DAM2954	DAM pp: $1-23$ (col.fig.: NIL)	

ARTICLE IN PRESS

On k-ary n-cubes: theory and applications

Mao Weizhen ${ }^{\text {a,*, }}$, David M. Nicol ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Computer Science, College of William and Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA
${ }^{\mathrm{b}}$ Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA

Abstract

Many parallel processing applications have communication patterns that can be viewed as 9 graphs called k-ary n-cubes, whose special cases include rings, hypercubes and tori. In this paper, combinatorial properties of k-ary n-cubes are examined. In particular, the problem of character-
11 izing the subgraph of a given number of nodes with the maximum edge count is studied. These theoretical results are then applied to compute a lower bounding function in branch-and-bound partitioning algorithms and to establish the optimality of some irregular partitions. © 2002 Published by Elsevier Science B.V.

Keywords: Parallel processing; Communication; k-Ary n-cubes; Graph partitioning

1. Introduction

In a k-ary n-cube $[2,7,14]$, each node is identified by an n-bit base- k address $b_{n-1} \ldots b_{i} \ldots b_{0}$, and for each dimension $i=0,1, \ldots, n-1$, the node is connected by edges to nodes with addresses $b_{n-1} \ldots b_{i} \pm 1(\bmod k) \ldots b_{0}$.

We can also define k-ary n-cubes recursively. First, we define a ring of k nodes labeled $0,1, \ldots, k-1$ to be a graph with edges between i and $i+1(\bmod k)$ for $i=$ $0,1, \ldots, k-1$. When $k=1$, a ring is a point. When $k=2$, a ring is two nodes sharing n-cubes is as follows:

5 Hypothesis 1. A k-ary 1 -cube is a ring of k nodes. Without loss of generality, we place the k nodes on a line, and call the leftmost node the 0 th position node and the rightmost node the $(k-1)$ th position node.

[^0]DAM2954

ARTICLE IN PRESS

2

Fig. 1. A 3-ary 2-cube.

Table 1
Special cases of k-ary n-cubes

k	x		
	1	2	$\geqslant 3$
1	Point (ring)	Point (torus)	Point
2	Edge (hypercube/ring)	Square (hypercube/torus)	Hypercube
$\geqslant 3$	Ring	Torus	k-Ary n-cube

1 Hypothesis 2. A k-ary n-cube contains k composite subcubes, each of which is a k-ary ($n-1$)-cube, placed from left to right. For each position $i=0, \ldots, k^{n-1}-1$, edges
3 between composite subcubes are defined by connecting all $k i$ th position nodes into a ring.

Further, a k-ary n-cube can also be viewed as an n-dimensional (n-D) torus, which is a $\underbrace{k \times \cdots \times k}_{n}$ mesh with wrap-around edges.
7 The second and the third definitions of k-ary n-cubes provide two ways of drawing the graphs. See Fig. 1 for an example.
9 The class of k-ary n-cubes contains as special cases many topologies important to parallel processing, such as rings, hypercubes, and tori. Hence, a thorough study of解
In this paper, we study combinatorial properties of k-ary n-cubes and their applications to the graph partitioning problem for parallel processing. We organize the paper as follows. In Section 2, we give some simple properties of k-ary n-cubes. In Section 3, we give a visual description of edge isoperimetric subgraphs, which are subgraphs of a fixed node count in k-ary n-cubes that achieve the maximal internal edge count, compute the maximal edge count in an edge isoperimetric subgraph for three special cases. In Section 5, we apply our theoretical results to graph partitioning. Finally in

DAM 2954

ARTICLE IN PRESS

M. Weizhen, D. M. Nicol/ Discrete Applied Mathematics III (III) III-III

17 Proof. We observe that if the k composite subcubes, which are k-ary $(n-1)$-cubes, are placed from left to right, any node in one composite subcube is connected to

$C_{2}=\left\{\left(m_{q}, m_{q \dot{+}} 1\right), \ldots,\left(m_{p-1}, m_{p}\right)\right\}$. Clearly,

$$
\sum_{\left(m_{i}, m_{i+1}\right) \in C_{1}} \min \left\{m_{i}, m_{i \dot{+1}}\right\} \leqslant \sum_{i=p+1}^{q} m_{i}
$$

and

$$
\sum_{\left(m_{i}, m_{i+1}\right) \in C_{2}} \min \left\{m_{i}, m_{i+1}\right\} \leqslant \sum_{i=q}^{p-1} m_{i} .
$$

27 We observe that the number of edges with endpoints among the m nodes but in different composite subcubes is no larger than

$$
\begin{aligned}
\min & \left\{m_{0}, m_{1}\right\}+\cdots+\min \left\{m_{k-2}, m_{k-1}\right\}+\min \left\{m_{k-1}, m_{0}\right\} \\
& =\sum_{i=0}^{k-1} \min \left\{m_{i}, m_{i \dot{+}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\left(m_{i}, m_{i+1}\right) \in C_{1}} \min \left\{m_{i}, m_{i+1}\right\}+\sum_{\left(m_{i}, m_{i+1}\right) \in C_{2}} \min \left\{m_{i}, m_{i+1}\right\} \\
& \leqslant \sum_{i=p+1}^{q} m_{i}+\sum_{i=q}^{p-1} m_{i} \\
& =\sum_{i=0}^{k-1} m_{i}-m_{p}+m_{q} \\
& =m-\max _{0 \leqslant i \leqslant k-1}\left\{m_{i}\right\}+\min _{0 \leqslant i \leqslant k-1}\left\{m_{i}\right\} .
\end{aligned}
$$

1 3. Edge isoperimetric subgraphs for \boldsymbol{k}-ary \boldsymbol{n}-cubes

Given a graph and an integer m, which is no larger than the total number of nodes in the graph. For any subgraph of m nodes, an internal edge is one with both endpoints in the subgraph while an external edge is one with only one endpoint in the subgraph. with the maximum number of internal edges. Note that the edge isoperimetric property 7 is also studied in the context of finding a subgraph with the minimum number of external edges. However, since in this paper the object of interest is k-ary n-cubes, which are regular graphs with a fixed degree for each node, for subgraphs of m nodes minimizing the number of external edges is, in fact, equivalent to maximizing the number of internal edges. Thus, we focus on edge isoperimetric subgraphs for k-ary n-cubes with the maximum number of internal edges.

The edge isoperimetric problems on general graphs are surveyed in [3]. Although the edge isoperimetric property for k-ary n-cubes has not been studied directly, there are a few results relevant to our work. For instance, the construction, based on a lexicographic order of nodes, of edge isoperimetric subgraphs in a hypercube is given in [10], and a similar method is used to determine edge isoperimetric subgraphs in an n-D mesh (without wrap-around edges as in k-ary n-cubes) in [1,5]. Our research differs from previous work mainly in that we are interested in a visual description of edge isoperimetric subgraphs in k-ary n-cubes. That is, given a k-ary n-cube and an integer m (no larger than k^{n}), what does a subgraph of m nodes which achieves the maximum internal edge count look like? An important assumption we use throughout this section is that k is so large relative to m that an edge isoperimetric subgraph cannot possibly include wrap-around edges. (In Section 4, this assumption will be removed for the consideration of several special cases.) Intuition tells us that under our assumption the maximum number of internal edges, denoted as $e_{k, n}(m)$, can be obtained when the m nodes are placed as tightly as possible to form a "cubish" polyhedron in the k-ary n-cube. In the remainder of this section, we prove that our intuition turns out to be correct.

Along any dimension, a subgraph of m nodes in a k-ary n-cube can be partitioned into layers, each of which contains nodes with the same coordinate in the dimension.

DAM 2954

ARTICLE IN PRESS

$\uparrow \operatorname{dim} 2$

Fig. 2. Construction procedure for $\mathscr{C}_{2}(m)$.

Fig. 3. Construction procedure for $\mathscr{C}_{3}(m)$.

