TIGHT WORST-CASE PERFORMANCE BOUNDS FOR NEXT-k-FIT BIN PACKING*

WEIZHEN MAO†

Abstract. The bin packing problem is to pack a list of reals in (0, 1] into unit-capacity bins using the minimum number of bins. Let $R[A]$ be the limiting worst value for the ratio $A(L)/L^*$ as L^* goes to ∞, where $A(L)$ denotes the number of bins used in the approximation algorithm A, and L^* denotes the minimum number of bins needed to pack L. Obviously, $R[A]$ reflects the worst-case behavior of A. For Next-k-Fit (NKF for short, $k \geq 2$), which is a linear time approximation algorithm for bin packing, it was known that $1.7 + \frac{3}{10(k-1)} \leq R[NkF] \leq 2$. In this paper, a tight bound $R[NkF] = 1.7 + \frac{3}{10(k-1)}$ is proved.

Key words. bin packing, approximation algorithm, worst-case performance

AMS(MOS) subject classifications. 68Q25, 68R05

1. Introduction. Given a finite list $L = (a_1, a_2, \ldots, a_m)$ of reals in (0, 1], and a sequence of unit-capacity bins, B_1, B_2, \ldots, the bin packing problem is to pack the numbers in the list into the bins such that no bin contains a total exceeding 1 and that the number of bins used is minimized.

Since the bin packing is NP-complete [9], no polynomial-time algorithm has ever been developed. A lot of effort has been made to find good approximation algorithms for the problem.

In order to evaluate and compare the quality of different approximation algorithms, we need to have a rigorous mathematical analysis of the worst-case behavior of these algorithms. Given an approximation algorithm A, and for any list L, let $A(L)$ be the number of bins used in the packing resulting when A is applied to L, and L^* be the minimum number of bins needed to pack L. The worst-case performance bound of the approximation algorithm A is defined to be $R[A] = \limsup \max\{A(L)/L^*\}$ as $L^* \to \infty$.

Besides those well-studied approximation algorithms such as First-Fit (FF), Best-Fit (BF), First-Fit-Decreasing (FFD), Best-Fit-Decreasing (BFD), and Next-Fit (NF) [1], [5], [6], [7], [8], there is another important algorithm called Next-k-Fit (NKF), where k is an integer greater than 1. In NKF, we process the numbers in L in turn, starting from a_1, which is placed at the bottom of the first bin B_1. Suppose that a_i is now to be packed. We look at the last k nonempty bins. If a_i does not fit into any of them, a new bin is created; otherwise, a_i will go to the lowest indexed one of these k nonempty bins into which it fits. Earlier, Johnson [7] proved that $1.7 + \frac{3}{10k} \leq R[NkF] \leq 2$. In the recent paper written by Csirik and Imreh [2], a new lower bound of $R[NkF]$ was given. They showed that $R[N2F] = 2$ and $1.7 + \frac{3}{10(k-1)} \leq R[NkF] \leq 2$ for $k \geq 3$. In this paper, we study the tight worst-case performance bound for the Next-k-Fit algorithm. Our result is the following theorem.

MAIN THEOREM.

$R[NkF] = 1.7 + \frac{3}{10(k-1)}, \quad k \geq 2.$

In §2, we study the upper bound proving technique for NkF bin packing. In §3, we prove an important lemma. In §4, we show the proof of the main theorem.

*Received by the editors May 6, 1989; accepted for publication (in revised form) October 1, 1991. This research was supported by National Science Foundation grant CCR-88-13283, and was partially done at Princeton University.

†Department of Computer Science, The College of William and Mary, Williamsburg, Virginia 23187-8795.
2. The upper bound of $R[NkF]$. It is known that $R[N2F] = 2$, and $R[NkF] \geq 1.7 + \frac{3}{10(k-1)}$ for $k \geq 3$ [2]. To prove the main theorem, all we need to do is prove the upper bound result, i.e., $R[NkF] \leq 1.7 + \frac{3}{10(k-1)}$ for $k \geq 3$. We need some careful analyses and preliminary results.

