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Abstract7

Many parallel processing applications have communication patterns that can be viewed as

graphs called k-ary n-cubes, whose special cases include rings, hypercubes and tori. In this paper,9
combinatorial properties of k-ary n-cubes are examined. In particular, the problem of character-

izing the subgraph of a given number of nodes with the maximum edge count is studied. These11
theoretical results are then applied to compute a lower bounding function in branch-and-bound

partitioning algorithms and to establish the optimality of some irregular partitions. ? 2002 Pub-13
lished by Elsevier Science B.V.
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1. Introduction

In a k-ary n-cube [2,7,14], each node is identi�ed by an n-bit base-k address17

bn−1 : : : bi : : : b0, and for each dimension i = 0; 1; : : : ; n − 1, the node is connected by

edges to nodes with addresses bn−1 : : : bi ± 1 (mod k) : : : b0.19

We can also de�ne k-ary n-cubes recursively. First, we de�ne a ring of k nodes

labeled 0; 1; : : : ; k − 1 to be a graph with edges between i and i + 1 (mod k) for i =21

0; 1; : : : ; k − 1. When k = 1, a ring is a point. When k = 2, a ring is two nodes sharing

an edge. When k¿ 3, a ring is a conventional ring. The recursive de�nition of k-ary23

n-cubes is as follows:

Hypothesis 1. A k-ary 1-cube is a ring of k nodes. Without loss of generality; we25

place the k nodes on a line; and call the leftmost node the 0th position node and the

rightmost node the (k − 1)th position node.27

∗ Corresponding author.

E-mail address: wm@cs.wm.edu (M. Weizhen).

0166-218X/02/$ - see front matter ? 2002 Published by Elsevier Science B.V.

PII: S0166 -218X( 02) 00 23 8 -X



UNCORRECTED P
ROOF

2 M. Weizhen, D.M. Nicol / Discrete Applied Mathematics ( ) –

DAM2954

ARTICLE IN PRESS
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3-ary 1-cube 3-ary 1-cube 3-ary 1-cube

Fig. 1. A 3-ary 2-cube.

Table 1

Special cases of k-ary n-cubes

k x

1 2 ¿ 3

1 Point (ring) Point (torus) Point

2 Edge (hypercube=ring) Square (hypercube=torus) Hypercube

¿ 3 Ring Torus k-Ary n-cube

Hypothesis 2. A k-ary n-cube contains k composite subcubes; each of which is a k-ary1

(n − 1)-cube; placed from left to right. For each position i = 0; : : : ; kn−1 − 1; edges

between composite subcubes are de�ned by connecting all k ith position nodes into a3

ring.

Further, a k-ary n-cube can also be viewed as an n-dimensional (n-D) torus, which5

is a k × · · · × k
︸ ︷︷ ︸

n

mesh with wrap-around edges.

The second and the third de�nitions of k-ary n-cubes provide two ways of drawing7

the graphs. See Fig. 1 for an example.

The class of k-ary n-cubes contains as special cases many topologies important to9

parallel processing, such as rings, hypercubes, and tori. Hence, a thorough study of

k-ary n-cubes is necessary. Table 1 summarizes the special cases of k-ary n-cubes. In11

the table the �rst column contains values of k and the �rst row contains values of n.

In this paper, we study combinatorial properties of k-ary n-cubes and their applica-13

tions to the graph partitioning problem for parallel processing. We organize the paper

as follows. In Section 2, we give some simple properties of k-ary n-cubes. In Section15

3, we give a visual description of edge isoperimetric subgraphs, which are subgraphs

of a �xed node count in k-ary n-cubes that achieve the maximal internal edge count,17

when the wrap-around edges can be discounted. In Section 4, we give formulas that

compute the maximal edge count in an edge isoperimetric subgraph for three special19

cases. In Section 5, we apply our theoretical results to graph partitioning. Finally in

Section 6, we make our conclusions.21
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2. Combinatorial properties of k-ary n-cubes1

The following combinatorial properties of k-ary n-cubes are easy to verify except

perhaps the last one, for which we provide its proof.3

Proposition 1. A k-ary n-cube has kn nodes.

Proposition 2. A k-ary n-cube contains k composite subcubes; each of which is a5

k-ary (n − 1)-cube; and the number of edges with endpoints in di�erent composite

subcubes is kn−1 for k = 2 and kn for k¿ 3.7

Proposition 3. A k-ary n-cube is a regular graph; meaning that each node has the

same degree. The degree of each node is n for k = 2 and 2n for k¿ 3.9

Proposition 4. The number of edges in a k-ary n-cube is nkn−1 for k = 2 and nkn for

k¿ 3.11

Proposition 5. Consider the recursive de�nition of a k-ary n-cube. In each ith com-

posite subcube with 06 i6 k − 1; which is a k-ary (n − 1)-cube; choose mi nodes.13

De�ne m=
∑k−1

i=0 mi. Then the number of edges with endpoints among these m nodes

but in di�erent composite subcubes is no larger than min{m0; m1} for k = 2 and no15

larger than m− max06i6k−1{mi} + min06i6k−1{mi} for k¿ 3.

Proof. We observe that if the k composite subcubes; which are k-ary (n − 1)-cubes;17

are placed from left to right; any node in one composite subcube is connected to

exactly one node in its neighboring composite subcubes. When k = 2; it is trivial19

that the number of edges with endpoints among the m nodes but in di�erent composite

subcubes is no larger than min{m0; m1}. Now consider k¿ 3. De�ne i+̇1=i+1 (mod k)21

and i−̇1 = i− 1 (mod k). Let mp = max06i6k−1{mi} and mq = min06i6k−1{mi}. Place

k pairs (m0; m1); (m1; m2); : : : ; (mk−2; mk−1); (mk−1; m0) in a circle clockwise. Cut the23

circle into two chains C1 and C2 such that C1 = {(mp; mp+̇1); : : : ; (mq−̇1; mq)} and

C2 = {(mq; mq+̇1); : : : ; (mp−̇1; mp)}. Clearly;25

∑

(mi ;mi+̇1)∈C1

min{mi ; mi+̇1}6
q

∑

i=p+̇1

mi

and
∑

(mi ;mi+̇1)∈C2

min{mi ; mi+̇1}6
p−̇1
∑

i=q

mi :

We observe that the number of edges with endpoints among the m nodes but in di�erent27

composite subcubes is no larger than

min{m0; m1} + · · · + min{mk−2; mk−1} + min{mk−1; m0}

=

k−1∑

i=0

min{mi ; mi+̇1}
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=
∑

(mi ;mi+̇1)∈C1

min{mi ; mi+̇1} +
∑

(mi ;mi+̇1)∈C2

min{mi ; mi+̇1}

6

q
∑

i=p+̇1

mi +

p−̇1
∑

i=q

mi

=

k−1∑

i=0

mi − mp + mq

=m− max
06i6k−1

{mi} + min
06i6k−1

{mi}:

3. Edge isoperimetric subgraphs for k-ary n-cubes1

Given a graph and an integer m, which is no larger than the total number of nodes

in the graph. For any subgraph of m nodes, an internal edge is one with both endpoints3

in the subgraph while an external edge is one with only one endpoint in the subgraph.