1 Furthermore, there may be edges (legs) between adjacent layers in the subgraph. For any m, there must exist $l \geqslant 2$ and $1 \leqslant i \leqslant n$ such that $l^{i-1}(l-1)^{n-i+1}<m \leqslant l^{i}(l-$ $31)^{n-i}$. Let $\delta=m-l^{i-1}(l-1)^{n-i+1}$. We give the following definition of a cubish polyhedron.

5 Definition 6. An n-D cubish polyhedron of m nodes in a k-ary n-cube, denoted as $\mathscr{C}_{n}(m)$, is defined recursively as follows:
$7 \quad$ - $\mathscr{C}_{1}(m)$ is a line of m adjacent nodes in the k-ary n-cube.

- $\mathscr{C}_{n}(m)$ contains an n-D mesh of size $\underbrace{l \times \cdots \times l}_{i-1} \times \underbrace{(l-1) \times \cdots \times(l-1)}_{n-i+1}$ with an $(n-1)$-D layer $\mathscr{C}_{n-1}(\delta)$ stacked on its top along dimension i. (Recall that $\left.m=l^{i-1}(l-1)^{n-i+1}+\delta.\right)$

11 The above procedure of constructing $\mathscr{C}_{n}(m)$ is like making a ball of yarn. The idea is to fill in each side (dimension) with yarn (nodes), one side at a time. Fig. 2 illustrates the construction procedure for $\mathscr{C}_{2}(m)$, and Fig. 3 illustrates the procedure for $\mathscr{C}_{3}(m)$. Let $e_{n}(m)$ be the internal edge count in a cubish polyhedron $\mathscr{C}_{n}(m)$. Obviously, $e_{n}(m)=e_{n-1}(\delta)+\delta+e_{n}(m-\delta)$ according to the recursive definition of $\mathscr{C}_{n}(m)$. Note that the term δ in the equation is the number of legs between the $(n-1)$-D layer (with

DAM2954

ARTICLE IN PRESS

6
M. Weizhen, D.M. Nicol/Discrete Applied Mathematics III (III) III-III
$1 \quad e_{n-1}(\delta)$ nodes) and the n-D mesh (with $e_{n}(m-\delta)$ nodes). The ($n-1$)-D layer stacked on top of the n-D mesh is referred to as the top layer. Obviously, the top layer has the

9 Theorem 7. $\mathscr{C}_{n}(m)$ has the maximum internal edge count among all subgraphs S_{m} of m nodes in a k-ary n-cube, when the wrap-around edges can be discounted.

11 Proof. We wish to prove that for any subgraph with m nodes, denoted as S_{m}, the number of internal edges, $e\left(S_{m}\right)$, is no larger than that of a cubish polyhedron, $e_{n}(m)$.

We prove the theorem by multiple inductions. First we induct on n, the number of dimensions. When $n=1$, The only way to achieve the maximum internal edge count is by placing all m nodes next to each other along the dimension, which is exactly the case in $\mathscr{C}_{1}(m)$. So for any subgraph S_{m} in a k-ary 1-cube,

$$
e\left(S_{m}\right) \leqslant e_{1}(m)
$$

In the inductive hypothesis, we assume that in any k-ary $(n-1)$-cube,

$$
e\left(S_{m}\right) \leqslant e_{n-1}(m) \quad(\text { Hypothesis } 1)
$$

Now consider the case of n dimensions. The goal is to prove that for any $S_{m}, e\left(S_{m}\right) \leqslant$ $e_{n}(m)$. We make another induction on m. When $m=1$, both $e\left(S_{m}\right)$ and $e_{n}(m)$ are 0 . So

$$
e\left(S_{m}\right) \leqslant e_{n}(m)
$$

In the inductive hypothesis, we assume that for any $m^{\prime} \leqslant m-1$,

$$
e\left(S_{m^{\prime}}\right) \leqslant e_{n}\left(m^{\prime}\right) \quad(\text { Hypothesis } 2)
$$

Now consider the case of m nodes. Let S_{m} be any subgraph in n dimensions. For any dimension, S_{m} can be viewed as having several $(n-1)$-D layers of nodes stacked on top of each other along the dimension. Choose the dimension with $h \geqslant l$ layers. (If all dimensions each has fewer than l layers, then $m \leqslant(l-1)^{n}$, which contradicts to our assumption that $l^{i-1}(l-1)^{n-i+1}<m \leqslant l^{i}(l-1)^{n-i}$.) To S_{m} and along the chosen dimension, we make the following rearrangement of the nodes:

- rearrange the order of the layers by sizes (node counts), and
- within each layer rearrange the nodes into an ($n-1$)-D cubish polyhedron.

See Fig. 4 for an example of the rearrangement procedure described. (The numbers in the figure are the sizes of the layers.)

Let the subgraph obtained after the rearrangement procedure be S_{m}^{\prime}. We know that in S_{m}^{\prime} there are $h \geqslant l$ layers of $(n-1)$-D cubish polyhedrons. Assume that s_{i} is the size of the i th layer. Then $s_{1} \leqslant s_{2} \leqslant \cdots \leqslant s_{h}$. By Hypothesis 1 and the fact that the

ARTICLE IN PRESS

Fig. 4. Rearrangement procedure.

1 number of legs between adjacent layers is maximized when the layers are ordered by sizes, the rearrangement procedure does not decrease the number of internal edges in
3 the subgraph. So we have

$$
\begin{equation*}
e\left(S_{m}\right) \leqslant e\left(S_{m}^{\prime}\right) \tag{1}
\end{equation*}
$$

Further, for S_{m}^{\prime}, the number of internal edges is the sum of the number of edges in the
5 first layer of s_{1} nodes, the number of legs between the first and the second layers, and the number of internal edges in the subgraph of $m-s_{1}$ nodes containing the remaining
$7 h-1$ layers, the last of which is bounded by $e_{n}\left(m-s_{1}\right)$ by Hypothesis 2. So we have

$$
\begin{equation*}
e\left(S_{m}^{\prime}\right) \leqslant e_{n-1}\left(s_{1}\right)+s_{1}+e_{n}\left(m-s_{1}\right) \tag{2}
\end{equation*}
$$

To continue, we first consider the case when $s_{1} \leqslant \delta$. Recall that $l^{i-1}(l-1)^{n-i+1}<m \leqslant$
$l^{i}(l-1)^{n-i}$ and $\delta=m-l^{i-1}(l-1)^{n-i+1}$. Since $s_{1} \leqslant \delta, l^{i-1}(l-1)^{n-i+1} \leqslant m-s_{1}<l^{i}(l-$ $1)^{n-i}$. Let $m-s_{1}=l^{i-1}(l-1)^{n-i+1}+\delta^{\prime}$. Then $\delta=\delta^{\prime}+s_{1}$. By Definition 6 , we have

$$
\begin{equation*}
e_{n}\left(m-s_{1}\right)=e_{n-1}\left(\delta^{\prime}\right)+\delta^{\prime}+e_{n}\left(l^{i-1}(l-1)^{n-i+1}\right) \tag{3}
\end{equation*}
$$

11 Also, let $S_{\delta^{\prime}+s_{1}}$ be a subgraph in a k-ary $(n-1)$-cube, consisting of cubish polyhedrons $\mathscr{C}_{n-1}\left(\delta^{\prime}\right)$ and $\mathscr{C}_{n-1}\left(s_{1}\right)$ and some connecting edges in between. By Hypothesis 1 , we have

$$
\begin{align*}
e_{n-1}(\delta) & \geqslant e\left(S_{\delta^{\prime}+s_{1}}\right) \\
& \geqslant e_{n-1}\left(\delta^{\prime}\right)+e_{n-1}\left(s_{1}\right) \tag{4}
\end{align*}
$$

