
This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Competitive online scheduling of perfectly malleable jobs
with setup times

Jessen T. Havill a,*, Weizhen Mao b

a Department of Mathematics and Computer Science, Denison University, Granville, OH 43023, USA
b Department of Computer Science, The College of William and Mary, Williamsburg, VA 23187, USA

Received 31 December 2005; accepted 8 June 2006
Available online 7 November 2006

Abstract

We study how to efficiently schedule online perfectly malleable parallel jobs with arbitrary arrival times on m P 2 pro-
cessors. We take into account both the linear speedup of such jobs and their setup time, i.e., the time to create, dispatch,
and destroy multiple processes. Specifically, we define the execution time of a job with length pj running on kj processors to
be pj/kj + (kj � 1)c, where c > 0 is a constant setup time associated with each processor that is used to parallelize the com-
putation. This formulation accurately models data parallelism in scientific computations and realistically asserts a relation-
ship between job length and the maximum useful degree of parallelism. When the goal is to minimize makespan, we show
that the online algorithm that simply assigns kj so that the execution time of each job is minimized and starts jobs as early
as possible has competitive ratio 4(m � 1)/m for even m P 2 and 4m/(m + 1) for odd m P 3. This algorithm is much sim-
pler than previous offline algorithms for scheduling malleable jobs that require more than a constant number of passes
through the job list.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Scheduling; Parallel jobs; Setup times; Online algorithms

1. Introduction

Malleable parallel jobs can distribute their workload among any number of available processors in a par-
allel computer in order to decrease their execution time. In contrast, nonmalleable parallel jobs must use a fixed
number of processors. The ideal execution time of a malleable parallel job with length p is p/k if it utilizes k

processors. However, inherently serial code and parallel processing overhead (from process management,
shared memory access and contention, communication, and/or synchronization) often prevent actual execu-
tion times from achieving this ideal. It is natural to consider this extra time as a type of setup time, a term
commonly used by the scheduling community [1,2]. We will derive an execution time function that takes both

0377-2217/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.ejor.2006.06.064

* Corresponding author.
E-mail addresses: havill@denison.edu (J.T. Havill), wm@cs.wm.edu (W. Mao).

Available online at www.sciencedirect.com

European Journal of Operational Research 187 (2008) 1126–1142

www.elsevier.com/locate/ejor

Author's personal copy

speedup (i.e., p/k) and setup time into account for a particular class of malleable jobs, and study how to effi-
ciently schedule these jobs online.

Formally, we have available m P 2 identical processors and we are given n parallel jobs J1,J2, . . . ,Jn to
schedule, each with an a priori length pj > 0 and arrival time aj P 0. (Assume that the jobs are indexed by
nondecreasing arrival times, i.e., for 1 6 i < j 6 n, ai 6 aj.) For each job Jj, a scheduling algorithm must assign
both kj 2 {1,2, . . . , ,m} processors to execute the job and a start time sj P aj that does not conflict with pre-
viously scheduled jobs. A job must be executed simultaneously on all assigned processors and may not be pre-
empted. The execution time of the job, tj, depends both on the job and on kj, and will be defined shortly. We
will denote the work done by job Jj as wj = kjtj. (This concept will be used extensively in our proofs later.) We
wish to minimize the makespan of the schedule, defined to be C = maxjCj, where Cj = sj + tj is the completion
time of job Jj. We choose the makespan in this study since it measures the utilization of resources and is most
often used in past research. For instances with arbitrary arrivals, other optimization criteria such as
maxj(Cj � aj) and

P
jðCj � ajÞ are also important topics of ongoing research.