An edge isoperimetric subgraph of m nodes is one, among all subgraphs of m node,5

with the maximum number of internal edges. Note that the edge isoperimetric property

is also studied in the context of �nding a subgraph with the minimum number of7

external edges. However, since in this paper the object of interest is k-ary n-cubes,

which are regular graphs with a �xed degree for each node, for subgraphs of m nodes9

minimizing the number of external edges is, in fact, equivalent to maximizing the

number of internal edges. Thus, we focus on edge isoperimetric subgraphs for k-ary11

n-cubes with the maximum number of internal edges.

The edge isoperimetric problems on general graphs are surveyed in [3]. Although13

the edge isoperimetric property for k-ary n-cubes has not been studied directly, there

are a few results relevant to our work. For instance, the construction, based on a15

lexicographic order of nodes, of edge isoperimetric subgraphs in a hypercube is given

in [10], and a similar method is used to determine edge isoperimetric subgraphs in17

an n-D mesh (without wrap-around edges as in k-ary n-cubes) in [1,5]. Our research

di�ers from previous work mainly in that we are interested in a visual description of19

edge isoperimetric subgraphs in k-ary n-cubes. That is, given a k-ary n-cube and an

integer m (no larger than kn), what does a subgraph of m nodes which achieves the21

maximum internal edge count look like? An important assumption we use throughout

this section is that k is so large relative to m that an edge isoperimetric subgraph cannot23

possibly include wrap-around edges. (In Section 4, this assumption will be removed for

the consideration of several special cases.) Intuition tells us that under our assumption25

the maximum number of internal edges, denoted as ek;n(m), can be obtained when the

m nodes are placed as tightly as possible to form a “cubish” polyhedron in the k-ary27

n-cube. In the remainder of this section, we prove that our intuition turns out to be

correct.29

Along any dimension, a subgraph of m nodes in a k-ary n-cube can be partitioned

into layers, each of which contains nodes with the same coordinate in the dimension.31
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Fig. 2. Construction procedure for C2(m).
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Fig. 3. Construction procedure for C3(m).

Furthermore, there may be edges (legs) between adjacent layers in the subgraph. For1

any m, there must exist l¿ 2 and 16 i6 n such that li−1(l − 1)n−i+1 ¡m6 li(l −
1)n−i. Let � = m − li−1(l − 1)n−i+1. We give the following de�nition of a cubish3

polyhedron.

De�nition 6. An n-D cubish polyhedron of m nodes in a k-ary n-cube; denoted as5

Cn(m); is de�ned recursively as follows:

• C1(m) is a line of m adjacent nodes in the k-ary n-cube.7

• Cn(m) contains an n-D mesh of size l× · · · × l
︸ ︷︷ ︸

i−1

× (l− 1) × · · · × (l− 1)
︸ ︷︷ ︸

n−i+1

with

an (n − 1)-D layer Cn−1(�) stacked on its top along dimension i. (Recall that9

m = li−1(l− 1)n−i+1 + �.)

The above procedure of constructing Cn(m) is like making a ball of yarn. The11

idea is to �ll in each side (dimension) with yarn (nodes), one side at a time. Fig. 2

illustrates the construction procedure for C2(m), and Fig. 3 illustrates the procedure for13

C3(m). Let en(m) be the internal edge count in a cubish polyhedron Cn(m). Obviously,

en(m) = en−1(�) + � + en(m− �) according to the recursive de�nition of Cn(m). Note15

that the term � in the equation is the number of legs between the (n−1)-D layer (with
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en−1(�) nodes) and the n-D mesh (with en(m−�) nodes). The (n−1)-D layer stacked1

on top of the n-D mesh is referred to as the top layer. Obviously, the top layer has the

fewest number of nodes among all layers along the chosen dimension i. For a cubish3

polyhedron, we can also de�ne the bottom layer as the layer with nothing below it

along the dimension. Obviously, the bottom layer (as well as the other non-top layers)5

has the most number of nodes.

We next prove that any cubish polyhedron Cn(m) is an edge isoperimetric subgraph7

of m nodes in a k-ary n-cube.

Theorem 7. Cn(m) has the maximum internal edge count among all subgraphs Sm of9

m nodes in a k-ary n-cube; when the wrap-around edges can be discounted.

Proof. We wish to prove that for any subgraph with m nodes; denoted as Sm; the11

number of internal edges; e(Sm); is no larger than that of a cubish polyhedron; en(m).

We prove the theorem by multiple inductions. First we induct on n, the number of13

dimensions. When n = 1, The only way to achieve the maximum internal edge count

is by placing all m nodes next to each other along the dimension, which is exactly the15

case in C1(m). So for any subgraph Sm in a k-ary 1-cube,

e(Sm)6 e1(m):

In the inductive hypothesis, we assume that in any k-ary (n− 1)-cube,17

e(Sm)6 en−1(m) (Hypothesis 1):

Now consider the case of n dimensions. The goal is to prove that for any Sm; e(Sm)6

en(m). We make another induction on m. When m = 1, both e(Sm) and en(m) are 0.19

So

e(Sm)6 en(m):

In the inductive hypothesis, we assume that for any m′
6m− 1,21

e(Sm′)6 en(m
′) (Hypothesis 2):

Now consider the case of m nodes. Let Sm be any subgraph in n dimensions. For any

dimension, Sm can be viewed as having several (n− 1)-D layers of nodes stacked on23

top of each other along the dimension. Choose the dimension with h¿ l layers. (If

all dimensions each has fewer than l layers, then m6 (l − 1)n, which contradicts to25

our assumption that li−1(l− 1)n−i+1 ¡m6 li(l− 1)n−i.) To Sm and along the chosen

dimension, we make the following rearrangement of the nodes:
27

• rearrange the order of the layers by sizes (node counts), and

• within each layer rearrange the nodes into an (n− 1)-D cubish polyhedron.
29

See Fig. 4 for an example of the rearrangement procedure described. (The numbers in

the �gure are the sizes of the layers.)31

Let the subgraph obtained after the rearrangement procedure be S ′m. We know that

in S ′m there are h¿ l layers of (n − 1)-D cubish polyhedrons. Assume that si is the33

size of the ith layer. Then s16 s26 · · ·6 sh. By Hypothesis 1 and the fact that the
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Fig. 4. Rearrangement procedure.