Therefore,

$$
\begin{aligned}
e\left(S_{m}\right) & \leqslant e\left(S_{m}^{\prime}\right) \text { by Eq. (1) } \\
& \leqslant e_{n-1}\left(s_{1}\right)+s_{1}+e_{n}\left(m-s_{1}\right) \text { by Eq. (2) } \\
& =e_{n-1}\left(s_{1}\right)+s_{1}+e_{n-1}\left(\delta^{\prime}\right)+\delta^{\prime}+e_{n}\left(l^{i-1}(l-1)^{n-i+1}\right) \text { by Eq. (3) } \\
& =e_{n-1}\left(s_{1}\right)+e_{n-1}\left(\delta^{\prime}\right)+\delta+e_{n}\left(l^{i-1}(l-1)^{n-i+1}\right) \\
& \leqslant e_{n-1}(\delta)+\delta+e_{n}\left(l^{i-1}(l-1)^{n-i+1}\right) \text { by Eq. (4) } \\
& =e_{n}(m) \text { by Definition } 6 .
\end{aligned}
$$

15 Next, we consider the case when $s_{1}>\delta$. By Definition 6 , we know that $\mathscr{C}_{n}(m-\delta)$ is in fact an n-D mesh with $l^{i-1}(l-1)^{n-i+1}$ nodes. $\mathscr{C}_{n}(m-\delta)$ can also be viewed as

DAM2954

ARTICLE IN PRESS

1 having l (or $l-1$ if $i=1$) layers stacked on top of each other, where each layer is an $(n-1)$-D mesh of L nodes. Clearly,

$$
L= \begin{cases}(l-1)^{n-1} & \text { if } i=1 \\ l^{i-2}(l-1)^{n-i+1} & \text { if } i \geqslant 2\end{cases}
$$

3 We can show that $s_{1}<L+\delta$. Suppose not. We must have $m=s_{1}+\cdots+s_{h} \geqslant h s_{1} \geqslant l s_{1} \geqslant$ $l L+l \delta>l L+\delta \geqslant m$, which is impossible. Define $l^{\prime}=l-1$ if $i=1$ and $l^{\prime}=l$ if $i \geqslant 2$.
5 Since $s_{1}<L+\delta$, together with the previous assumption that $s_{1}>\delta$ and the definition of $m=l^{\prime} L+\delta$, it is easy to obtain that $\left(l^{\prime}-1\right) L<m-s_{1}<l^{\prime} L$. Let $m-s_{1}=\left(l^{\prime}-1\right) L+\delta^{\prime}$,
7 where $\delta^{\prime}<L$. Then $s_{1}+\delta^{\prime}=L+\delta$. So by Definition 6 ,

$$
\begin{equation*}
e_{n}\left(m-s_{1}\right)=e_{n-1}\left(\delta^{\prime}\right)+\delta^{\prime}+e_{n}\left(\left(l^{\prime}-1\right) L\right) \tag{5}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
e\left(S_{m}\right) & \leqslant e\left(S_{m}^{\prime}\right) \text { by Eq. }(1) \\
& \leqslant e_{n-1}\left(s_{1}\right)+s_{1}+e_{n}\left(m-s_{1}\right) \text { by Eq. (2) } \\
& =e_{n-1}\left(s_{1}\right)+s_{1}+e_{n-1}\left(\delta^{\prime}\right)+\delta^{\prime}+e_{n}\left(\left(l^{\prime}-1\right) L\right) \text { by Eq. }
\end{aligned}
$$

9 On the other hand, we have

$$
\begin{aligned}
e_{n}(m) & =e_{n-1}(\delta)+\delta+e_{n}\left(l^{\prime} L\right) \text { by Definition } 6 \\
& =e_{n-1}(\delta)+\delta+e_{n-1}(L)+L+e_{n}\left(\left(l^{\prime}-1\right) L\right) \text { by Definition } 6
\end{aligned}
$$

To show that $e\left(S_{m}\right) \leqslant e_{n}(m)$, all we need to prove is that for $s_{1}+\delta^{\prime}=L+\delta$,

$$
e_{n-1}\left(s_{1}\right)+e_{n-1}\left(\delta^{\prime}\right) \leqslant e_{n-1}(L)+e_{n-1}(\delta)
$$

11 The inequality is trivially true when $s_{1}=L$. Next, we prove the inequality for two cases: $s_{1}<L$ and $s_{1}>L$. The ideas used for both the cases are similar. We start with two cubish polyhedrons in $n-1$ dimensions of node counts s_{1} and δ^{\prime}, respectively. Obviously, the total number of internal edges in the two initial polyhedrons is $e_{n-1}\left(s_{1}\right)+e_{n-1}\left(\delta^{\prime}\right)$. Then we move nodes from one polyhedron to the other until the node counts of the polyhedrons become L and δ, respectively. Obviously, the total guarantee that the total number of internal edges of the polyhedrons does not decrease during the move. Then the inequality holds true.
Suppose $s_{1}<L$. We prove by yet another induction on the number of dimensions $1 \quad n-1$ that $e_{n-1}\left(s_{1}\right)+e_{n-1}\left(\delta^{\prime}\right) \leqslant e_{n-1}(L)+e_{n-1}(\delta)$, where $s_{1}, \delta^{\prime}<L$ and $s_{1}+\delta^{\prime}=L+\delta$. When $n-1=1$, it is a trivial case. Assume that the inequality holds for $n-2$ dimensions 3 (Hypothesis 3). Now consider the case of $n-1$ dimensions. Since both s_{1} and δ^{\prime} are less than L, without loss of generality, assume that $s_{1} \geqslant \delta^{\prime}$. (The case $s_{1}<\delta^{\prime}$ is symmetric.) Next, we describe how to move nodes from $\mathscr{C}_{n-1}\left(\delta^{\prime}\right)$ to $\mathscr{C}_{n-1}\left(s_{1}\right)$. First, initialize subgraphs A and B to be $\mathscr{C}_{n-1}\left(s_{1}\right)$ and $\mathscr{C}_{n-1}\left(\delta^{\prime}\right)$, respectively. The node count in A, denoted as $|A|$, is then s_{1}, and the node count in B, denoted as $|B|$, is δ^{\prime}.

DAM 2954

ARTICLE IN PRESS

1 Consider A as a cubish polyhedron of several $(n-2)$-D layers of size L^{\prime} each plus one top layer of $a \leqslant L^{\prime}$ nodes and a legs, and B as a cubish polyhedron of several ($n-2$)-D layers of size $L^{\prime \prime}$ each plus one top layer of $b \leqslant L^{\prime \prime}$ nodes and b legs. Since $|A| \geqslant|B|, A$ completely contains B. So $L^{\prime} \geqslant L^{\prime \prime}$. We next apply the following step to 5 move nodes from B to A. If $b \leqslant L-|A|$, move the top layer $\mathscr{C}_{n-2}(b)$ together with its b legs and attach it to the bottom layer of A. we can do this because $b \leqslant L^{\prime \prime} \leqslant L^{\prime}$,
7 which implies that the bottom layer of A is large enough to have the top layer of B attached without changing the remaining structure of the subgraph. After the move
9 we rearrange the two subgraphs into cubish polyhedrons again. (Note that at this time $A, B, L^{\prime}, L^{\prime \prime}, a$, and b should be updated to reflect the resulting cubish polyhedrons.) according to Hypothesis 1. That is,

$$
\begin{align*}
e_{n-1}\left(s_{1}\right)+e_{n-1}\left(\delta^{\prime}\right) \leqslant & e_{n-2}(a)+a+e_{n-1}(|A|-a)+e_{n-2}(b) \\
& +b+e_{n-1}(|B|-b) \tag{6}
\end{align*}
$$

We apply the above step until $|A|=L$ or $b>L-|A|$. If $|A|=L$ is the terminating condition, then A is already a cubish polyhedron with L nodes and B is thus a cubish polyhedron with $s_{1}+\delta^{\prime}-L=\delta$ nodes. So

$$
\begin{aligned}
e_{n-1} & \left(s_{1}\right)+e_{n-1}\left(\delta^{\prime}\right) \\
& \leqslant e_{n-2}(a)+a+e_{n-1}(|A|-a)+e_{n-2}(b)+b+e_{n-1}(|B|-b) \text { by Eq. (6) } \\
& =e_{n-1}(|A|)+e_{n-1}(|B|) \text { by Definition } 6 \\
& =e_{n-1}(L)+e_{n-1}(\delta)
\end{aligned}
$$