The problem of scheduling malleable jobs is strongly NP-hard [6]. Several papers [3,22,18] have addressed
approximation algorithms for the special monotonic case in which the execution time function monotonically
decreases as the number of processors increases. Other papers [16,4,14] have presented approximation results
for the case without this restriction. All of these approximation algorithms require x(1)1 passes through the
job list to guarantee their performance bounds and are relatively complex. We are thus motivated to study a
realistic special case of the malleable job scheduling problem for which a simple online scheduling algorithm
works well. In particular, we study the problem of scheduling jobs that are perfectly malleable, that is, the
work of the job can be divided evenly among available processors, resulting in an ideal linear speedup. How-
ever, executing such a job on multiple processors requires the operating system to create, dispatch, and even-
tually destroy multiple processes, so we must take this setup time into account as well. Therefore, we define the
execution time of job Jj to be

tj ¼ pj=kj þ ðkj � 1Þc; ð1Þ
where c > 0 is the setup time required to manage a single process. We use (kj � 1)c instead of kjc so that
kj = 1) tj = pj to remain consistent with classical (non-parallel) job scheduling. Notice that if we do not take
into account setup times (c = 0), the problem is solved optimally by simply assigning every job to m proces-
sors. Other papers have studied the problem of scheduling perfectly malleable jobs without setup times in the
presence of dependencies [23] and unknown processing times [21].

In general, the setup time can be any reasonable function (e.g., logarithmic, linear, quadratic) of kj, or even
just a constant additive term [5], but we select a linear function and constant c to reflect the typical implemen-
tation of jobs exhibiting data parallelism in shared memory architectures [15]. Data parallelism techniques are
very common and can be applied to sorting and searching, matrix multiplication, and other vector and poly-
nomial computations. Such programs are typically composed of forall loops like the following:

forall i 1 to N do

A½i� f ðA½i�Þ:

In this case, pj = Nt, where t is the time required for each iteration of the loop. At runtime, the system decides
to use kj processors for the computation and assigns each processor to execute N/kj iterations of the loop. Typ-
ically, the ‘‘master’’ process created when the main program begins is counted as one of the kj processes, so
only kj � 1 new child processes are created (by the master process) beyond what would be required on a single
processor. So the running time of the job will be approximately tj = pj/kj + (kj � 1)c. (The assignment of work
to processes could be accomplished in O(logkj) time, but the creation of processes is still likely to be sequen-
tial.) We also point out that pj is relatively easy to approximate in advance in these kinds of computations,
since one need only approximate the time required by the function f.

The same execution time function (1) can represent more general distributed computations which utilize a
constant number of message passing ‘‘rounds’’. In each round of message passing, a process sends a message
to at most kj � 1 other processes. Then pj/kj represents the parallel computation time and (kj � 1)c represents

1 x(g(n)) = {f(n): " constant c > 0,$ constant n0 > 0 such that 0 6 cg(n) < f(n), "n P n0}.

J.T. Havill, W. Mao / European Journal of Operational Research 187 (2008) 1126–1142 1127

Author's personal copy

the time needed to complete c/t rounds of message passing, where t is the time required to send a message. In
more general cases where the number of message passing rounds varies greatly among jobs, a better model
would have tj = pj/kj + (kj � 1)cj, where cj/t is the number of message passing rounds required for job Jj. This
latter formula is consistent with one proposed by Sevcik ([20, p. 120]).

Our execution time formula (1) is plotted in Fig. 1. Notice that the execution time quickly decreases until it

reaches a minimum at kj ¼
ffiffiffiffiffiffiffiffiffi
pj=c

q
, and then slowly increases. (Alternatively, the speedup, defined to be pj/tj, is

maximized at the same point.) Therefore, every job has a maximum useful degree of parallelism that depends
on its length, which differentiates this model from the monotonic model discussed earlier. Put another way,
this problem formulation makes the realistic assumption that the execution time of smaller jobs is likely to
be dominated by the setup time on a smaller number of processors than larger jobs.

We study a simple online algorithm called Shortest Execution Time (or SET). For each job Jj, the algorithm
computes kj so that it minimizes the execution time function Tj(k) = pj/k + (k � 1)c and then schedules the job
on kj processors as early as possible. Notice that, by definition, the following must be true:

Fact 1. The online algorithm SET assigns kj 2 {1,2, . . . ,m � 1} processors to jobs with length pj 2 (kj(kj � 1)c,

kj(kj + 1)c] and kj = m processors to jobs with length pj > m(m � 1)c.