number of legs between adjacent layers is maximized when the layers are ordered by1

sizes, the rearrangement procedure does not decrease the number of internal edges in

the subgraph. So we have3

e(Sm)6 e(S ′m): (1)

Further, for S ′m, the number of internal edges is the sum of the number of edges in the

�rst layer of s1 nodes, the number of legs between the �rst and the second layers, and5

the number of internal edges in the subgraph of m− s1 nodes containing the remaining

h− 1 layers, the last of which is bounded by en(m− s1) by Hypothesis 2. So we have7

e(S ′m)6 en−1(s1) + s1 + en(m− s1): (2)

To continue, we �rst consider the case when s16 �. Recall that li−1(l−1)n−i+1 ¡m6

li(l−1)n−i and �=m−li−1(l−1)n−i+1. Since s16 �, li−1(l−1)n−i+1
6m−s1 ¡li(l−9

1)n−i. Let m− s1 = li−1(l− 1)n−i+1 + �′. Then � = �′ + s1. By De�nition 6, we have

en(m− s1) = en−1(�′) + �′ + en(l
i−1(l− 1)n−i+1): (3)

Also, let S�′+s1
be a subgraph in a k-ary (n−1)-cube, consisting of cubish polyhedrons11

Cn−1(�′) and Cn−1(s1) and some connecting edges in between. By Hypothesis 1, we

have13

en−1(�)¿ e(S�′+s1
)

¿ en−1(�′) + en−1(s1): (4)

Therefore,

e(Sm)6 e(S ′m) by Eq: (1)

6 en−1(s1) + s1 + en(m− s1) by Eq: (2)

= en−1(s1) + s1 + en−1(�′) + �′ + en(l
i−1(l− 1)n−i+1) by Eq: (3)

= en−1(s1) + en−1(�′) + � + en(l
i−1(l− 1)n−i+1)

6 en−1(�) + � + en(l
i−1(l− 1)n−i+1) by Eq: (4)

= en(m) by De�nition 6:

Next, we consider the case when s1 ¿�. By De�nition 6, we know that Cn(m− �) is15

in fact an n-D mesh with li−1(l − 1)n−i+1 nodes. Cn(m − �) can also be viewed as
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having l (or l − 1 if i = 1) layers stacked on top of each other, where each layer is1

an (n− 1)-D mesh of L nodes. Clearly,

L =

{

(l− 1)n−1 if i = 1;

li−2(l− 1)n−i+1 if i¿ 2:

We can show that s1 ¡L+�. Suppose not. We must have m=s1+· · ·+sh¿ hs1¿ ls1¿3

lL+ l�¿ lL+�¿m, which is impossible. De�ne l′ = l−1 if i= 1 and l′ = l if i¿ 2.

Since s1 ¡L+ �, together with the previous assumption that s1 ¿� and the de�nition5

of m=l′L+�, it is easy to obtain that (l′−1)L¡m−s1 ¡l′L. Let m−s1=(l′−1)L+�′,

where �′¡L. Then s1 + �′ = L + �. So by De�nition 6,7

en(m− s1) = en−1(�′) + �′ + en((l
′ − 1)L): (5)

Therefore,

e(Sm)6 e(S ′m) by Eq: (1)

6 en−1(s1) + s1 + en(m− s1) by Eq: (2)

= en−1(s1) + s1 + en−1(�′) + �′ + en((l
′ − 1)L) by Eq: (5):

On the other hand, we have9

en(m) = en−1(�) + � + en(l
′L) by De�nition 6

= en−1(�) + � + en−1(L) + L + en((l
′ − 1)L) by De�nition 6:

To show that e(Sm)6 en(m), all we need to prove is that for s1 + �′ = L + �,

en−1(s1) + en−1(�′)6 en−1(L) + en−1(�):

The inequality is trivially true when s1 = L. Next, we prove the inequality for two11

cases: s1 ¡L and s1 ¿L. The ideas used for both the cases are similar. We start

with two cubish polyhedrons in n − 1 dimensions of node counts s1 and �′, respec-13

tively. Obviously, the total number of internal edges in the two initial polyhedrons

is en−1(s1) + en−1(�′). Then we move nodes from one polyhedron to the other until15

the node counts of the polyhedrons become L and �, respectively. Obviously, the total

number of internal edges in the two �nal polyhedrons is en−1(L) + en−1(�). If we can17

guarantee that the total number of internal edges of the polyhedrons does not decrease

during the move. Then the inequality holds true.19

Suppose s1 ¡L. We prove by yet another induction on the number of dimensions

n−1 that en−1(s1) +en−1(�′)6 en−1(L) +en−1(�), where s1; �
′¡L and s1 +�′ =L+�.21

When n−1=1, it is a trivial case. Assume that the inequality holds for n−2 dimensions

(Hypothesis 3). Now consider the case of n − 1 dimensions. Since both s1 and �′23

are less than L, without loss of generality, assume that s1¿ �′. (The case s1 ¡�′ is

symmetric.) Next, we describe how to move nodes from Cn−1(�′) to Cn−1(s1). First,25

initialize subgraphs A and B to be Cn−1(s1) and Cn−1(�′), respectively. The node

count in A, denoted as |A|, is then s1, and the node count in B, denoted as |B|, is �′.27
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Consider A as a cubish polyhedron of several (n − 2)-D layers of size L′ each plus1

one top layer of a6L′ nodes and a legs, and B as a cubish polyhedron of several

(n− 2)-D layers of size L′′ each plus one top layer of b6L′′ nodes and b legs. Since3

|A|¿ |B|; A completely contains B. So L′¿L′′. We next apply the following step to

move nodes from B to A. If b6L − |A|, move the top layer Cn−2(b) together with5

its b legs and attach it to the bottom layer of A. we can do this because b6L′′6L′,

which implies that the bottom layer of A is large enough to have the top layer of7

B attached without changing the remaining structure of the subgraph. After the move

we rearrange the two subgraphs into cubish polyhedrons again. (Note that at this time9

A; B, L′; L′′; a, and b should be updated to reect the resulting cubish polyhedrons.)

