $U=\left\{u_{1}, \ldots, u_{n}\right\}$
- $w\left(u_{i}\right)=a_{i}$ and $v\left(u_{i}\right)=a_{i}$, for all i
- $W=B=\frac{1}{2} \sum_{i=1}^{n} a_{i}$

Show that (1) the above construction can be done in polynomial time and (2) there is a partition $A^{\prime} \subseteq A$ iff there is a subset U^{\prime}
s.t. $\sum_{u_{i} \in U^{\prime}} w\left(u_{i}\right) \leq \frac{1}{2} \sum_{i=1}^{n} a_{i}$ and $\sum_{u_{i} \in U^{\prime}} v\left(u_{i}\right) \geq \frac{1}{2} \sum_{i=1}^{n} a_{i}$.

INSTANCE: Set S, collection C of subsets of $S, K \geq 0$
QUESTION: Does S contain a HS S^{\prime} of size $\leq K$? $\left(S^{\prime}\right.$ is a HS if S^{\prime} has at least one element from each subset in C.) $V C \leq_{p} H S$. Instance for VC: $G=(V, E)$ and $B \geq 0$
Instance for HS: $S=V, C=\{\{u, v\} \mid \forall e=(u, v) \in E\}, K=B$ Goal: G has a VC of size $\leq B$ iff S has a HS of size $\leq K$.

$B=3$ and $|E|=8$
$\mathrm{VC}=\{1,3,5\}$
HS S' $=\{1,3,5\}$

Hitting Set

```
S={1,2,3,4,5,6,7}
```

S={1,2,3,4,5,6,7}
C={{1,2},{1,4},{2,3},{2,5},{3,5},{3,7},{3,6},{5,6}}
C={{1,2},{1,4},{2,3},{2,5},{3,5},{3,7},{3,6},{5,6}}
K=3

```
K=3
```

Figure 5: An example of reduction from VC to HS

Review of Automata Theory

- RL, CFL, DFA, NFA, PDA, Regular expressions
- Closure properties for the above sets of languages
- Pumping Lemmas for RL
- Chomsky Language Hierarchy
- Prove by contradiction

Review of Computability Theory

- TDL: How to prove a language is TDL
- Closure properties of TDLs: union, intersection, concatenation, star, complement
- A TM that decides (accept, reject)
- TRL: How to prove a language is TRL
- The closure properties of TRLs: union, intersection, concatenation, star, homomorphism
- TM to decide/accepts/recognizes. NTM to guess/verify
- TD, non-TD, TR, non-TR (How to prove)
- Closure properties for the above sets of languages
- A language and its complement: Three scenarios (both TD, one TR but non-TD other non-TR, both non-TR)
- Important languages: $A_{D}, A_{T M}, H A L T_{T M}$, etc.
- Reduction $A \leq B$ is to show any TM that decides B can be used to define a TM that decides A. (A is no harder than B or B is at least as hard as A.)
- P, NP, NPC, NP-Hard (relation based on $P \neq N P, P=N P$)
- Prove a DEC is in NP.
- Three classes: P, NP, NPC (Also NP-hard)
- Polynomial reduction $A \leq{ }_{p} B$ is to show any algorithm that solves B can be used to define an algorithm that solves A. (A is no harder than B or B is at least as hard as A.)
- Important NP-complete problems: SAT, 3SAT, VC, HC, PARTITION, 3DM, CLIQUE, COLOR, KNAPSACK, HS
- Test of your understanding of the complexity classes
- If $\Pi_{1} \leq_{p} \Pi_{2}$ and $\Pi_{1} \in \mathbf{N P}$, is $\Pi_{2} \in \mathbf{N P}$?
- If $\Pi_{1} \leq_{p} \Pi_{2}$ and $\Pi_{1}, \Pi_{2} \in \mathbf{N P C}$, is $\Pi_{2} \leq_{p} \Pi_{1}$?
- If $\Pi_{1} \leq_{p} \Pi_{2}$ and $\Pi_{1} \notin \mathbf{N P}$, is $\Pi_{1} \in \mathbf{P}$?
- If $\Pi_{1} \leq_{p} \Pi_{2}$ and $\Pi_{2} \leq_{p} \Pi_{1}$, then $\Pi_{1}, \Pi_{2} \in$ NPC.
- If $\Pi_{1}, \Pi_{2} \in$ NPC, then $\Pi_{1} \leq_{p} \Pi_{2}$, and $\Pi_{2} \leq_{p} \Pi_{1}$.

Some sample problems

- The universal language, $A_{T M}$, is a proper (non-equal) subset of the halting language, $H A L T_{T M}$.
- The Post Correspondence Problem is decidable for the unary alphabet.
- If L is TR but non-TD, then \bar{L} is non-TR.