On the other hand, if $b>L-|A|$ is the terminating condition, which indicates that all on rearrange the nodes in the top layers of A and B. Since $|A|<L$ and $a \leqslant L^{\prime}, A$ needs exactly $L^{\prime}-a$ nodes (the missing nodes in the top layer of A) to become an ($n-1$)-D mesh with only equal size layers. Therefore, $|A|+L^{\prime}-a=L$. Combining this inequality with $b>L-|A|$, we have $a+b>\left(|A|+L^{\prime}-L\right)+(L-|A|)=L^{\prime}$. So a set of $a+b$ nodes can be split into a set of L^{\prime} nodes and a set of $a+b-L^{\prime}$ nodes. Since $a, b \leqslant L^{\prime}$, $a+b=L^{\prime}+\left(a+b-L^{\prime}\right)$, and L^{\prime} is the size of a $(n-2)$-D mesh, by Hypothesis 3 ,

$$
\begin{equation*}
e_{n-2}(a)+e_{n-2}(b) \leqslant e_{n-2}\left(L^{\prime}\right)+e_{n-2}\left(a+b-L^{\prime}\right) \tag{7}
\end{equation*}
$$

Removing the top layer of a nodes and the top layer of b nodes from A and B, respectively, and adding a layer of L^{\prime} nodes and a layer of $a+b-L^{\prime}$ nodes to A and B, respectively, we get $|A|=L$ and $|B|=\delta$. So

$$
\begin{aligned}
& e_{n-1}\left(s_{1}\right)+e_{n-1}\left(\delta^{\prime}\right) \\
& \quad \leqslant e_{n-2}(a)+a+e_{n-1}(|A|-a)+e_{n-2}(b)+b+e_{n-1}(|B|-b) \text { by Eq. (6) } \\
& \quad \leqslant e_{n-2}\left(L^{\prime}\right)+e_{n-2}\left(a+b-L^{\prime}\right)+a+b+e_{n-1}(|A|-a)+e_{n-1}(|B|-b)
\end{aligned}
$$

ARTICLE IN PRESS

by Eq. (7)

$$
\begin{aligned}
= & e_{n-2}\left(L^{\prime}\right)+L^{\prime}+e_{n-1}(|A|-a)+e_{n-2}\left(a+b-L^{\prime}\right)+\left(a+b-L^{\prime}\right) \\
& +e_{n-1}(|B|-b) \\
= & e_{n-1}(L)+e_{n-1}(\delta) \text { by Definition } 6 .
\end{aligned}
$$

1 Suppose $s_{1}>L$. Let $s_{1}=L+g$ for some g. Since $s_{1}+\delta^{\prime}=L+\delta$, then $\delta=s_{1}+\delta^{\prime}-L=g+\delta^{\prime}$. We next show that $\delta^{\prime} \geqslant(l-1) g$. Suppose not. We must have $m=l^{\prime} L+\delta=l^{\prime} L+g+$ $\delta^{\prime}<l^{\prime} L+g+(l-1) g=l^{\prime} L+l g \leqslant l(L+g)=l s_{1} \leqslant h s_{1} \leqslant m$, which is impossible. Consider the cubish polyhedron $\mathscr{C}_{n-1}\left(\delta^{\prime}\right)$ with $e_{n-1}\left(\delta^{\prime}\right)$ edges. If all $n-1$ dimensions of

4. Special cases

The theorem in the previous section describes what an edge isoperimetric subgraph for a k-ary n-cube looks like and how such a subgraph can be constructed. Although an algorithmic procedure can be easily designed to count the number of internal edges in an edge isoperimetric subgraph, the theorem does not tell us what the internal edge count is. Further, the theorem holds true only when the wrap-around edges in the k-ary n-cube can be discounted. In this section, we focus on formulas determining the number of internal edges of an edge isoperimetric subgraph (which may contain

DAM 2954

ARTICLE IN PRESS

1 wrap-around edges) of m nodes in any k-ary n-cube. In particular, we first consider one important special case of k-ary n-cubes, namely, hypercubes. We then study the

3 the number of internal edges of an edge isoperimetric subgraph in a k-ary n-cube with 5 high dimensions.

4.1. Hypercubes

7 To compute $e_{2, n}(m)$, the maximum number of internal edges of a subgraph with m nodes in a hypercube (in n dimensions), we have to do some preliminary work.

9 Definition 8. Let $w(i)$ denote the sum of all bits in the base-2 (binary) representation of i. Let $W(i, j), i \leqslant j$, denote the sum of $w(i), \ldots, w(j)$.

11 We next define a recursive function F and give its closed form in terms of W.
Definition 9. Define function F recursively as follows:

$$
\begin{aligned}
& F(0)=F(1)=0 \\
& F(m)=F\left(\left\lceil\frac{m}{2}\right\rceil\right)+F\left(\left\lfloor\frac{m}{2}\right\rfloor\right)+\left\lfloor\frac{m}{2}\right\rfloor \quad \text { for } m \geqslant 2
\end{aligned}
$$

13 Lemma 10. $F(m)=W(0, m-1)$ for $m \geqslant 1$.
Proof. We prove the lemma by showing that $W(0, m-1)$ indeed satisfies the recursion that defines $F(m)$. This can be done by the following counting argument. By Definition $8, W(0, m-1)$ represents the sum of all bits in the binary representations of integers containing numbers whose last digit is 0 and the other containing numbers whose last digit is 1 . The first column has $\lceil m / 2\rceil$ numbers and the second column has $\lfloor m / 2\rfloor$ numbers. We observe that the sum of the bits of the numbers in the first column is

23 The recursive definition matches the one that defines $F(m)$. So $F(m)=W(0, m-1)$.

Lemma 11. $F(m) \geqslant F\left(m_{0}\right)+F\left(m_{1}\right)+\min \left\{m_{0}, m_{1}\right\}$ for $m_{0}+m_{1}=m$.
Proof. We induct on m. When $m=0,1$, the inequality holds obviously. Suppose that the inequality holds true for cases $\leqslant m-1$. Now consider the case of m.

DAM2954

ARTICLE IN PRESS

1
When $m=m_{0}+m_{1}$ is even, we have $m / 2=\left\lceil m_{0} / 2\right\rceil+\left\lfloor m_{1} / 2\right\rfloor=\left\lfloor m_{0} / 2\right\rfloor+\left\lceil m_{1} / 2\right\rceil$:

$$
\begin{aligned}
F(m)= & F\left(\frac{m}{2}\right)+F\left(\frac{m}{2}\right)+\frac{m}{2} \text { by Definition } 9 \\
\geqslant & F\left(\left\lceil\frac{m_{0}}{2}\right\rceil\right)+F\left(\left\lfloor\frac{m_{1}}{2}\right\rfloor\right)+\min \left\{\left\lceil\frac{m_{0}}{2}\right\rceil,\left\lfloor\frac{m_{1}}{2}\right\rfloor\right\} \\
& +F\left(\left\lfloor\frac{m_{0}}{2}\right\rfloor\right)+F\left(\left\lceil\frac{m_{1}}{2}\right\rceil\right)+\min \left\{\left\lfloor\frac{m_{0}}{2}\right\rfloor,\left\lceil\frac{m_{1}}{2}\right\rceil\right\}+\frac{m}{2}
\end{aligned}
$$

by the inductive hypothesis

$$
\begin{aligned}
= & F\left(m_{0}\right)+F\left(m_{1}\right)+\min \left\{\left\lceil\frac{m_{0}}{2}\right\rceil,\left\lfloor\frac{m_{1}}{2}\right\rfloor\right\}+\min \left\{\left\lfloor\frac{m_{0}}{2}\right\rfloor,\left\lceil\frac{m_{1}}{2}\right\rceil\right\} \\
& +\frac{m}{2}-\left\lfloor\frac{m_{0}}{2}\right\rfloor-\left\lfloor\frac{m_{1}}{2}\right\rfloor \text { by Definition } 9 \\
\geqslant & F\left(m_{0}\right)+F\left(m_{1}\right)+\min \left\{\left\lceil\frac{m_{0}}{2}\right\rceil,\left\lfloor\frac{m_{1}}{2}\right\rfloor\right\}+\min \left\{\left\lfloor\frac{m_{0}}{2}\right\rfloor,\left\lceil\frac{m_{1}}{2}\right\rceil\right\} \\
= & F\left(m_{0}\right)+F\left(m_{1}\right)+\min \left\{m_{0}, m_{1}\right\} .
\end{aligned}
$$