It is clear that this step does not decrease the total edge count in the two subgraphs11

according to Hypothesis 1. That is,

en−1(s1) + en−1(�′)6 en−2(a) + a + en−1(|A| − a) + en−2(b)

+ b + en−1(|B| − b): (6)

We apply the above step until |A| = L or b¿L − |A|. If |A| = L is the terminating13

condition, then A is already a cubish polyhedron with L nodes and B is thus a cubish

polyhedron with s1 + �′ − L = � nodes. So15

en−1(s1) + en−1(�′)

6 en−2(a) + a + en−1(|A| − a) + en−2(b) + b + en−1(|B| − b) by Eq: (6)

=en−1(|A|) + en−1(|B|) by De�nition 6

=en−1(L) + en−1(�):

On the other hand, if b¿L− |A| is the terminating condition, which indicates that all

non-top layers in B also have more than L− |A| nodes, i.e., L′¿L− |A|, we have to17

rearrange the nodes in the top layers of A and B. Since |A|¡L and a6L′; A needs

exactly L′−a nodes (the missing nodes in the top layer of A) to become an (n−1)-D19

mesh with only equal size layers. Therefore, |A|+L′−a=L. Combining this inequality

with b¿L− |A|, we have a + b¿ (|A| + L′ − L) + (L− |A|) = L′. So a set of a + b21

nodes can be split into a set of L′ nodes and a set of a+b−L′ nodes. Since a; b6L′,

a + b = L′ + (a + b− L′), and L′ is the size of a (n− 2)-D mesh, by Hypothesis 3,23

en−2(a) + en−2(b)6 en−2(L′) + en−2(a + b− L′): (7)

Removing the top layer of a nodes and the top layer of b nodes from A and B,

respectively, and adding a layer of L′ nodes and a layer of a+ b− L′ nodes to A and25

B, respectively, we get |A| = L and |B| = �. So

en−1(s1) + en−1(�′)

6 en−2(a) + a + en−1(|A| − a) + en−2(b) + b + en−1(|B| − b) by Eq: (6)

6 en−2(L′) + en−2(a + b− L′) + a + b + en−1(|A| − a) + en−1(|B| − b)
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by Eq: (7)

=en−2(L′) + L′ + en−1(|A| − a) + en−2(a + b− L′) + (a + b− L′)

+ en−1(|B| − b)

=en−1(L) + en−1(�) by De�nition 6:

Suppose s1 ¿L. Let s1=L+g for some g. Since s1+�′=L+�, then �=s1+�′−L=g+�′.1

We next show that �′¿ (l− 1)g. Suppose not. We must have m= l′L+ �= l′L+ g+

�′¡l′L + g + (l − 1)g = l′L + lg6 l(L + g) = ls16 hs16m, which is impossible.3

Consider the cubish polyhedron Cn−1(�′) with en−1(�′) edges. If all n−1 dimensions of

Cn−1(�′) have l or more layers, then the number of nodes in Cn−1(�′); �′¿ ln−1 ¿L,5

contradicting the fact that �′¡L. So there must be a dimension in Cn−1(�′) with l−1

or less layers. Along this dimension, we apply the rearrangement procedure described7

earlier in the proof. Since the procedure does not decrease the total internal edge count

and the subgraph Cn−1(�′) before the procedure is applied already has the maximum9

internal edge count according to Hypothesis 1, the number of edges in the resulting

subgraph after the procedure is applied, which we call S ′�′ , remains to be en−1(�′).11

For the bottom layer in S ′�′ , which is the layer (also an (n− 2)-D cubish polyhedron)

with the most nodes since the layers are ordered during the rearrangement procedure,13

it must have t¿ g nodes. Otherwise, �′, the numbers of nodes in S ′�′ , would be less

than (l− 1)g, contradicting the fact that �′¿ (l− 1)g. Now we are ready to move the15

nodes from Cn−1(s1) to S ′�′ . In Cn−1(s1), since s1 = L + g, along a certain dimension

the top layer is a Cn−2(g). In S ′�′ , along a certain dimension the bottom layer is a17

Cn−2(t) with t¿ g. Since Cn−2(g) is completely contained inside Cn−2(t), we move

the layer Cn−2(g) together with its g legs from Cn−1(s1) and attach it beneath the19

layer Cn−2(t). After the move, Cn−1(s1) becomes Cn−1(L) with en−1(L) edges and S ′�′
becomes a subgraph (not necessarily a cubish polyhedron) with en−1(�′) + en−2(g) + g21

edges. Note that the move does not change the total number of edges in the two

subgraphs. So we have23

en−1(s1) + en−1(�′) = en−1(L) + en−1(�′) + en−2(g) + g

6 en−1(L) + en−1(�′ + g) by Hypothesis 1

= en−1(L) + en−1(�):

4. Special cases

The theorem in the previous section describes what an edge isoperimetric subgraph25

for a k-ary n-cube looks like and how such a subgraph can be constructed. Although

an algorithmic procedure can be easily designed to count the number of internal edges27

in an edge isoperimetric subgraph, the theorem does not tell us what the internal edge

count is. Further, the theorem holds true only when the wrap-around edges in the29

k-ary n-cube can be discounted. In this section, we focus on formulas determining

the number of internal edges of an edge isoperimetric subgraph (which may contain31
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wrap-around edges) of m nodes in any k-ary n-cube. In particular, we �rst consider1

one important special case of k-ary n-cubes, namely, hypercubes. We then study the

case of any k-ary 2-cube, which is in fact a 2-D torus. Finally, we focus on computing3

the number of internal edges of an edge isoperimetric subgraph in a k-ary n-cube with

high dimensions.5

4.1. Hypercubes

To compute e2; n(m), the maximum number of internal edges of a subgraph with m7

nodes in a hypercube (in n dimensions), we have to do some preliminary work.

De�nition 8. Let w(i) denote the sum of all bits in the base-2 (binary) representation9

of i. Let W (i; j); i6 j; denote the sum of w(i); : : : ; w(j).