In the NkF packing of any list L, there are $NkF(L)$ nonempty bins, $B_1, B_2, \ldots, B_{NkF(L)}$. For each bin B_i, its content can be divided into k areas, $A_{i,1}, A_{i,2}, \ldots, A_{i,k}$, where $A_{i,1}$ contains all the numbers coming to B_i when B_i is the rightmost, or, in other words, the most recently created nonempty bin in the current packing, and $A_{i,2}$ contains all the numbers coming to B_i when B_i becomes the second rightmost nonempty bin, etc. Finally, $A_{i,k}$ contains all the numbers coming to B_i when B_i becomes the oldest among the k active bins and is about to be thrown away. Figure 1 shows the division for $N3F$.

To prove the upper bound, we wish to show that $NkF(L) \leq (1.7 + \frac{3}{10(k-1)})L^* + c$ for all L, where c is a constant. With the help of the following weighting function $W : (0, 1] \to R^+$, also shown in Fig. 2, we will find the relation between $NkF(L)$ and L^*.

$$W(\alpha) = \begin{cases} \frac{6}{5}\alpha & \text{if } \alpha \in (0, \frac{1}{6}]; \\ \frac{6}{5}\alpha - \frac{1}{10} & \text{if } \alpha \in (\frac{1}{6}, \frac{1}{3}]; \\ \frac{6}{5}\alpha + \frac{1}{10} & \text{if } \alpha \in (\frac{1}{3}, \frac{1}{2}]; \\ \frac{6}{5}\alpha + \frac{2}{5} + \frac{3}{10(k-1)} & \text{if } \alpha \in (\frac{1}{2}, 1]. \end{cases}$$

For any number a_i in L, $W(a_i)$ is called the weight of a_i. $W(B_i)$, the weight of the bin B_i, is defined to be the sum of the weight of all numbers in B_i, i.e., $W(B_i) = \sum_{a_j \in B_i} W(a_j)$. And $W(L)$, the weight of the list L, is defined to be the sum of the weight of all numbers in L, i.e., $W(L) = \sum_{a_j \in L} W(a_j)$. When there is no possibility of confusion, we also use B_i to denote the sum of the numbers in bin B_i, $A_{i,h}$ the sum of the numbers in area $A_{i,h}$, and b_i the bottommost item in bin B_i.

3. A lemma.

Lemma. In the NkF packing of L, for $j < NkF(L)$, if $B_j < \frac{5}{6}$, then there is $l > 0$ such that either (1) $j + l \leq NkF(L)$, and $\frac{6}{5}B_j + W(B_{j+1}) + \cdots + W(B_{j+l}) \geq l + \frac{6}{5}B_{j+l}$, or (2) $j + l = NkF(L)$, and $\frac{6}{5}B_j + W(B_{j+1}) + \cdots + W(B_{NkF(L)}) + 2 \geq l + \frac{6}{5}B_{NkF(L)}$.

Proof. For notational simplicity, we assume $j = 1$. Because $B_1 < \frac{5}{6}$, items in $A_{2,1}$ and $A_{3,1}$ must be greater than $\frac{1}{6}$. Consider the following cases.

Case I. If $B_1 < \frac{1}{2}$, then B_1 must be followed by k bins with their bottommost items greater than $\frac{1}{2}$, i.e., $b_2, \ldots, b_{k+1} > \frac{1}{2}$ (Fig. 3).

\[
\frac{6}{5}B_1 + W(B_2) + \cdots + W(B_k) + W(B_{k+1}) \\
\geq \frac{6}{5}A_{1,1} + \left(\frac{6}{5}b_2 + \frac{2}{5} + \frac{3}{10(k-1)}\right) + \cdots + \left(\frac{6}{5}b_k + \frac{2}{5} + \frac{3}{10(k-1)}\right) + \frac{6}{5}B_{k+1} + \frac{3}{5} + \frac{3}{10(k-1)} \\
\geq \frac{6}{5}(A_{1,1} + b_2) + \frac{6}{5}(b_3 + \cdots + b_k) + \left(\frac{2}{5} + \frac{3}{10(k-1)}\right)k + \frac{6}{5}B_{k+1} \\
\geq \frac{6}{5} \times 1 + \frac{6}{5} \times \frac{1}{2} \times (k - 2) + \left(\frac{2}{5} + \frac{3}{10(k-1)}\right)k + \frac{6}{5}B_{k+1} \\
\geq k + \frac{6}{5}B_{k+1}.
\]

Case II. If $\frac{1}{2} < B_1 < \frac{5}{6}$, then we consider the cases in Fig. 4.
Case 1. B_2 has one item greater than $\frac{1}{2}$. We have

$$
\begin{align*}
\frac{6}{5} B_1 + W(B_2) \\
\geq \frac{6}{5} B_1 + \frac{6}{5} B_2 + \frac{2}{5} + \frac{3}{10(k-1)} \\
\geq \frac{6}{5} \times \frac{1}{2} + \frac{2}{5} + \frac{6}{5} B_2 \\
\geq 1 + \frac{6}{5} B_2.
\end{align*}
$$

Starting from now, we assume that all the items in B_2 are no greater than $\frac{1}{2}$.