When $m=m_{0}+m_{1}$ is odd, we have $\lceil m / 2\rceil=\left\lceil m_{0} / 2\right\rceil+\left\lceil m_{1} / 2\right\rceil$ and $\lfloor m / 2\rfloor=\left\lfloor m_{0} / 2\right\rfloor+$ 3 $\left\lfloor m_{1} / 2\right\rfloor$:

$$
\begin{aligned}
F(m)= & F\left(\left\lceil\frac{m}{2}\right\rceil\right)+F\left(\left\lfloor\frac{m}{2}\right\rfloor\right)+\left\lfloor\frac{m}{2}\right\rfloor \text { by Definition } 9 \\
\geqslant & F\left(\left\lceil\frac{m_{0}}{2}\right\rceil\right)+F\left(\left\lceil\frac{m_{1}}{2}\right\rceil\right)+\min \left\{\left\lceil\frac{m_{0}}{2}\right\rceil,\left\lceil\frac{m_{1}}{2}\right\rceil\right\} \\
& +F\left(\left\lfloor\frac{m_{0}}{2}\right\rfloor\right)+F\left(\left\lfloor\frac{m_{1}}{2}\right\rfloor\right)+\min \left\{\left\lfloor\frac{m_{0}}{2}\right\rfloor,\left\lfloor\frac{m_{1}}{2}\right\rfloor\right\}+\left\lfloor\frac{m}{2}\right\rfloor
\end{aligned}
$$

by the inductive hypothesis

$$
\begin{aligned}
= & F\left(m_{0}\right)+F\left(m_{1}\right)+\min \left\{\left\lceil\frac{m_{0}}{2}\right\rceil,\left\lceil\frac{m_{1}}{2}\right\rceil\right\}+\min \left\{\left\lfloor\frac{m_{0}}{2}\right\rfloor,\left\lfloor\frac{m_{1}}{2}\right\rfloor\right\} \\
& +\left\lfloor\frac{m}{2}\right\rfloor-\left\lfloor\frac{m_{0}}{2}\right\rfloor-\left\lfloor\frac{m_{1}}{2}\right\rfloor \text { by Definition } 9 \\
= & F\left(m_{0}\right)+F\left(m_{1}\right)+\min \left\{\left\lceil\frac{m_{0}}{2}\right\rceil,\left\lceil\frac{m_{1}}{2}\right\rceil\right\}+\min \left\{\left\lfloor\frac{m_{0}}{2}\right\rfloor,\left\lfloor\frac{m_{1}}{2}\right\rfloor\right\} \\
= & F\left(m_{0}\right)+F\left(m_{1}\right)+\min \left\{m_{0}, m_{1}\right\} .
\end{aligned}
$$

Lemma 12. $F(m)=\frac{1}{2} m \log _{2} m$ if $m=2^{l}$ for some l.
Proof. Use Definition 9 and induct on m.

It turns out that $F(m)$ exactly captures the quantity of interest.

ARTICLE IN PRESS

M. Weizhen, D.M. Nicol/ Discrete Applied Mathematics III (IIII) III-III

$\mathrm{m}=3$

$\mathrm{m}=4$

$\mathrm{m}=5$

$\mathrm{m}=6$

Fig. 5. Subgraphs of a hypercube achieving internal edge count $F(m)$.

1 Theorem 13. $e_{2, n}(m)=F(m)$.
Proof. Since a hypercube of n dimensions contains two composite subcubes, each of which is a hypercube of $n-1$ dimensions, assume that m_{0} and m_{1} nodes are chosen in the 0th and 1st composite subcubes, respectively. By Proposition 5,

$$
\begin{aligned}
& e_{2, n}(0)=e_{2, n}(1)=0, \\
& e_{2, n}(m) \leqslant \max _{\forall \sum m_{i}=m}\left\{e_{2, n-1}\left(m_{0}\right)+e_{2, n-1}\left(m_{1}\right)+\min \left\{m_{0}, m_{1}\right\}\right\} .
\end{aligned}
$$

5 First, we prove by induction on m that $e_{2, n}(m) \leqslant F(m)$. When $m=0,1, e_{2, n}(m)=$ $F(m)=0$. Assume that the inequality holds for cases $\leqslant m-1$. Now consider the case 7 of m :

$$
\begin{aligned}
e_{2, n}(m) & \leqslant \max _{\forall \sum m_{i}=m}\left\{e_{2, n-1}\left(m_{0}\right)+e_{2, n-1}\left(m_{1}\right)+\min \left\{m_{0}, m_{1}\right\}\right\} \\
& \leqslant \max _{\forall \sum m_{i}=m}\left\{F\left(m_{0}\right)+F\left(m_{1}\right)+\min \left\{m_{0}, m_{1}\right\}\right\}
\end{aligned}
$$

by the inductive hypothesis
$\leqslant F(m)$ by Lemma 11.
Next, we prove that there exists a subgraph S_{m} of m nodes such that the number of internal edges in S_{m} is $F(m)$. Here is how we can allocate the m nodes for S_{m} : Allocate $\lceil m / 2\rceil$ nodes into the 0 th composite subcube and $\lfloor m / 2\rfloor$ nodes into the 1 st composite subcube. It is obvious that the number of internal edges in S_{m} is exactly $F(m)$.

This theorem tells us about the structure of a subgraph with exactly $F(m)$ internal edges-it is possible to bisect this subgraph evenly with exactly $\lfloor m / 2\rfloor$ edges between the two pieces, which are themselves optimal with respect to their sizes. Fig. 5 illustrates optimal subgraphs of a hypercube for $m=3-6$. Note that these subgraphs are 7 also cubish polyhedrons as defined in the previous section, matching the result proved in Theorem 7.

DAM2954

ARTICLE IN PRESS
14
M. Weizhen, D.M. Nicol/ Discrete Applied Mathematics III (III) III-III

Fig. 6. Rearrangement procedure from S_{m} to $\mathscr{F}_{k}(m)$.

4.2. 2-D tori

The edge isoperimetric subgraph in a 2-D torus (k-ary 2-cube) may or may not contain wrap-around edges. If it has no wrap-around edges, by Theorem 7 it must be a cubish polyhedron, which in the 2-D plane becomes a squarish polygon that grows like edges, it must be a flat polygon containing as many wrap-around edges as possible.
We explain what this means.
Let m be the number of nodes in a subgraph S_{m} with at least one wrap-around edge.
9 If we divide the node set into layers along any one of the two dimensions, rearrange the layers of nodes so that they are ordered by sizes (node counts in the layers), and place of m nodes. This rearrangement procedure can be depicted by the first step in Fig. 6. Clearly, $e\left(S_{m}\right) \leqslant e\left(S_{m}^{\prime}\right)$. In subgraph S_{m}^{\prime}, the bottommost layer is full, i.e., it contains all k nodes and one wrap-around edge. We continue moving nodes from the topmost layer to the bottommost layer that is not full, one by one and without decreasing the total number of internal edges in the subgraph, until there is at most one layer at the top If $m=x k+y$ for $0 \leqslant y \leqslant m-1$, then $\mathscr{F}_{k}(m)$ has x full layers of k nodes each and depicted by the second step in Fig 6. Clearly, $e\left(S^{\prime}\right) \leqslant e\left(\mathscr{F}_{k}(m)\right)$, where $e\left(\mathscr{F}_{k}(m)\right)$ is the number of internal edges in $\mathscr{F}_{k}(m)$. So we have the following lemma.