We next de�ne a recursive function F and give its closed form in terms of W .11

De�nition 9. De�ne function F recursively as follows:

F(0) = F(1) = 0;

F(m) = F
(⌈m

2

⌉)

+ F
(⌊m

2

⌋)

+
⌊m

2

⌋

for m¿ 2:

Lemma 10. F(m) = W (0; m− 1) for m¿ 1.13

Proof. We prove the lemma by showing that W (0; m−1) indeed satis�es the recursion

that de�nes F(m). This can be done by the following counting argument. By De�nition15

8; W (0; m− 1) represents the sum of all bits in the binary representations of integers

0; 1; : : : ; m− 1. We display all the binary numbers 0; 1; : : : ; m− 1 in two columns: one17

containing numbers whose last digit is 0 and the other containing numbers whose last

digit is 1. The �rst column has ⌈m=2⌉ numbers and the second column has ⌊m=2⌋19

numbers. We observe that the sum of the bits of the numbers in the �rst column is

W (0; ⌈m=2⌉ − 1) and that the sum of the bits of the numbers in the second column is21

W (0; ⌊m=2⌋ − 1) + ⌊m=2⌋. Therefore;

W (0; m− 1) = W
(

0;
⌈m

2

⌉

− 1
)

+ W
(

0;
⌊m

2

⌋

− 1
)

+
⌊m

2

⌋

:

The recursive de�nition matches the one that de�nes F(m). So F(m) = W (0; m − 1).23

Lemma 11. F(m)¿F(m0) + F(m1) + min{m0; m1} for m0 + m1 = m.25

Proof. We induct on m. When m = 0; 1; the inequality holds obviously. Suppose that

the inequality holds true for cases 6m− 1. Now consider the case of m.27
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When m = m0 + m1 is even, we have m=2 = ⌈m0=2⌉ + ⌊m1=2⌋ = ⌊m0=2⌋ + ⌈m1=2⌉:1

F(m) = F
(m

2

)

+ F
(m

2

)

+
m

2
by De�nition 9

¿ F
(⌈m0

2

⌉)

+ F
(⌊m1

2

⌋)

+ min
{⌈m0

2

⌉

;
⌊m1

2

⌋}

+F
(⌊m0

2

⌋)

+ F
(⌈m1

2

⌉)

+ min
{⌊m0

2

⌋

;
⌈m1

2

⌉}

+
m

2

by the inductive hypothesis

= F(m0) + F(m1) + min
{⌈m0

2

⌉

;
⌊m1

2

⌋}

+ min
{⌊m0

2

⌋

;
⌈m1

2

⌉}

+
m

2
−

⌊m0

2

⌋

−
⌊m1

2

⌋

by De�nition 9

¿ F(m0) + F(m1) + min
{⌈m0

2

⌉

;
⌊m1

2

⌋}

+ min
{⌊m0

2

⌋

;
⌈m1

2

⌉}

= F(m0) + F(m1) + min{m0; m1}:

When m = m0 + m1 is odd, we have ⌈m=2⌉ = ⌈m0=2⌉ + ⌈m1=2⌉ and ⌊m=2⌋ = ⌊m0=2⌋ +

⌊m1=2⌋:3

F(m) = F
(⌈m

2

⌉)

+ F
(⌊m

2

⌋)

+
⌊m

2

⌋

by De�nition 9

¿ F
(⌈m0

2

⌉)

+ F
(⌈m1

2

⌉)

+ min
{⌈m0

2

⌉

;
⌈m1

2

⌉}

+F
(⌊m0

2

⌋)

+ F
(⌊m1

2

⌋)

+ min
{⌊m0

2

⌋

;
⌊m1

2

⌋}

+
⌊m

2

⌋

by the inductive hypothesis

= F(m0) + F(m1) + min
{⌈m0

2

⌉

;
⌈m1

2

⌉}

+ min
{⌊m0

2

⌋

;
⌊m1

2

⌋}

+
⌊m

2

⌋

−
⌊m0

2

⌋

−
⌊m1

2

⌋

by De�nition 9

= F(m0) + F(m1) + min
{⌈m0

2

⌉

;
⌈m1

2

⌉}

+ min
{⌊m0

2

⌋

;
⌊m1

2

⌋}

= F(m0) + F(m1) + min{m0; m1}:

Lemma 12. F(m) = 1
2
m log2 m if m = 2l for some l.

Proof. Use De�nition 9 and induct on m.5

It turns out that F(m) exactly captures the quantity of interest.
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m=4m=3 m=5 m=6

Fig. 5. Subgraphs of a hypercube achieving internal edge count F(m).

Theorem 13. e2; n(m) = F(m).1

Proof. Since a hypercube of n dimensions contains two composite subcubes; each of

which is a hypercube of n − 1 dimensions; assume that m0 and m1 nodes are chosen3

in the 0th and 1st composite subcubes; respectively. By Proposition 5;

e2; n(0) = e2; n(1) = 0;

e2; n(m)6 max
∀
∑

mi=m
{e2; n−1(m0) + e2; n−1(m1) + min{m0; m1}}:

First; we prove by induction on m that e2; n(m)6F(m). When m = 0; 1; e2; n(m) =5

F(m) = 0. Assume that the inequality holds for cases 6m− 1. Now consider the case

of m:7

e2; n(m)6 max
∀
∑

mi=m
{e2; n−1(m0) + e2; n−1(m1) + min{m0; m1}}

6 max
∀
∑

mi=m
{F(m0) + F(m1) + min{m0; m1}}

by the inductive hypothesis

6 F(m) by Lemma 11:

Next; we prove that there exists a subgraph Sm of m nodes such that the number of

internal edges in Sm is F(m). Here is how we can allocate the m nodes for Sm: Allocate9

⌈m=2⌉ nodes into the 0th composite subcube and ⌊m=2⌋ nodes into the 1st composite

subcube; use the same method recursively to allocate the nodes in each composite11

subcube. It is obvious that the number of internal edges in Sm is exactly F(m).

This theorem tells us about the structure of a subgraph with exactly F(m) internal13

edges—it is possible to bisect this subgraph evenly with exactly ⌊m=2⌋ edges between

the two pieces, which are themselves optimal with respect to their sizes. Fig. 5 illus-15

trates optimal subgraphs of a hypercube for m = 3–6. Note that these subgraphs are

also cubish polyhedrons as de�ned in the previous section, matching the result proved17

in Theorem 7.
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Sm S’m Fk(m)

Fig. 6. Rearrangement procedure from Sm to Fk (m).

4.2. 2-D tori1

The edge isoperimetric subgraph in a 2-D torus (k-ary 2-cube) may or may not

contain wrap-around edges. If it has no wrap-around edges, by Theorem 7 it must be a3

cubish polyhedron, which in the 2-D plane becomes a squarish polygon that grows like

a swirl as nodes are added. If the edge isoperimetric subgraph contains wrap-around5

edges, it must be a at polygon containing as many wrap-around edges as possible.

We explain what this means.7

Let m be the number of nodes in a subgraph Sm with at least one wrap-around edge.

If we divide the node set into layers along any one of the two dimensions, rearrange the9

layers of nodes so that they are ordered by sizes (node counts in the layers), and place

nodes in each layer as closely to each other as possible, we obtain a new subgraph S ′m11

of m nodes. This rearrangement procedure can be depicted by the �rst step in Fig. 6.