Proof. This follows directly since the choice of kj minimizes the execution time of job Jj:

pj

kj
þ ðkj � 1Þc 6

pj

kj þ 1
þ kjc) pj 6 kjðkj þ 1Þc

and

pj

kj
þ ðkj � 1Þc <

pj

kj � 1
þ ðkj � 2Þc) pj > kjðkj � 1Þc: �

The details of the algorithm are described in Fig. 2. First, in lines 4–7, SET computes the value of kj that
minimizes the job’s execution time. Next, in lines 8–9, SET sets sj to be the earliest possible starting time on kj

processors. Finally, in lines 10–13, SET schedules the job on the kj most loaded processors that are available at
time sj. (Note that line 11 is not required for the analysis that follows; it is simply the most logical choice.)

Recall that past algorithms require x(1) passes through the job list. However, SET is online in the classical
list scheduling [11] sense, i.e., it chooses, for each job Jj in a list of jobs, a value of kj and a start time sj P aj

before jobs Jj+1,Jj+2, . . . ,Jn are known. Simple algorithms like this have been identified as having the most
promise in real systems [8]. In addition, SET is more suitable for practical situations since jobs in modern sys-
tems are usually submitted over time, rather than in a batch.

1

2

3

4

5

5 10 15 20 25 30
kj

0

20

40

60

80

100

5 10 15 20 25 30
kj

ex
ec

ut
io

n
tim

e

sp
ee

du
p

Fig. 1. Execution time (tj) and speedup (pj/tj) of a job with pj = 100 as a function of kj (c = 1). Execution time is minimized, and hence

speedup is maximized, when kj ¼
ffiffiffiffiffiffiffiffiffi
pj=c

q
¼ 10.

1128 J.T. Havill, W. Mao / European Journal of Operational Research 187 (2008) 1126–1142

Author's personal copy

We say that an online algorithm A is r-competitive if, for all instances I, C(I) 6 r Æ C*(I) + b, where C(I) and
C*(I) are the makespan of the schedule constructed by A for instance I and the optimal makespan for instance
I, respectively, and b is constant with respect to the job sequence (but may depend on m, which is constant for
a given parallel system). The competitive ratio2 R½A� of A is the infimum over all such values r.

After discussing related research in more detail in Section 2, we show in Sections 3–5 that the competitive
ratio of SET, R½SET�, is 4(m � 1)/m for even m P 2 and 4m/(m + 1) for odd m P 3. These values range from
2 for m = 2 to 4 for arbitrarily large m, as shown in Table 1. In Section 6, we prove some lower bounds on the
competitive ratio of any online algorithm. In Section 7, we conclude and discuss topics for future research.

2. Related research

Du and Leung [6] showed that scheduling malleable jobs is strongly NP-hard. Several authors have studied
offline approximation algorithms for related malleable job scheduling problems. Belkhale and Banerjee [3] pre-
sented an algorithm that has approximation ratio 2m/(m + 1) if the execution time of the jobs is defined to
decrease monotonically with the number of processors and the work is nondecreasing with respect to the num-
ber of processors (note that neither are true in our model). Turek et al. [22] showed how to transform a non-
malleable job scheduling algorithm into an algorithm for scheduling malleable jobs with monotonically
decreasing execution time functions that has the same approximation ratio and a multiplicative O(mn) increase
in time complexity. This technique yields an algorithm with approximation ratio 2 based on the nonmalleable
scheduling algorithm of Garey and Graham [11]. Later, Mounie et al. [18] presented an algorithm for the
monotonic problem with approximation ratio

ffiffiffi
3
p

. Ludwig and Tiwari [16] improved upon the result of Turek
et al. [22] by showing how to accomplish the same transformation with only an additive O(mn) increase in time
complexity, and without any assumptions about the execution time or work functions. Blazewicz et al. [4]
offered another algorithm for the same problem with the same approximation ratio. Jansen and Porkolab
[14] proposed an approximation scheme for the general problem with time complexity that is linear in n
but exponential in m. Jansen [13] later presented an asymptotic fully polynomial time approximation scheme.