Case 2. $A_{2,1} > \frac{1}{2}$. Since $A_{2,1}$ has at least two items, we assume at least one of its two bottommost items is in $(\frac{1}{6}, \frac{1}{3}]$. It is clear that B_1 is greater than $\frac{2}{3}$.

FIG. 1. How the three areas of B_i in $N3F$ packing are formed.
If the other item in $A_{2,1}$ is also in $(\frac{1}{6}, \frac{1}{3}]$, then

$$\frac{6}{5}B_1 + W(B_2) \geq \frac{6}{5}B_1 + \frac{6}{5}B_2 + \frac{3}{5}(1 - B_1) - \frac{1}{10} + \frac{3}{5}(1 - B_1) - \frac{1}{10} \geq 1 + \frac{6}{5}B_2.$$

If the other item is in $(\frac{1}{3}, \frac{1}{2}]$, then

$$\frac{6}{5}B_1 + W(B_2) \geq \frac{6}{5}B_1 + \frac{6}{5}B_2 + \frac{3}{5}(1 - B_1) - \frac{1}{10} + \frac{1}{10} \geq \frac{3}{5}B_1 + \frac{3}{5} + \frac{6}{5}B_2 \geq \frac{3}{5} \times \frac{2}{3} + \frac{3}{5} + \frac{6}{5}B_2 \geq 1 + \frac{6}{5}B_2.$$
Case 1: B_2 has one item $>1/2$

Case 2: $A_{2,1}>1/2$, with at least one of two bottommost items in $(1/6, 1/3]$

Case 3: $A_{2,1}>1/2$, with its two bottommost items in $(1/3, 1/2]$ and $A_{3,1}>1/2$

Case 4: $A_{2,1}>1/2$, with its two bottommost items in $(1/3, 1/2]$ and $A_{3,1} \leq 1/2$

Case 5: $A_{2,1} \leq 1/2$

Fig. 4. The possible packings when $\frac{1}{2} < B_1 < \frac{5}{6}$.

Case 3. $A_{2,1} > \frac{1}{2}$, with its two bottommost items in $(\frac{1}{3}, \frac{1}{2}]$, and $A_{3,1} > \frac{1}{2}$. It is clear that $B_2 > \frac{2}{3}$.

If $A_{3,1}$ has one item greater than $\frac{1}{2}$, then

\[
\frac{6}{5} B_1 + W(B_2) + W(B_3) \\
\geq \frac{6}{5} B_1 + \frac{6}{5} B_2 + \frac{1}{10} + \frac{1}{10} + \frac{6}{5} B_3 + \frac{2}{5} + \frac{3}{10(k-1)} \\
\geq \frac{6}{5} \times \frac{1}{2} + \frac{6}{5} \times \frac{2}{3} + \frac{3}{5} + \frac{6}{5} B_3 \\
\geq 2 + \frac{6}{5} B_3.
\]
If the two bottommost items of \(A_{3,1} \) are in \(\left(\frac{1}{6}, \frac{1}{3} \right] \), then

\[
\begin{align*}
\frac{6}{5} B_1 + W(B_2) + W(B_3) & \geq \frac{6}{5} B_1 + \frac{6}{5} B_2 + \frac{1}{10} + \frac{1}{10} + \frac{6}{5} B_3 + \frac{3}{5} (1 - B_1) - \frac{1}{10} + \frac{3}{5} (1 - B_2) - \frac{1}{10} \\
& \geq \frac{3}{5} B_1 + \frac{3}{5} B_2 + \frac{6}{5} + \frac{6}{5} B_3 \\
& \geq \frac{6}{5} B_1 + \frac{6}{5} (1 - B_1 + \frac{1}{3}) + \frac{6}{5} + \frac{6}{5} B_3 \\
& \geq 2 + \frac{6}{5} B_3.
\end{align*}
\]