Clearly, e(Sm)6 e(S ′m). In subgraph S ′m, the bottommost layer is full, i.e., it contains all13

k nodes and one wrap-around edge. We continue moving nodes from the topmost layer

to the bottommost layer that is not full, one by one and without decreasing the total15

number of internal edges in the subgraph, until there is at most one layer at the top

that is not full. We call the subgraph obtained a at polyhedron, denoted as Fk(m).17

If m = xk + y for 06y6m− 1, then Fk(m) has x full layers of k nodes each and

an additional layer of y nodes stacked at the top. This rearrangement procedure can be19

depicted by the second step in Fig. 6. Clearly, e(S ′m)6 e(Fk(m)), where e(Fk(m)) is

the number of internal edges in Fk(m). So we have the following lemma.21

Lemma 14. Fk(m) has the maximum internal edge count among all subgraphs Sm of

m nodes with at least one wrap-around edge in a 2-D torus.23

Proof. By the rearrangement procedure illustrated in Fig. 6; any subgraph Sm with at

least one wrap-around edge can be transformed; without decreasing the internal edge25

count; to a subgraph S ′m with all the layers ordered by sizes and nodes put next to

each other within each layer. The subgraph S ′m can then be transformed; again without27

decreasing the internal edge count; to a 2-D at polyhedron which contains the most

full layers for the given m. So we have29

e(Sm)6 e(Fk(m)):
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Since the edge isoperimetric subgraph of m nodes in a 2-D torus may be a cu-1

bish polyhedron C2(m) or a 2-D at polyhedron Fk(m), depending on which has

more internal edge count, we next focus on the exact internal edge counts of the two3

structures.

Lemma 15. e(C2(m)) = ⌊2m − 2
√
m⌋; where e(C2(m)) (equivalent to e2(m) used in5

Section 3) is the number of internal edges in C2(m).

Proof. Note that a cubish polyhedron is de�ned in Section 3 under the assumption7

that all wrap-around edges are discounted. Therefore; C2(m) does not include any

wrap-around edges. We consider four cases.9

If m=l2 for some integer l, then C2(m) is a square mesh of size l×l. So e(C2(m))=

2l(l− 1) = 2l2 − 2l = 2m− 2
√
m = ⌊2m− 2

√
m⌋.11

If m = l(l − 1) some integer l, then C2(m) is a mesh of size l × (l − 1). So

e(C2(m)) = (l − 1)2 + l(l − 2) = 2l2 − 4l + 1 = 2m − (2l − 1) = ⌊2m − 2
√
m⌋ since13

2l− 2¡ 2
√
m¡ 2l− 1.

If l(l − 1)¡m¡l2 for some integer l, then C2(m) is a mesh of size l × (l − 1)15

plus one layer of m− l(l− 1) nodes. So e(C2(m)) = (l− 1)2 + l(l− 2) + 2(m− l(l−
1)) − 1 = 2m− 2l = ⌊2m− 2

√
m⌋ since 2l− 1¡ 2

√
m¡ 2l.17

If l2 ¡m¡l(l + 1) for some integer l, then C2(m) is a square mesh of size l× l

plus one layer of m− l2 nodes. So e(C2(m)) = 2l(l− 1) + 2(m− l2) − 1 = 2m− 2l−19

1 = ⌊2m− 2
√
m⌋ since 2l¡ 2

√
m¡ 2l + 1.

We want to point out that Lemma 15 above matches the result in [9], which gives21

the exactly same formula of ⌊2m− 2
√
m⌋ for in�nite 2-D meshes.

Lemma 16.

e(Fk(m)) =







m− 1 if m¡k;

2m− k if m = xk for 16 x6 k − 1;

2m− k − 1 if m = xk + y for 16 x6 k − 2

16y6 k − 1;

2m− k − 1 + (mmod k) if m = xk + y for x = k − 1

16y6 k − 1;

2m if m = k2 (maximum node count):

Proof. The proof contains a simple count of edges in Fk(m) for each of the �ve cases23

de�ned in the lemma. See Fig. 7 for the example of k = 4.

Combining the lemmas above, we have the following theorem that gives the exact25

internal edge count for the edge isoperimetric subgraph of m nodes in a 2-D torus.

Theorem 17. ek;2(m) = max{e(C2(m)); e(Fk(m))}; where the formulas for e(C2(m))27

and e(Fk(m)) are given in Lemmas 15 and 16.
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Case 1 Case 2 Case 3 Case 4 Case 5

Fig. 7. Counting edges in F4(m).

Proof. The theorem follows immediately from the discussion in this subsection.1

4.3. Subgraphs in k-ary n-cubes of high dimensions

We now consider another special case of k-ary n-cubes and show how to compute3

the maximum internal edge count of a subgraph. We make the following assumptions:

k¿ 4 and n¿ logm (or equivalently, m6 2n). We observe that the special case under5

the assumptions is rather general since it includes a large class of di�erent k-ary

n-cubes. In what follows, we show that F(m), the function de�ned in Section 4.1,7

again captures the quantity of interest.

Lemma 18. F(m)¿
∑k−1

i=0 F(mi)+m−max06i6k−1{mi}+min06i6k−1{mi} for
∑k−1

i=0 mi9

= m and k¿ 4.

Proof. Assume that m0¿m1¿ · · ·¿mk−1¿ 0. Let l be the smallest index such that11
∑l

i=0 mi¿m=2. Clearly;
∑l−1

i=0 mi¡m=2 and
∑k−1

i=l mi¿m=2. This also implies that

l¡k − l. So l¡k=2. We have13

F(m)¿ F

(
l∑

i=0

mi

)

+ F

(
k−1∑

i=l+1

mi

)

+ min

{
l∑

i=0

mi ;

k−1∑

i=l+1

mi

}

by Lemma 11

¿

k−1∑

i=0

F(mi) + A + B + C by Lemma 11 repeatedly;

where

A = min

{
l∑

i=0

mi ;

k−1∑

i=l+1

mi

}

;

B =

l−1∑

i=0

min






mi ;

l∑

j=i+1

mi







and15

C =

k−2∑

i=l+1

min






mi ;

k−1∑

j=i+1

mi






:
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Next; we wish to prove that A + B + C¿m−m0 + mk−1. Since
∑l

i=0 mi¿m=2; A =1
∑k−1

i=l+1 mi. Since l¡k=2 and k¿ 4; l+ 16 k − 2. So there is at least one term in C.