Lemma 14. $\mathscr{F}_{k}(m)$ has the maximum internal edge count among all subgraphs S_{m} of m nodes with at least one wrap-around edge in a 2-D torus.

Proof. By the rearrangement procedure illustrated in Fig. 6, any subgraph S_{m} with at least one wrap-around edge can be transformed, without decreasing the internal edge count, to a subgraph S_{m}^{\prime} with all the layers ordered by sizes and nodes put next to each other within each layer. The subgraph S_{m}^{\prime} can then be transformed, again without decreasing the internal edge count, to a 2-D flat polyhedron which contains the most full layers for the given m. So we have

$$
e\left(S_{m}\right) \leqslant e\left(\mathscr{F}_{k}(m)\right)
$$

DAM 2954

ARTICLE IN PRESS

5 Lemma 15. $e\left(\mathscr{C}_{2}(m)\right)=\lfloor 2 m-2 \sqrt{m}\rfloor$, where $e\left(\mathscr{C}_{2}(m)\right)$ (equivalent to $e_{2}(m)$ used in Section 3) is the number of internal edges in $\mathscr{C}_{2}(m)$.

7 Proof. Note that a cubish polyhedron is defined in Section 3 under the assumption that all wrap-around edges are discounted. Therefore, $\mathscr{C}_{2}(m)$ does not include any 9 wrap-around edges. We consider four cases.

If $m=l^{2}$ for some integer l, then $\mathscr{C}_{2}(m)$ is a square mesh of size $l \times l$. So $e\left(\mathscr{C}_{2}(m)\right)=$ $2 l(l-1)=2 l^{2}-2 l=2 m-2 \sqrt{m}=\lfloor 2 m-2 \sqrt{m}\rfloor$.

If $m=l(l-1)$ some integer l, then $\mathscr{C}_{2}(m)$ is a mesh of size $l \times(l-1)$. So

21 the exactly same formula of $\lfloor 2 m-2 \sqrt{m}\rfloor$ for infinite 2-D meshes.
Lemma 16.

$$
e\left(\mathscr{F}_{k}(m)\right)= \begin{cases}m-1 & \text { if } m<k, \\ 2 m-k & \text { if } m=x k \text { for } 1 \leqslant x \leqslant k-1, \\ 2 m-k-1 & \text { if } m=x k+y \text { for } 1 \leqslant x \leqslant k-2 \\ & 1 \leqslant y \leqslant k-1, \\ 2 m-k-1+(m \bmod k) & \text { if } m=x k+y \text { for } x=k-1 \\ & 1 \leqslant y \leqslant k-1, \\ 2 m & \text { if } \left.m=k^{2} \text { (maximum node count }\right) .\end{cases}
$$

23 Proof. The proof contains a simple count of edges in $\mathscr{F}_{k}(m)$ for each of the five cases defined in the lemma. See Fig. 7 for the example of $k=4$.

Combining the lemmas above, we have the following theorem that gives the exact internal edge count for the edge isoperimetric subgraph of m nodes in a 2-D torus.

27 Theorem 17. $e_{k, 2}(m)=\max \left\{e\left(\mathscr{C}_{2}(m)\right), e\left(\mathscr{F}_{k}(m)\right)\right\}$, where the formulas for $e\left(\mathscr{C}_{2}(m)\right)$ and $e\left(\mathscr{F}_{k}(m)\right)$ are given in Lemmas 15 and 16.

DAM2954

ARTICLE IN PRESS

16
M. Weizhen, D.M. Nicol/Discrete Applied Mathematics III (III) III-III

Case 1

Case 2

Case 3

Case 4

Case 5

Fig. 7. Counting edges in $\mathscr{F}_{4}(m)$.

1 Proof. The theorem follows immediately from the discussion in this subsection.

4.3. Subgraphs in k-ary n-cubes of high dimensions

3 We now consider another special case of k-ary n-cubes and show how to compute the maximum internal edge count of a subgraph. We make the following assumptions:
$5 \quad k \geqslant 4$ and $n \geqslant \log m$ (or equivalently, $m \leqslant 2^{n}$). We observe that the special case under the assumptions is rather general since it includes a large class of different k-ary
$7 n$-cubes. In what follows, we show that $F(m)$, the function defined in Section 4.1, again captures the quantity of interest.

9 Lemma 18. $F(m) \geqslant \sum_{i=0}^{k-1} F\left(m_{i}\right)+m-\max _{0 \leqslant i \leqslant k-1}\left\{m_{i}\right\}+\min _{0 \leqslant i \leqslant k-1}\left\{m_{i}\right\}$ for $\sum_{i=0}^{k-1} m_{i}$ $=m$ and $k \geqslant 4$.

11 Proof. Assume that $m_{0} \geqslant m_{1} \geqslant \cdots \geqslant m_{k-1} \geqslant 0$. Let l be the smallest index such that $\sum_{i=0}^{l} m_{i} \geqslant m / 2$. Clearly, $\sum_{i=0}^{l-1} m_{i}<m / 2$ and $\sum_{i=l}^{k-1} m_{i}>m / 2$. This also implies that $l<k-l$. So $l<k / 2$. We have

$$
\begin{aligned}
F(m) & \geqslant F\left(\sum_{i=0}^{l} m_{i}\right)+F\left(\sum_{i=l+1}^{k-1} m_{i}\right)+\min \left\{\sum_{i=0}^{l} m_{i}, \sum_{i=l+1}^{k-1} m_{i}\right\} \text { by Lemma } 11 \\
& \geqslant \sum_{i=0}^{k-1} F\left(m_{i}\right)+A+B+C \text { by Lemma } 11 \text { repeatedly }
\end{aligned}
$$

where

$$
\begin{aligned}
& A=\min \left\{\sum_{i=0}^{l} m_{i}, \sum_{i=l+1}^{k-1} m_{i}\right\}, \\
& B=\sum_{i=0}^{l-1} \min \left\{m_{i}, \sum_{j=i+1}^{l} m_{i}\right\}
\end{aligned}
$$

15
and

$$
C=\sum_{i=l+1}^{k-2} \min \left\{m_{i}, \sum_{j=i+1}^{k-1} m_{i}\right\} .
$$

DAM 2954

ARTICLE IN PRESS

M. Weizhen, D.M. Nicol/Discrete Applied Mathematics III (III) III-III

1 Next, we wish to prove that $A+B+C \geqslant m-m_{0}+m_{k-1}$. Since $\sum_{i=0}^{l} m_{i} \geqslant m / 2, A=$ $\sum_{i=l+1}^{k-1} m_{i}$. Since $l<k / 2$ and $k \geqslant 4, l+1 \leqslant k-2$. So there is at least one term in C.
3 Therefore, $C \geqslant m_{k-1}$. How large is B ? If $l=0$, then $B=0$ and $A+B+C \geqslant \sum_{i=1}^{k-1} m_{i}+$ $m_{k-1}=m-m_{0}+m_{k-1}$. If $l=1$, then $B=m_{1}$ and $A+B+C \geqslant \sum_{i=2}^{k-1} m_{i}+m_{1}+m_{k-1}=m-$ $5 m_{0}+m_{k-1}$. Now assume that $l \geqslant 2$. B must have at least two terms. If $m_{h} \leqslant \sum_{i=h+1}^{l} m_{i}$ for all $h=0, \ldots, l-2$, then $B=\sum_{i=0}^{l-2} m_{i}+m_{l}$ and $A+B+C \geqslant \sum_{i=l+1}^{k-1} m_{i}+\sum_{i=0}^{l-2} m_{i}+$ $7 m_{l}+m_{k-1} \geqslant m-m_{0}+m_{k-1}$. If there is h in $[0, l-2]$ such that $m_{h}>\sum_{i=h+1}^{l} m_{i}$ (choose the smallest h if there is more than one), then $B \geqslant \sum_{i=0}^{h-1} m_{i}+\sum_{i=h+1}^{l} m_{i}$ and $9 \quad A+B+C \geqslant \sum_{i=l+1}^{k-1} m_{i}+\sum_{i=0}^{h-1} m_{i}+\sum_{i=h+1}^{l} m_{i}+m_{k-1} \geqslant m-m_{0}+m_{k-1}$.