If one of the two bottommost items is in \(\left(\frac{1}{6}, \frac{1}{3} \right] \), and the other is in \(\left(\frac{1}{3}, \frac{1}{2} \right] \), then

\[
\begin{align*}
\frac{6}{5} B_1 + W(B_2) + W(B_3) & \geq \frac{6}{5} B_1 + \frac{6}{5} B_2 + \frac{1}{10} + \frac{1}{10} + \frac{6}{5} B_3 + \frac{1}{10} + \frac{1}{10} \\
& \geq \frac{6}{5} B_1 + \frac{6}{5} (1 - B_1 + \frac{1}{3}) + \frac{6}{5} + \frac{6}{5} B_3 \\
& \geq 2 + \frac{6}{5} B_3.
\end{align*}
\]

If the two bottommost items are in \(\left(\frac{1}{3}, \frac{1}{2} \right] \), then

\[
\begin{align*}
\frac{6}{5} B_1 + W(B_2) + W(B_3) & \geq \frac{6}{5} B_1 + \frac{6}{5} B_2 + \frac{1}{10} + \frac{1}{10} + \frac{6}{5} B_3 + \frac{1}{10} + \frac{1}{10} \\
& \geq \frac{6}{5} B_1 + \frac{6}{5} (1 - B_1 + \frac{1}{3}) + \frac{6}{5} + \frac{6}{5} B_3 \\
& \geq 2 + \frac{6}{5} B_3.
\end{align*}
\]

Case 4. \(A_{2,1} > \frac{1}{2} \), with its two bottommost items in \(\left(\frac{1}{3}, \frac{1}{2} \right] \), and \(A_{3,1} \leq \frac{1}{2} \). In this case, we need to consider several possibilities according to the area distribution of \(B_3 \). In Fig. 5, on the right side of the vertical line are the three such possible packings that may follow the bins \(B_1, B_2 \).

If \(A_{3,1} + \cdots + A_{3,h} \leq \frac{1}{2} \), but \(A_{3,1} + \cdots + A_{3,h+1} > \frac{1}{2} \), for \(1 \leq h \leq k - 2 \), then

\[
\begin{align*}
\frac{6}{5} B_1 + W(B_2) + \cdots + W(B_{h+3}) & \geq \frac{6}{5} B_1 + \frac{6}{5} B_2 + \frac{1}{10} + \frac{1}{10} + \frac{6}{5} B_3 + \frac{6}{5} (b_4 + \cdots + b_{h+2}) + \left(\frac{3}{5} + \frac{3}{10(k-1)} \right) h + \frac{6}{5} B_{h+3} \\
& \geq \frac{6}{5} B_1 + \frac{6}{5} B_2 + \frac{6}{5} (A_{3,1} + A_{3,h+1}) + \frac{6}{5} \times \frac{1}{2} \times (h - 1) + \frac{6}{5} h + \frac{6}{5} B_{h+3} \\
& \geq \frac{6}{5} B_1 + \frac{6}{5} B_2 + \frac{6}{5} (1 - B_1 + 1 - B_2) + h - \frac{3}{5} + \frac{6}{5} B_{h+3} \\
& \geq h + 2 + \frac{6}{5} B_{h+3}.
\end{align*}
\]

If \(A_{3,1} + \cdots + A_{3,k-1} \leq \frac{1}{2} \), but \(A_{3,1} + \cdots + A_{3,k} > \frac{1}{2} \), then

\[
\begin{align*}
\frac{6}{5} B_1 + W(B_2) + \cdots + W(B_{k+2}) & \geq \frac{6}{5} B_1 + \frac{6}{5} B_2 + \frac{2}{10} + \frac{6}{5} B_3 + \frac{6}{5} (b_4 + \cdots + b_{k+1}) + \left(\frac{2}{5} + \frac{2}{10(k-1)} \right) (k - 1) + \frac{6}{5} B_{k+2} \\
& \geq \frac{6}{5} B_1 + \frac{6}{5} (1 - B_1 + \frac{1}{3}) + \frac{1}{5} + \frac{6}{5} \times \frac{1}{2} + \frac{6}{5} \times \frac{1}{2} \times (k - 2) + \frac{2}{5} (k - 1) + \frac{3}{10} + \frac{6}{5} B_{k+2} \\
& \geq k + 1 + \frac{6}{5} B_{k+2}.
\end{align*}
\]
If $A_{3,1} + \cdots + A_{3,k} \leq \frac{1}{2}$, then

