CSCI 539 Algorithms

Homework 2

Due: October 11, 2001

1. For each of the following program fragments, give an analysis of the running time. You may use summations to evaluate the running times of nested loops.
```
(a) sum = 0
```

```
for i = 1 to n
```

for i = 1 to n
for j = 1 to i * i
for j = 1 to i * i
for k = 1 to j
for k = 1 to j
sum ++
sum ++
(b) sum = 0
for i = 1 to n
for j = 1 to i * i
if j mod i == 0
for k = 1 to j
sum ++

```
2. For each pair of functions \((A, B)\) below, indicate whether \(A\) is \(O, \Omega\), or \(\Theta\) of \(B\). Note that more than one of these relations may hold for a given pair; list all correct ones. No explanation is necessary.
(a) \((A, B)=\left((\log n)^{10}, n^{0.01}\right)\)
(b) \((A, B)=\left(\log (n!), \log \left(n^{n}\right)\right)\)
(c) \((A, B)=\left(4^{n}, 2^{n}\right)\)
(d) \((A, B)=\left(n^{\frac{1}{\log n}}, 2^{\sqrt{2 \log n}}\right)\)
3. Let \(A\) be an array of positive or negative integers of size \(n\), where \(A[1]<A[2]<\) \(\cdots<A[n]\). Design an \(O(\log n)\) algorithm to find an \(i\) such that \(A[i]=i\) provided such an \(i\) exists. Your algorithm should return 0 if such an \(i\) does not exist.
4. An array \(A[1 \ldots n]\) contains all the integers from 0 to \(n\) except one. It would be easy to determine the missing integer in \(O(n)\) time by using an auxiliary array \(B[0 \ldots n]\) to record which numbers appear in \(A\). In this problem, however, we cannot access an entire integer in \(A\) with a single operation. The elements of \(A\) are represented in binary, and the only operation we can use to access them is "fetch the \(j\) th bit of \(A[i]\) ", which takes constant time. Show that if we use
only this operation, we can still determine the missing integer in \(O(n)\) time. (Hint: Use divide-and-conquer. After one linear scan of the list, one can get a subproblem with size at most half of the original size.)```