Figure 6: Venn diagram for TD, TR, and non-TR

- If A is non-TD, $A \leq C, D \leq C$, then D must be non-TR. F (because D may be TD or TR)

A proof that 3SAT is NP-complete:
First, 3SAT is obvious in NP.
Next, we show that SAT $\leq_{p} 3$ SAT.
Given any instance of SAT, $f\left(x_{1}, \ldots, x_{n}\right)=c_{1} \wedge \cdots \wedge c_{m}$, where c_{i} is a disjunction of literals. To construct an instance for 3SAT, we need to convert any c_{i} to an equivalent c_{i}^{\prime}, a conjunction of clauses with exactly 3 literals.
Case 1. If $c_{i}=z_{1}$ (one literal), define y_{i}^{1} and y_{i}^{2}. Let $c_{i}^{\prime}=$ $\left(z_{1} \vee y_{i}^{1} \vee y_{i}^{2}\right) \wedge\left(z_{1} \vee y_{i}^{1} \vee \neg y_{i}^{2}\right) \wedge\left(z_{1} \vee \neg y_{i}^{1} \vee y_{i}^{2}\right) \wedge\left(z_{1} \vee \neg y_{i}^{1} \vee \neg y_{i}^{2}\right)$. Case 2. If $c_{i}=z_{1} \vee z_{2}$ (two literals), define y_{i}^{1}. Let $c_{i}^{\prime}=\left(z_{1} \vee z_{2} \vee y_{i}^{1}\right) \wedge\left(z_{1} \vee z_{2} \vee \neg y_{i}^{1}\right)$.
Case 3. If $c_{i}=z_{1} \vee z_{2} \vee z_{3}$ (three literals), let $c_{i}^{\prime}=c_{i}$.

Case 4. If $c_{i}=z_{1} \vee z_{2} \vee \cdots \vee z_{k}(k>3)$, define $y_{i}^{1}, y_{i}^{2}, \ldots, y_{i}^{k-3}$. Let $c_{i}^{\prime}=\left(z_{1} \vee z_{2} \vee y_{i}^{1}\right) \wedge\left(\neg y_{i}^{1} \vee z_{3} \vee y_{i}^{2}\right) \wedge\left(\neg y_{i}^{2} \vee z_{4} \vee y_{i}^{3}\right) \wedge \cdots \wedge$ $\left(\neg y_{i}^{k-3} \vee z_{k-1} \vee z_{k}\right)$.
If c_{i} is satisfiable, then there is a literal $z_{I}=T$ in c_{i}. If $I=1,2$, let $y_{i}^{1}, \ldots, y_{i}^{k-3}=F$. If $I=k-1, k$, let $y_{i}^{1}, \ldots, y_{i}^{k-3}=T$. If $3 \leq I \leq k-2$, let $y_{i}^{1}, \ldots, y_{i}^{I-2}=T$ and $y_{i}^{I-1}, \ldots, y_{i}^{k-3}=F$. So c_{i}^{\prime} is satisfiable.
If c_{i}^{\prime} is satisfiable, assume $z_{I}=F$ for all $I=1, \ldots, k$. Then $y_{i}^{1}, \ldots, y_{i}^{k-3}=T$. So the last clause $\left(\neg y_{i}^{k-3} \vee z_{k-1} \vee z_{k}\right)=F$.
Therefore, c_{i}^{\prime} is not satisfiable. Contradiction.
The instance of 3SAT is therefore $f^{\prime}\left(x_{1}, \ldots, x_{n}, \ldots\right)=c_{1}^{\prime} \wedge \cdots \wedge c_{m}^{\prime}$, and f is satisfiable if and only if f^{\prime} is satisfiable.

Cook's Theorem: SAT is NP-complete.
Proof. SAT is clearly in NP since a NTM exists that guesses a truth assignment and verifies its correctness in polynomial time. Now we wish to prove $\forall \Pi \in \mathbf{N P}, \Pi \leq_{p}$ SAT, or equivalently, for any polynomial-time NTM $M, L(M) \leq_{p} L_{S A T}$.
For any NTM M, assume $Q=\left\{q_{0}, q_{1}\right.$ (accept), q_{2} (reject), ..., $\left.q_{r}\right\}$ and $\Gamma=\left\{s_{0}, s_{1}, s_{2}, \ldots, s_{v}\right\}$. Also assume that the time is bounded by $p(n)$, where n is the length of the input. We wish to prove that there is a function
$f_{M}: \Sigma^{*} \rightarrow\{$ instances of SAT $\}$ such that $\forall x \in \Sigma^{*}, x \in L(M)$ iff $f_{M}(x)$ is satisfiable. In other words, we wish to use a Boolean expression $f_{M}(x)$ to describe the computation of M on x.