Theorem 19. $e_{k, n}(m)=F(m)$ for $k \geqslant 4$ and $n \geqslant \log m$.
11 Proof. Since a k-ary n-cube contains k composite subcubes, each of which is a k-ary ($n-1$)-cube, assume that m_{i} nodes are chosen in the i th composite subcube for $13 \quad 0 \leqslant i \leqslant k-1$. By Proposition 5,

$$
\begin{aligned}
& e_{k, n}(0)=e_{k, n}(1)=0 \\
& e_{k, n}(m) \leqslant \max _{\forall \sum m_{i}=m}\left\{\sum_{i=0}^{k-1} e_{k, n-1}\left(m_{i}\right)+m-\max _{0 \leqslant i \leqslant k-1}\left\{m_{i}\right\}+\min _{0 \leqslant i \leqslant k-1}\left\{m_{i}\right\}\right\} .
\end{aligned}
$$

Similar to Theorem 13, we can prove by induction on m that $e_{k, n}(m) \leqslant F(m)$, using above recursive definition of $e_{k, n}(m)$, the inductive hypothesis, and Lemma 18 .
Also similar to Theorem 13, a subgraph S_{m} of $m \leqslant 2^{n}$ nodes with $F(m)$ internal edges can be constructed by allocating $\lceil m / 2\rceil$ nodes into the 0 th composite subcube and $\lfloor m / 2\rfloor$ nodes into the 1 st composite subcube; the same method is then used recursively to allocate the nodes in each composite subcube.

5. Applications to graph partitioning

The problem of partitioning graphs for parallel processing is studied extensively [4, 12, 15, 16]. In a k-ary n-cube that represents a parallel program, nodes are tasks with node weights representing computation costs, and edges are message-passing links between tasks with edge weights representing communication costs [8,11]. Recall that for any subgraph, an internal edge is one with two endpoints in the subgraph and an external edge is one with one endpoint in the subgraph. Viewing the subgraph as the set of nodes (tasks) assigned to a processor, the sum of weights on external edges is a measure of the communication cost between processors. (Note that the internal edge weights are usually discounted since the communications they represent all happen within one processor and are considered free.) The load of a subgraph is defined to partitioned into P subgraphs, then the bottleneck cost of the partition is the maximum load among all subgraphs in the partition. The graph partitioning problem is to find a partition that minimizes the bottleneck cost.

Fig. 8. Rectilinear partition of an 8×8 torus.

The applications of the edge isoperimetric property to graph partition are summarized in [3]. Here, we add two more applications. First, our results on edge isoperimetric sub3 graphs for k-ary n-cubes may be used in the context of branch-and-bound algorithms for graph partitioning. Our object here is neither to propose the specifics of such an 5 algorithm neither to study its performance. The ability to construct lower bounds on communication costs based only on subgraph node size is one that can be used in a 7 variety of branch-and-bound formulations, and for a variety of partitioning problem formulations. We illustrate its use in one specific case. Second, our theoretical results can
9 also be used to show the optimality of some curiously shaped partitions. An example of this application is shown.

5.1. Lower bounding in branch-and-bound algorithms

Let us consider the rectilinear partitioning [13] in a k-ary n-cube graph, where the separating cuts that define the partition are all hyperplanes of the form $x_{i}=c_{i j}$, a constant. A rectilinear partition of an 8×8 torus is illustrated in Fig. 8 .

Since the problem of rectilinear partitioning is generally intractable, branch-andbound algorithms [6] may be used to find an optimal partitioning within a reasonable amount of time. The key in a branch-and-bound algorithm is the construction of a search tree. For rectilinear partitioning, a node in the branch-and-bound search tree reflects a set of cuts already made, where the root reflects an empty cut set. The children of a node reflect various ways of choosing one additional cut. If there are search tree. We assume that the relative positioning of the cut associated with a level is known a priori, e.g., the cut in the third dimension whose cut coordinate is the fifth smallest. Selecting the cut order is part of the branch-and-bound solution, but our focus here is on the lower bounding function needed for the branch-and-bound approach.

For every node N in the search tree we associate a function $\operatorname{bnd}(N)$, that provides a lower bound on the bottleneck cost of any solution rooted at that node. Function $\operatorname{bnd}(N)$ can be used to direct the search in different ways, e.g., in choosing the next

DAM 2954

ARTICLE IN PRESS

1 node to explore or in pruning the search beyond that node because a known solution is better than any solution rooted at N. We are interested in defining an easily computed function $\operatorname{bnd}(N)$ which provides a tight lower bound.

Each node N reflects the partitioning of the graph into some number of regions. Furthermore, under our assumptions we know how many further divisions will be applied to each region. Consider a region R, to be further divided into s subregions.
7 Suppose that the number of nodes in region R is r, that the sum of all node weights in R is W_{R}, and that the edge weights of all edges with at least one node in R are
9 sorted in list E in non-decreasing order.
We wish to construct a lower bound $l b(R)$ on the minimal bottleneck cost due to

- ability to compute sizes (node counts) of subregions $m_{1}, m_{2}, \ldots, m_{s}$, for $\sum_{i=1}^{s} m_{i}=r$,
13 such that $\sum_{i=1}^{s} C\left(m_{i}\right)$ is minimized, where $C\left(m_{i}\right)$ is the external edge count (cost) of an edge isoperimetric subgraph with m_{i} nodes. Note that since all nodes in a k-ary
$15 n$-cube have the same degree d, which is n for $k=2$ and $2 n$ for $k \geqslant 3$, we have that $C\left(m_{i}\right)=d m_{i}-2 e_{k, n}\left(m_{i}\right)$. Solution to this minimization problem even when modified to
17 include a constraint $m_{i} \leqslant B$ for all i, is straightforward using dynamic programming.
The construction of $l b(R)$ has three phases. First, we compute the vector $\mathbf{m}=$
$19\left(m_{1}, \ldots, m_{s}\right)$ that minimizes $\sum_{i=1}^{s} C\left(m_{i}\right)$; this reflects an idealized assignment of numbers of graph nodes to processors in such a way that the total number of edges cut i th component w_{i} is the sum of the weights of the first $C\left(m_{i}\right)$ edges in E. Vector \mathbf{w} reflects lower bounds on communication costs under assignment \mathbf{m}. Without loss of generality, suppose that w_{1} is the largest component. We define the slack of \mathbf{w} as

$$
\operatorname{slack}(\mathbf{w})=\sum_{i=2}^{s}\left(w_{1}-w_{i}\right)
$$

Third, we consider the following two cases.
The first case of interest is when $\operatorname{slack}(\mathbf{w}) \leqslant W_{R}$. This means that if we treat the have workload remaining. The remnant may be divided evenly among the s processors. This is illustrated in Fig. 9(a). So

$$
l b(R)=W_{R}+\sum_{i=1}^{s} w_{i} s
$$

31 The correctness of the bound is evident by the fact that the total load (sum of computation and communication) is minimized, and that no processor is ever idle.

The second case of interest occurs when $\operatorname{slack}(\mathbf{w})>W_{R}$, as illustrated by Fig. 9(b). In this case the bottleneck is entirely communication induced, and the maximum number of nodes assigned to a processor must be driven down. This may increase the total communication cost, but will also decrease the bottleneck cost. To reduce the bottleneck cost we constrain the assignment $m_{i} \leqslant B$ for all i; for each B considered we may compute the slack of the corresponding weight vector, and determine whether it exceeds W_{R}. Using a binary search on B we may find the least value B^{*} such that

DAM2954

ARTICLE IN PRESS

20

Fig. 9. Computation of lower bound on bottleneck cost. (a) Slack is less than total computation and (b) Slack exceeds total computation.