Previous papers by the authors studied the model in which tj = pj/kj + kjc and all aj = 0. Mao et al. [17]
showed that the competitive ratio of SET is 2 when m = 2 and presented simulation results showing that

Fig. 2. The detailed SET algorithm.

Table 1
Approximate values of R½SET� for representative values of m

m 2 3 4 5 6 7 8 16 32 64 128 1024

R[SET] 2 3 3 3:�3 3:�3 3.5 3.5 3.75 3.875 3.938 3.969 3.996

2 We follow convention by using competitive ratio for online (approximation) algorithms and approximation ratio for (offline)
approximation algorithms, although the terms have similar definitions.

J.T. Havill, W. Mao / European Journal of Operational Research 187 (2008) 1126–1142 1129

Author's personal copy

the algorithm performs well on uniformly random job sequences for a number of different values of m and c.
Havill [12] showed that an algorithm very similar to SET has competitive ratio at most 4 for any m. This paper
improves upon that result by proving a tight bound for all m rather than just arbitrarily large m.

Wang and Cheng [23] studied the related problem with a linear execution time function, job dependencies,
and a maximum degree of parallelism for each job. They showed that the competitive ratio of the online Ear-
liest Completion Time algorithm is between 5/2 and 3 � 2/m.

Others have studied the problem with a linear execution time function and maximum degrees of parallelism,
but where the lengths of the jobs are unknown until they complete. (See Sgall [21] for a survey.) Notably, Feld-
mann et al. [10] showed that the algorithm that simply assigns the maximum allowable number of processors
to a job when that many processors are available has competitive ratio 2. Feldmann et al. [9] and Rapine et al.
[19] studied related problems with dependencies and preemption, respectively.

Setup time has also been extensively studied in the context of sequential job scheduling [1,2]. In these prob-
lems, setup time is typically related to job (or batch) specific preparation that is necessary for the execution of
a job. In our problem, setup time is only related to overhead arising from parallel processing.

As discussed previously, in contrast to these results, we are interested in online algorithms for a problem
with a particular nonlinear execution time function.

3. Lower bounds for SET

In this section, we give lower bounds on the competitive ratio of SET. We consider the cases where m is
even and m is odd separately.

Theorem 3.1. R½SET�P 4ðm� 1Þ=m when m P 2 is even.

Proof. Consider an instance consisting of n = 2am jobs, where a is a positive integer. We define pj = (m/2)
(m/2 � 1) c + �, for odd j and pj = (m/2)(m/2 + 1)c + � for even j, where � > 0 is arbitrarily small. For all j,
aj = 0. SET will assign each of the odd-indexed jobs to m/2 processors and each of the even-indexed jobs to
m/2 + 1 processors. Clearly, the algorithm will schedule the jobs in sequential order. Therefore, the makespan
of the schedule on this sequence, as �! 0, is

C ¼
X

j

pj

kj
þ ðkj � 1Þc

� �

¼ n
2

ðm=2Þðm=2� 1Þc
m=2

þ m
2
� 1

� �
c

� �
þ ðm=2Þðm=2þ 1Þc

m=2þ 1
þ mc

2

� �� �
¼ nðm� 1Þc:

On the other hand, an offline algorithm can construct a better schedule by assigning each job to one processor
and executing all the odd-indexed jobs followed by the even-indexed jobs. In this case, the optimal makespan,
as �! 0, is

C� 6
1

m

X
j

pj 6
n

2m
m
2

� � m
2
� 1

� �
cþ m

2

� � m
2
þ 1

� �
c

� �
¼ nmc

4
:

Thus, when m is even, the competitive ratio of SET is at least 4(m � 1)/m. h

Theorem 3.2. R½SET �P 4m=ðmþ 1Þ when m P 3 is odd.