Therefore; C¿mk−1. How large is B? If l=0; then B=0 and A+B+C¿
∑k−1

i=1 mi +3

mk−1 =m−m0 +mk−1. If l=1; then B=m1 and A+B+C¿
∑k−1

i=2 mi+m1 +mk−1 =m−
m0 +mk−1. Now assume that l¿ 2. B must have at least two terms. If mh6

∑l
i=h+1 mi5

for all h= 0; : : : ; l−2; then B=
∑l−2

i=0 mi +ml and A+B+C¿
∑k−1

i=l+1 mi +
∑l−2

i=0 mi +

ml + mk−1¿m − m0 + mk−1. If there is h in [0; l − 2] such that mh¿
∑l

i=h+1 mi7

(choose the smallest h if there is more than one); then B¿
∑h−1

i=0 mi +
∑l

i=h+1 mi and

A + B + C¿
∑k−1

i=l+1 mi +
∑h−1

i=0 mi +
∑l

i=h+1 mi + mk−1¿m− m0 + mk−1.9

Theorem 19. ek;n(m) = F(m) for k¿ 4 and n¿ logm.

Proof. Since a k-ary n-cube contains k composite subcubes; each of which is a k-ary11

(n − 1)-cube; assume that mi nodes are chosen in the ith composite subcube for

06 i6 k − 1. By Proposition 5;13

ek;n(0) = ek;n(1) = 0;

ek;n(m)6 max
∀
∑

mi=m

{
k−1∑

i=0

ek;n−1(mi) + m− max
06i6k−1

{mi} + min
06i6k−1

{mi}
}

:

Similar to Theorem 13; we can prove by induction on m that ek;n(m)6F(m); using

the above recursive de�nition of ek;n(m); the inductive hypothesis; and Lemma 18.15

Also similar to Theorem 13, a subgraph Sm of m6 2n nodes with F(m) internal

edges can be constructed by allocating ⌈m=2⌉ nodes into the 0th composite subcube and17

⌊m=2⌋ nodes into the 1st composite subcube; the same method is then used recursively

to allocate the nodes in each composite subcube.19

5. Applications to graph partitioning

The problem of partitioning graphs for parallel processing is studied extensively21

[4,12,15,16]. In a k-ary n-cube that represents a parallel program, nodes are tasks

with node weights representing computation costs, and edges are message-passing links23

between tasks with edge weights representing communication costs [8,11]. Recall that

for any subgraph, an internal edge is one with two endpoints in the subgraph and an25

external edge is one with one endpoint in the subgraph. Viewing the subgraph as the

set of nodes (tasks) assigned to a processor, the sum of weights on external edges is27

a measure of the communication cost between processors. (Note that the internal edge

weights are usually discounted since the communications they represent all happen29

within one processor and are considered free.) The load of a subgraph is de�ned to

be the sum of the weights of its nodes and its external edges. If a k-ary n-cube is31

partitioned into P subgraphs, then the bottleneck cost of the partition is the maximum

load among all subgraphs in the partition. The graph partitioning problem is to �nd a33

partition that minimizes the bottleneck cost.
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Fig. 8. Rectilinear partition of an 8 × 8 torus.

The applications of the edge isoperimetric property to graph partition are summarized1

in [3]. Here, we add two more applications. First, our results on edge isoperimetric sub-

graphs for k-ary n-cubes may be used in the context of branch-and-bound algorithms3

for graph partitioning. Our object here is neither to propose the speci�cs of such an

algorithm neither to study its performance. The ability to construct lower bounds on5

communication costs based only on subgraph node size is one that can be used in a

variety of branch-and-bound formulations, and for a variety of partitioning problem for-7

mulations. We illustrate its use in one speci�c case. Second, our theoretical results can

also be used to show the optimality of some curiously shaped partitions. An example9

of this application is shown.

5.1. Lower bounding in branch-and-bound algorithms11

Let us consider the rectilinear partitioning [13] in a k-ary n-cube graph, where the

separating cuts that de�ne the partition are all hyperplanes of the form xi = cij, a13

constant. A rectilinear partition of an 8 × 8 torus is illustrated in Fig. 8.

Since the problem of rectilinear partitioning is generally intractable, branch-and-15

bound algorithms [6] may be used to �nd an optimal partitioning within a reasonable

amount of time. The key in a branch-and-bound algorithm is the construction of a17

search tree. For rectilinear partitioning, a node in the branch-and-bound search tree

reects a set of cuts already made, where the root reects an empty cut set. The19

children of a node reect various ways of choosing one additional cut. If there are

c cuts to be made, the search tree has depth c + 1. Every solution is a leaf of the21

search tree. We assume that the relative positioning of the cut associated with a level

is known a priori, e.g., the cut in the third dimension whose cut coordinate is the �fth23

smallest. Selecting the cut order is part of the branch-and-bound solution, but our focus

here is on the lower bounding function needed for the branch-and-bound approach.25

For every node N in the search tree we associate a function bnd(N ), that provides

a lower bound on the bottleneck cost of any solution rooted at that node. Function27

bnd(N ) can be used to direct the search in di�erent ways, e.g., in choosing the next
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node to explore or in pruning the search beyond that node because a known solution is1

better than any solution rooted at N . We are interested in de�ning an easily computed

function bnd(N ) which provides a tight lower bound.3

Each node N reects the partitioning of the graph into some number of regions.

Furthermore, under our assumptions we know how many further divisions will be5

applied to each region. Consider a region R, to be further divided into s subregions.

Suppose that the number of nodes in region R is r, that the sum of all node weights7

in R is WR, and that the edge weights of all edges with at least one node in R are

sorted in list E in non-decreasing order.9

We wish to construct a lower bound lb(R) on the minimal bottleneck cost due to

any possible subdivision of R into s subregions. The method we use relies on an11

ability to compute sizes (node counts) of subregions m1; m2; : : : ; ms, for
∑s

i=1 mi = r,

such that
∑s

i=1 C(mi) is minimized, where C(mi) is the external edge count (cost) of13

an edge isoperimetric subgraph with mi nodes. Note that since all nodes in a k-ary

n-cube have the same degree d, which is n for k = 2 and 2n for k¿ 3, we have that15

C(mi) =dmi−2ek;n(mi). Solution to this minimization problem even when modi�ed to

include a constraint mi6B for all i, is straightforward using dynamic programming.17

The construction of lb(R) has three phases. First, we compute the vector m =

(m1; : : : ; ms) that minimizes
∑s

i=1 C(mi); this reects an idealized assignment of num-19

bers of graph nodes to processors in such a way that the total number of edges cut

(summed over all processors) is minimized. Second, we compute a vector w whose21

ith component wi is the sum of the weights of the �rst C(mi) edges in E. Vector w

reects lower bounds on communication costs under assignment m. Without loss of23

generality, suppose that w1 is the largest component. We de�ne the slack of w as

slack(w) =

s∑

i=2

(w1 − wi):

Third, we consider the following two cases.25

The �rst case of interest is when slack(w)6WR. This means that if we treat the

total computational workload WR as divisible into arbitrary pieces, we can give each27

processor except the �rst enough workload to bring its total cost up to w1, and still

have workload remaining. The remnant may be divided evenly among the s processors.29

This is illustrated in Fig. 9(a). So

lb(R) = WR +

s∑

i=1

wis:

The correctness of the bound is evident by the fact that the total load (sum of com-31

putation and communication) is minimized, and that no processor is ever idle.