1 the corresponding slack exceeds W_{R}. Let $\mathbf{w}=\left(w_{1}, \ldots, w_{s}\right)$ and $\mathbf{w}^{\prime}=\left(w_{1}^{\prime}, \ldots, w_{s}^{\prime}\right)$ be the weight vectors derived from using $B^{*}-1$ and B^{*} as constraints, respectively. Then we 3 make the lower bound to be

$$
l b(R)=\min \left\{\frac{W_{R}+\sum_{i=1}^{s} w_{i}}{s}, w_{1}^{\prime}\right\}
$$

We need not consider any bottleneck derived from using any constraint B larger than
$5 B^{*}$, since the bottleneck cost is monotonically non-decreasing in $\max \left\{m_{i}\right\}$, which is monotonically non-decreasing in B. Also, we need not consider any bottleneck derived
7 from using any constraint B less than $B^{*}-1$, since in this case no processor is idle, and the total communication cost is at least as large as that derived from using $B^{*}-1$.
9 The procedure above shows how to bound from below the potential least bottleneck cost for each region reflected by node N in the branch-and-bound search tree. Applying
11 this method to each such region, we define $\operatorname{bnd}(N)$ as the greatest of these lower bounds, i.e.,

$$
\operatorname{bnd}(N)=\max _{\forall R \in N}\{l b(R)\}
$$

13 It should be noted that for a given number of processors P, and a given total workload W_{R}, the partition whose bottleneck cost is the least is not necessarily one where the
15 workload is spread evenly. For instance, consider an 8×8 torus to be partitioned into two regions. If each node has weight 4 and each edge has weight 1 , then the
17 optimal solution is to bisect the graph into two equal pieces, with a bottleneck cost of $4 \times 32+8=136$. However, the graph that weights one node by 128 and all other nodes
19 by $\frac{128}{63}$ is optimally partitioned by isolating the heavy node, with a bottleneck cost of $128+4=132$. Realization that minimized bottleneck costs need not be associated with
21 evenly spread workload (and equi-partitions) leads us to the careful construction of $\operatorname{bnd}(N)$ given.

Fig. 10. Optimal partition of an 8 -ary 2 -cube into 13 subgraphs.

5.2. Identifying optimal partitions

Another application of our results is to identify optimal partitions (with respect to the bottleneck metric), even when those partitions are not entirely regular. Consider the problem of partitioning an 8 -ary 2 -cube (an 8×8 torus) into 13 subgraphs, assuming that all nodes have common computation weight w_{1} and all edges have common communication weight w_{2}. The problem clearly does not divide evenly. The minimal load of a subgraph of m nodes assigned to a processor is $w_{1} m+w_{2} C(m)$, where $C(m)$ is the minimum external edge count of a subgraph with m nodes. Since the 8 -ary 2 -cube is a regular graph with degree 4 for each node and the maximum internal edge count of a subgraph with m nodes is $e_{8,2}(m)$, which can be computed constructively according to our main theorem in Section 3, we then have $C(m)=4 m-2 e_{8,2}(m)$. Note that the C function increases monotonically in m.

The processor with the most nodes assigned will have at least $\lceil 64 / 13\rceil=5$ nodes. The optimal subgraph (which is an edge isoperimetric subgraph) of the 8 -ary 2 -cube with 5 nodes is a square of 4 nodes, with an attached singleton node. As illustrated in Fig. 10, it is possible to nearly tessellate the 8 -ary 2 -cube with this optimal subgraph, the only exception being one subgraph (the center square) which is itself an optimal subgraph of 4 nodes. The optimality of this partition derives from the fact that $w_{1} m+$ $w_{2} C(m)$ is monotonically non-decreasing in m, so that the bottleneck cost $\max \left\{w_{1} m_{1}+\right.$ $\left.w_{2} C\left(m_{1}\right), \ldots, w_{1} m_{13}+w_{2} C\left(m_{13}\right)\right\}$ is minimized when the m_{i} 's are nearly equal. The partition shown achieves the lower bound of $5 w_{1}+C(5) w_{2}=5 w_{1}+10 w_{2}$.

There is clearly a general principle at work here, for uniformly weighted graphs. If there are M nodes to be assigned to P processors, then at least one processor will receive $m=\lceil M / P\rceil$ nodes. When the processor cost function is monotonically non-decreasing as a function of the number of nodes assigned to it, $w_{1} m+w_{2} C(m)$ is a lower bound on the optimal bottleneck cost, C being the appropriate minimized

DAM2954

ARTICLE IN PRESS

1 function for communication cost. If it is possible to partition the graph so that no processor has cost greater than $w_{1} m+w_{2} C(m)$, then that partition is optimal.

6. Conclusions

In this paper, we have studied combinatorial properties of k-ary n-cube graphs. The class of k-ary n-cubes reflect common parallel processing architectures as well as communication patterns. In addition, its special cases includes some widely used

References

[1] R. Ahlswede, S.L. Bezrukov, Edge isoperimetric theorems for integer point arrays, Appl. Math. Lett. 8 (1995) 75-80.
[2] Y. Ashir, I. Stewart, A. Ahmed, Communication algorithms in k-ary n-cube interconnection networks, Inform. Process. Lett. 61 (1997) 43-48.
[3] S.L. Bezrukov, Edge isoperimetric problems on graphs, in: L. Lovasz, A. Gyarfas, G.O.H. Katona, A. Recski, L. Szekely (Eds.), Graph Theory and Combinatorial Biology, American Mathematical Society, Providence, RI, 1999, pp. 157-197.

DAM2954

ARTICLE IN PRESS

[4] S.H. Bokhari, Partitioning problems in parallel, pipelined, and distributed computing, IEEE Trans. Comput. 37 (1988) 48-57.
[5] B. Bollobás, I. Leader, Edge-isoperimetric inequalities in the grid, Combinatorica 11 (1991) 299-314.
[6] G. Brassard, P. Bratley, Algorithms: Theory and Practice, Prentice-Hall, Englewood Cliffs, NJ, 1988.
[7] W.J. Dally, Performance analysis of k-ary n-cube interconnection networks, IEEE Trans. Comput. 39 (1990) 775-785.
[8] P. Dickens, P. Heidelberger, D.M. Nicol, A distributed memory LAPSE: parallel simulation of message-passing programs, in: Proceedings of the Eighth Workshop on Parallel and Distributed Simulation, 1994, pp. 32-38.
[9] F. Harary, H. Harborth, Extremal animals, J. Combin. Inform. System Sci. 1 (1976) 1-8.
[10] L.H. Harper, Optimal assignment of numbers to vertices, SIAM J. Appl. Math. 12 (1964) 131-135.
[11] C. McCann, J. Zahorjan, Processor allocation policies for message-passing parallel computers, in: Proceedings of the 1994 SIGMETRICS Conference, 1994, pp. 19-32.
[12] G. Miller, S.-H. Teng, W. Thurston, S.A. Vavasis, Automatic mesh partitioning, in: Graph Theory and Sparse Matrix Computation, Springer, Berlin, 1993.
[13] D.M. Nicol, Rectilinear partitioning of irregular data parallel computations, J. Parallel Distributed Comput. 23 (1994) 119-134.
[14] D.M. Nicol, W. Mao, On bottleneck partitioning of k-ary n-cubes, Parallel Process. Lett. 6 (1996) 389-399.
[15] A. Pothen, H.D. Simon, K.P. Liou, Partitioning sparse matrices with eigenvectors of graphs, SIAM J. Matrix Anal. Appl. 11 (1990) 430-452.
[16] D.A. Reed, L.M. Adams, M.L. Patrick, Stencils and problem partitionings: their influence on the performance of multiple processor systems, IEEE Trans. Comput. 36 (1987) 845-858.

[^0]: * Corresponding author.

 E-mail address: wm@cs.wm.edu (M. Weizhen).