\[
\frac{6}{5} B_1 + W(B_2) + \cdots + W(B_{k+3}) \\
\geq \frac{6}{5} B_1 + \frac{6}{5} B_2 + \frac{1}{10} + \frac{1}{10} + \frac{6}{5} B_3 + \frac{6}{5} (b_4 + \cdots + b_{k+2}) + \left(\frac{2}{5} + \frac{3}{10(k-1)} \right) k + \frac{6}{5} B_{k+3} \\
\geq \frac{6}{5} B_1 + \frac{6}{5} (1 - B_1 + \frac{1}{3}) + \frac{1}{5} + \frac{6}{5} A_{3,1} + \frac{6}{5} b_4 + \frac{6}{5} \times \frac{1}{2} \times (k - 2) + \frac{2}{5} k + \frac{3}{10} + \frac{6}{5} B_{k+3} \\
\geq \frac{6}{5} (A_{3,1} + b_4) + k + \frac{9}{10} + \frac{6}{5} B_{k+3} \\
\geq \frac{6}{5} \times 1 + k + \frac{9}{10} + \frac{6}{5} B_{k+3} \\
\geq k + 2 + \frac{6}{5} B_{k+3}.
\]

Case 5. $A_{2,1} \leq \frac{1}{2}$. Let us consider the subcases in Fig. 6.

If $A_{2,1} + \cdots + A_{2,h} \leq \frac{1}{2}$, but $A_{2,1} + \cdots + A_{2,h+1} > \frac{1}{2}$, where $1 \leq h \leq k - 2$, then it is easy to prove that $W(B_2) \geq \frac{6}{5} a + \frac{2}{5}$, where a is the smallest item among $A_{2,1}, \ldots, A_{2,h+1}$. Because we know that $A_{2,1}$ and $A_{2,h+1}$ are both nonzero, so there are at least two items in these areas. Since $A_{2,1} + \cdots + A_{2,h+1} > \frac{1}{2}$, then $(A_{2,1} + \cdots + A_{2,h+1}) - a > \frac{1}{4}$. If there is one item in $A_{2,1}, \ldots, A_{2,h+1}$ in $(\frac{1}{3}, \frac{1}{2})$, then $W(B_2) \geq \frac{6}{5} a + \frac{6}{5} ((A_{2,1} + \cdots + A_{2,h+1}) - a) + \frac{1}{10} > \frac{6}{5} a + \frac{2}{5}$. Otherwise, all numbers in $A_{2,1}, \ldots, A_{2,h+1}$ are in $(\frac{1}{6}, \frac{1}{3}]$, and there are at least two of them. If there are only two numbers in $(\frac{1}{6}, \frac{1}{3}]$, then $W(B_2) \geq \frac{6}{5} a + \frac{6}{5} ((A_{2,1} + \cdots + A_{2,h+1}) - a) + \frac{8}{15} (A_{2,1} + \cdots + A_{2,h+1}) - \frac{2}{10} > \frac{6}{5} a + \frac{6}{5} \times \frac{1}{4} + \frac{3}{10} - \frac{2}{10} = \frac{6}{5} a + \frac{2}{5}$. If $A_{2,1}, \ldots, A_{2,h+1}$ have at least three items in $(\frac{1}{6}, \frac{1}{3}]$, then $W(B_2) \geq \frac{6}{5} a + \frac{6}{5} \times (\frac{1}{6} + \frac{1}{3}) = \frac{6}{5} a + \frac{2}{5}$. Therefore,
If $A_{2,1} + \cdots + A_{2,k-1} \leq \frac{1}{2}$, but $A_{2,1} + \cdots + A_{2,k} > \frac{1}{2}$, then it is easy to prove that $W(B_2) \geq \frac{6}{5} A_{2,1} + \frac{1}{10}$. Because if $A_{2,1}$ has at least one item in $(\frac{1}{3}, \frac{1}{2}]$, then the inequality is obvious. If all the items in $A_{2,1}$ are in $(\frac{1}{6}, \frac{1}{3})$, then there are at most two such items in $A_{2,1}$ since $A_{2,1}$ is less than $\frac{1}{3}$. So $W(B_2) \geq \frac{6}{5} A_{2,1} - \frac{1}{10} \times 2 + \frac{6}{5} (A_{2,2} + \cdots + A_{2,k}) > \frac{6}{5} A_{2,1} - \frac{1}{5} + \frac{3}{5} B_2 > \frac{6}{5} A_{2,1} - \frac{1}{5} + \frac{3}{5} \times \frac{1}{2} = \frac{6}{5} A_{2,1} + \frac{1}{10}$. Therefore,