Variables in $f_{M}(x)$:

- State: $Q[i, k] . M$ is in q_{k} after the i th step of computation (at time i).
— Head: $H[i, j]$. Head points to tape square j at time i.
- Symbol: $S[i, j, /]$. Tape square j contains s_{l} at time i.
(Assume the tape is one-way infinite and the leftmost square is labeled with 0.)
For example, initially $i=0$. Assume the configuration is $q_{0} a b b a$. Let $s_{0}=B, s_{1}=a$, and $s_{2}=b$. Therefore, we set the following Boolean variables to be true: $Q[0,0], H[0,0], S[0,0,1]$, $S[0,1,2], S[0,2,2], S[0,3,1]$ and $S[0, j, 0]$ for $j=4,5, \ldots$ A configuration defines a truth assignment, but not vice versa.

Clauses in $f_{M}(x)$:

- At any time i, M is in exactly one state.
$Q[i, 0] \vee \cdots \vee Q[i, r]$ for $0 \leq i \leq p(n)$.
$\neg Q[i, k] \vee \neg Q\left[i, k^{\prime}\right]$ for $0 \leq i \leq p(n)$ and $0 \leq k<k^{\prime} \leq r$.
- At any time i, head is scanning exactly one square. $H[i, 0] \vee \cdots \vee H[i, p(n)]$ for $0 \leq i \leq p(n)$. $\neg H[i, j] \vee \neg H\left[i, j^{\prime}\right]$ for $0 \leq i \leq p(n)$ and $0 \leq j<j^{\prime} \leq p(n)$.
- At any time i, each square contains exactly one symbol. $S[i, j, 0] \vee \cdots \vee S[i, j, v]$ for $0 \leq i \leq p(n)$ and $0 \leq j \leq p(n)$. $\neg S[i, j, /] \vee \neg S\left[i, j, I^{\prime}\right]$ for $0 \leq i \leq p(n), 0 \leq j \leq p(n)$ and $0 \leq I<l^{\prime} \leq v$.
—At time $0, M$ is in its initial configuration. Assume

$$
\begin{aligned}
& x=S_{l_{1}} \cdots s_{I_{n}} . \\
& \quad Q[0,0] . \\
& H[0,0] . \\
& \\
& \\
& \\
& \\
& \\
& \\
& S\left[0,0, j, I_{1}\right], \ldots, S\left[0, n-1, I_{n}\right] . \\
&
\end{aligned}
$$

— By time $p(n), M$ has entered q_{1} (accept)). (If M halts in less than $p(n)$ steps, additional moves can be included in the transition function.)

$$
Q[p(n), 1]
$$

- Configuration at time $i \rightarrow$ configuration at time $i+1$. Assume $\delta\left(q_{k}, s_{l}\right)=\left(q_{k^{\prime}}, s_{l^{\prime}}, D\right)$, where $D=-1,1$.

If the head does not point to square j, symbol on j is not changed from time i to time $i+1$.
$H[i, j] \vee \neg S[i, j, l] \vee S[i+1, j, l]$ for $0 \leq i \leq p(n), 0 \leq j \leq p(n)$, and $0 \leq I \leq v$.

If the current state is q_{k}, the head points to square j which contains symbol s_{l}, then changes are made accordingly.

$$
\begin{aligned}
& \neg H[i, j] \vee \neg Q[i, k] \vee \neg S[i, j, I] \vee H[i+1, j+D], \\
& \neg H[i, j] \vee \neg Q[i, k] \vee \neg S[i, j, I] \vee Q\left[i+1, k^{\prime}\right], \text { and } \\
& \neg H[i, j] \vee \neg Q[i, k] \vee \neg S[i, j, I] \vee S\left[i+1, j, l^{\prime}\right] \text {, for } 0 \leq i \leq p(n), \\
& 0 \leq j \leq p(n), 0 \leq k \leq r, \text { and } 0 \leq I \leq v .
\end{aligned}
$$

Let $f_{M}(x)$ be the conjunction of all the clauses defined above. Then $x \in L(M)$ iff there is an accepting computation of M on x iff $f_{M}(x)$ is satisfiable. f_{M} can be computed in polynomial time since $\left|f_{M}(x)\right| \leq$ (number of clauses) $*$ (number of variables $)=O\left(p(n)^{2}\right) * O\left(p(n)^{2}\right)=O\left(p(n)^{4}\right)$. So there is a polynomial reduction from any language in NP to SAT. So SAT is NP-complete.