The second case of interest occurs when slack(w)¿WR, as illustrated by Fig. 9(b).33

In this case the bottleneck is entirely communication induced, and the maximum num-

ber of nodes assigned to a processor must be driven down. This may increase the35

total communication cost, but will also decrease the bottleneck cost. To reduce the

bottleneck cost we constrain the assignment mi6B for all i; for each B considered37

we may compute the slack of the corresponding weight vector, and determine whether

it exceeds WR. Using a binary search on B we may �nd the least value B∗ such that39
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Communication

Computation

(a) (b)

Fig. 9. Computation of lower bound on bottleneck cost. (a) Slack is less than total computation and (b)

Slack exceeds total computation.

the corresponding slack exceeds WR. Let w = (w1; : : : ; ws) and w′ = (w′
1; : : : ; w

′
s) be the1

weight vectors derived from using B∗− 1 and B∗ as constraints, respectively. Then we

make the lower bound to be3

lb(R) = min

{
WR +

∑s
i=1 wi

s
; w′

1

}

:

We need not consider any bottleneck derived from using any constraint B larger than

B∗, since the bottleneck cost is monotonically non-decreasing in max{mi}, which is5

monotonically non-decreasing in B. Also, we need not consider any bottleneck derived

from using any constraint B less than B∗ − 1, since in this case no processor is idle,7

and the total communication cost is at least as large as that derived from using B∗−1.

The procedure above shows how to bound from below the potential least bottleneck9

cost for each region reected by node N in the branch-and-bound search tree. Applying

this method to each such region, we de�ne bnd(N ) as the greatest of these lower11

bounds, i.e.,

bnd(N ) = max
∀R∈N

{lb(R)}:

It should be noted that for a given number of processors P, and a given total workload13

WR, the partition whose bottleneck cost is the least is not necessarily one where the

workload is spread evenly. For instance, consider an 8 × 8 torus to be partitioned15

into two regions. If each node has weight 4 and each edge has weight 1, then the

optimal solution is to bisect the graph into two equal pieces, with a bottleneck cost of17

4×32+8=136. However, the graph that weights one node by 128 and all other nodes

by 128
63

is optimally partitioned by isolating the heavy node, with a bottleneck cost of19

128 + 4 = 132. Realization that minimized bottleneck costs need not be associated with

evenly spread workload (and equi-partitions) leads us to the careful construction of21

bnd(N ) given.
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Fig. 10. Optimal partition of an 8-ary 2-cube into 13 subgraphs.

5.2. Identifying optimal partitions1

Another application of our results is to identify optimal partitions (with respect to

the bottleneck metric), even when those partitions are not entirely regular. Consider the3

problem of partitioning an 8-ary 2-cube (an 8 × 8 torus) into 13 subgraphs, assuming

that all nodes have common computation weight w1 and all edges have common com-5

munication weight w2. The problem clearly does not divide evenly. The minimal load

of a subgraph of m nodes assigned to a processor is w1m+w2C(m), where C(m) is the7

minimum external edge count of a subgraph with m nodes. Since the 8-ary 2-cube is

a regular graph with degree 4 for each node and the maximum internal edge count of9

a subgraph with m nodes is e8;2(m), which can be computed constructively according

to our main theorem in Section 3, we then have C(m) = 4m− 2e8;2(m). Note that the11

C function increases monotonically in m.

The processor with the most nodes assigned will have at least ⌈64=13⌉ = 5 nodes.13

The optimal subgraph (which is an edge isoperimetric subgraph) of the 8-ary 2-cube

with 5 nodes is a square of 4 nodes, with an attached singleton node. As illustrated in15

Fig. 10, it is possible to nearly tessellate the 8-ary 2-cube with this optimal subgraph,

the only exception being one subgraph (the center square) which is itself an optimal17

subgraph of 4 nodes. The optimality of this partition derives from the fact that w1m+

w2C(m) is monotonically non-decreasing in m, so that the bottleneck cost max{w1m1 +19

w2C(m1); : : : ; w1m13 + w2C(m13)} is minimized when the mi’s are nearly equal. The

partition shown achieves the lower bound of 5w1 + C(5)w2 = 5w1 + 10w2.21

There is clearly a general principle at work here, for uniformly weighted graphs.

If there are M nodes to be assigned to P processors, then at least one processor23

will receive m = ⌈M=P⌉ nodes. When the processor cost function is monotonically

non-decreasing as a function of the number of nodes assigned to it, w1m + w2C(m)25

is a lower bound on the optimal bottleneck cost, C being the appropriate minimized
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function for communication cost. If it is possible to partition the graph so that no1

processor has cost greater than w1m + w2C(m), then that partition is optimal.

6. Conclusions3

In this paper, we have studied combinatorial properties of k-ary n-cube graphs.

The class of k-ary n-cubes reect common parallel processing architectures as well5

as communication patterns. In addition, its special cases includes some widely used

topologies such as rings, hypercubes, and tori. Because of its importance to parallel7

processing and communication, our study of the class has been not only necessary but

also rewarding.9

One combinatorial aspect we have examined in detail is the edge isoperimetric prop-

erty of k-ary n-cubes. We are particularly interested in the structure of the subgraph of11

a �xed node count with the maximum number of internal edges. In the paper, we have

proved that any subgraph whose structure is that of a “cubish polyhedron” achieves13

such maximum under the assumption that wrap-around edges are discounted. For three

special cases of k-ary n-cubes, we also have given simple formulas that compute easily15

the maximum.

While the above results have combinatorial interest, they also have serious applica-17

tions to problems in parallel processing. We have shown, for instance, how to apply

these results in the context of branch-and-bound algorithms for partitioning a k-ary19

n-cube whose nodes and edges have general weights. Lower bounds lie at the heart of

any branch-and-bound algorithm, and our results provide the critical means needed to21

compute sharper bounds than those that ignore communication overheads. We have also

shown how our results can be used to demonstrate the optimality of certain irregular23

partitions.

The k-ary n-cubes arise frequently in studies of parallel processing. The results and25

applications developed here help us to better understand these important graphs.
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