\[
\frac{6}{5} B_1 + W(B_2) + \cdots + W(B_{k+1}) \\
\geq \frac{6}{5} B_1 + \frac{6}{5} A_{2,1} + \frac{1}{10} + \frac{6}{5} (b_3 + \cdots + b_k) + (\frac{2}{5} + \frac{3}{10(k-1)}) (k-1) + \frac{6}{5} B_{k+1} \\
\geq \frac{6}{5} \times \frac{1}{2} + \frac{6}{5} (A_{2,1} + b_3) + \frac{1}{10} + \frac{6}{5} \times \frac{1}{2} \times (k-3) + \frac{6}{5} (k-1) + \frac{3}{10} + \frac{6}{5} B_{k+1} \\
\geq \frac{3}{5} + \frac{6}{5} \times \frac{1}{2} + \frac{3}{5} (k-3) + \frac{2}{5} (k-1) + \frac{3}{10} + \frac{6}{5} B_{k+1} \\
\geq k + \frac{6}{5} B_{k+1}.
\]
If \(A_{2,1} + \cdots + A_{2,k} \leq \frac{1}{3} \), then it is easy to prove that \(W(B_2) \geq \frac{6}{5} B_2 + \frac{3}{5} A_{2,1} - \frac{1}{5} \).
Because if \(A_{2,1} \) has at least one item in \((\frac{1}{2}, \frac{1}{2}]\), then \(W(B_2) \geq \frac{6}{5} B_2 + \frac{1}{10} = \frac{6}{5} B_2 + \frac{3}{5} \times \frac{1}{2} - \frac{1}{5} \geq \frac{6}{5} B_2 + \frac{3}{5} A_{2,1} - \frac{1}{5} \). If all the numbers in \(A_{2,1} \) are in \((0, \frac{1}{2}]\), then \(W(B_2) \geq \frac{6}{5} A_{2,1} - \frac{1}{10} \times 2 + \frac{6}{5} (A_{2,2} + \cdots + A_{2,k}) = \frac{6}{5} B_2 + \frac{3}{5} A_{2,1} - \frac{1}{5} \). Therefore,

\[
\frac{6}{5} B_1 + W(B_2) + \cdots + W(B_{k+2}) \\
\geq \frac{6}{5} B_1 + \frac{6}{5} B_2 + \frac{3}{5} A_{2,1} - \frac{1}{5} + \frac{6}{5} (b_3 + \cdots + b_{k+1}) + (\frac{2}{5} + \frac{3}{10(k-1)})k + \frac{6}{5} B_{k+2} \\
\geq \frac{3}{5} B_1 + \frac{3}{5} (B_1 + A_{2,1}) - \frac{1}{5} + \frac{3}{5} (B_2 + b_3) + \frac{3}{5} \times \frac{1}{2} \times (k - 2) + \frac{3}{10}k + \frac{3}{10} + \frac{6}{5} B_{k+2} \\
\geq \frac{3}{5} \times \frac{1}{2} + \frac{3}{5} \times 1 - \frac{1}{5} + \frac{6}{5} \times 1 + \frac{3}{5} (k - 2) + \frac{3}{10}k + \frac{3}{10} + \frac{6}{5} B_{k+2} \\
\geq k + 1 + \frac{6}{5} B_{k+2}.
\]

This ends the case analysis. If beginning with \(B_j \) (\(B_1 \) in the case analysis) there is a portion of the \(NkF \) packing which matches one of the above cases, and if we let \(l \) be the index of the last bin in that portion minus \(j \), then \(j + l \leq NkF(L) \), and \(\frac{6}{5} B_j + W(B_{j+1}) + \cdots + W(B_{j+l}) \), which satisfies (1) in the Lemma. However, if the \(NkF \) packing of the list \(L \) ends without completely matching any of the above cases, i.e., \(B_j, \ldots, B_{NkF(L)} \) only matches the first part of one of the cases, then we can see that no matter where the packing ends \(B_j \) is followed by \(h(\geq 0) \) bins with \(\frac{6}{5} B_j + W(B_{j+1}) + \cdots + W(B_{j+h}) \geq h \), then followed by \(g(\geq 0) \) bins with items greater than \(\frac{1}{2} \), hence each having weight greater than 1. If we let \(l \) be the index of the last bin in the packing minus \(j \), i.e., \(NkF(L) - j \), then \(j + l = NkF(L) \), and \(\frac{6}{5} B_j + W(B_{j+1}) + \cdots + W(B_{NkF(L)}) + 2 \geq (NkF(L) - j) + 2 \geq l + \frac{6}{5} B_{NkF(L)} \), which satisfies (2) in the Lemma.

4. Proof of the main theorem.

CLAIM 1. For any bin \(B_i \) of items of total size 1 or less,

\[
W(B_i) \leq 1.7 + \frac{3}{10(k-1)}.
\]

Proof. See the proof of Lemma 1 in the work of Garey, Graham, Johnson, and Yao [4]. We note that our weighting function differs from that in the reference only by the addition of \(\frac{3}{10(k-1)} \) for the items of size exceeding \(\frac{1}{2} \), and there can be only one such item in \(B_i \). So the bound in the claim exceeds the bound 1.7 in the reference by precisely this amount. \(\Box \)

CLAIM 2. For any list \(L \),

\[
W(L) \leq \left(1.7 + \frac{3}{10(k-1)} \right) L^*.
\]

Proof. Apply the optimal algorithm to \(L \). We get \(L^* \) nonempty bins.

\[
W(L) = \sum_{i=1}^{L^*} W(B_i) \\
\leq \sum_{i=1}^{L^*} \left(1.7 + \frac{3}{10(k-1)} \right) \quad \text{(by Claim 1)} \\
= \left(1.7 + \frac{3}{10(k-1)} \right) L^*. \quad \Box
\]

CLAIM 3. For any list \(L \), there exists a constant \(c \) such that

\[
W(L) + c \geq NkF(L).
\]
Proof. Let j be the largest index of the bins in the NkF packing such that $\sum_{i=1}^{j} W(B_i) \geq j - 1 + \frac{6}{5} B_j$. Such j always exists.

If $j = NkF(L)$, then $W(L) = \sum_{i=1}^{NkF(L)} W(B_i) \geq j - 1 + \frac{6}{5} B_j \geq NkF(L) - 1$. So $W(L) + 1 \geq NkF(L)$. Now assume $j < NkF(L)$. Let us consider B_j.

If $B_j \geq \frac{6}{5}$, then $\sum_{i=1}^{j+1} W(B_i) + W(B_{j+1}) \geq j + \frac{6}{5} B_j + \frac{6}{5} B_{j+1} + \frac{6}{5} B_j$. There exists $j+1$, such that $\sum_{i=1}^{j+1} W(B_i) \geq j + \frac{6}{5} B_{j+1}$. This is a contradiction to the assumption that j is the largest index having the property. So the case of $B_j \geq \frac{6}{5}$ can never happen.

If $B_j < \frac{6}{5}$, and (1) in Lemma happens, then $\sum_{i=1}^{j} W(B_i) + W(B_{j+1}) + \cdots + W(B_{NkF(L)}) + 2 \geq j - 1 + \frac{6}{5} B_j + NkF(L) - j + \frac{6}{5} B_{NkF(L)} - \frac{6}{5} B_j$. So $W(L) + 3 \geq NkF(L)$.

Now we are prepared to prove Main Theorem.

Proof of Main Theorem.

$$R[NkF] = \lim \sup \{NkF(L)/L^*\}$$

$$\leq \lim_{L^* \to \infty} (W(L) + c)/L^* \quad \text{(by Claim 3)}$$

$$\leq \lim_{L^* \to \infty} \left(1.7 + \frac{3}{10(k-1)}\right) L^* + c)/L^* \quad \text{(by Claim 2)}$$

$$= 1.7 + \frac{3}{10(k-1)}.$$

Combining with the previous results $R[N2F] = 2$ and $R[NkF] \geq 1.7 + \frac{3}{10(k-1)}$, we have $R[NkF] = 1.7 + \frac{3}{10(k-1)}$ for $k \geq 2$.

Acknowledgment. The author wishes to thank Professor Andrew C. Yao, without whose valuable advice, constructive comments, and enthusiastic encouragement the work of this paper could never have been accomplished. And also, many thanks go to Dr. David S. Johnson, who read the first version of the paper carefully, pointed out one mistake in the proof of the lemma, and suggested the current proving style, which significantly simplifies the entire proof.

REFERENCES