Proof. Consider an instance consisting of n = am jobs, each with length ((m + 1)/2)((m � 1)/2)c + �, for arbi-
trarily small � > 0, where a is a positive integer. For all j, aj = 0. SET will assign each of these jobs to (m + 1)/2
processors. Clearly, the algorithm will schedule the jobs in sequential order. Therefore, the makespan of the
schedule on this sequence, as �! 0, is

C ¼
X

j

pj

kj
þ ðkj � 1Þc

� �
¼
X

j

ððmþ 1Þ=2Þððm� 1Þ=2Þc
ðmþ 1Þ=2

þ ðm� 1Þc
2

� �
¼ nðm� 1Þc:

1130 J.T. Havill, W. Mao / European Journal of Operational Research 187 (2008) 1126–1142

Author's personal copy

On the other hand, an offline algorithm can construct a better schedule by assigning each job to one processor.
In this case, the optimal makespan, as �! 0, is

C� 6
1

m

X
j

pj ¼
1

m

X
j

mþ 1

2

� �
m� 1

2

� �
c ¼ nðm2 � 1Þc

4m
:

Thus, when m is odd, the competitive ratio of SET is at least 4m/(m + 1). h

4. Upper bounds for SET when arrival times are 0

In this section, we prove matching upper bounds for the case in which all jobs arrive at time 0 but are sched-
uled in the given order. In the next section, we show how the proof can be modified to handle arbitrary online
arrivals.

We partition a SET schedule into K blocks. Each block Bi, i = 0,1, . . . ,K � 1, is defined to be a maximal
time interval [bi,bi+1) such that neither of the following events occurs in the open time interval (bi,bi+1), for
any job Jj:

1. sj 2 (bi,bi+1) (a job begins execution).
2. Cj 2 (bi,bi+1) and kj P b(m + 3)/2c (a job executing on b(m + 3)/2c or more processors ends).

In other words, each block Bi starts when one or more jobs begin execution or a job assigned to at least
b(m + 3)/2c processors ends execution (at time bi), and ends when one of these two events happens next (at
time bi+1) or the schedule ends. The first block has b0 = 0 and the last block has bK = C. We visualize a sche-
dule as a C · m rectangle with the horizontal dimension representing time and the vertical dimension repre-
senting processors. A job is then a rectangle (perhaps divided into strips) with total area tj · kj and a block
Bi is a (bi+1 � bi) · m rectangle.

We will classify the blocks in a schedule into three different types. By inspection, it will be easy to see that
the three types cover all possible blocks. The first type of block, which we call a Type I block, is one in which at
least d(m + 1)/2e processors are busy at all times during the time interval [bi,bi+1). See Fig. 3 for a graphical
depiction of consecutive Type I blocks. The second type of block, which we call a Type II block, is one in
which fewer than d(m + 1)/2e (or at most d(m � 1)/2e) processors are busy at all times during the interval
[bi,bi+1). Note that, since no jobs start in the interval (bi,bi+1), if there are d 6 d(m � 1)/2e processors busy
at all times during the interval, there must be m � d P b(m + 1)/2c processors idle at the end of the interval.
We further classify Type II blocks into two subtypes. A Type II block Bi is of the first subtype, which we call
Type IIa, when it is not the last in the schedule (i.e., when bi+1 < C). A Type IIa block must be followed by a
job Jl running on kl P m � d + 1 P b(m + 3)/2c processors. The job Jl is contained within one or more con-
secutive Type I blocks. See Fig. 4 for a graphical depiction of possible Type IIa blocks. The second subtype of
Type II, which we call Type IIb, is a Type II block Bi that is the last block in the schedule (i.e., bi+1 = bK = C).
Clearly, there is at most one Type IIb block in any schedule.

bi bi+1 bi+2

Fig. 3. One possibility for two consecutive Type I blocks (m = 7). The darker gray represents the area during which processors are busy in
each of the two blocks. The lighter gray represents the area where other jobs could also be executing.

J.T. Havill, W. Mao / European Journal of Operational Research 187 (2008) 1126–1142 1131

Author's personal copy

For each block Bi in the schedule, we define its work area (or simply work) Wi and its idle area Ii. The work
area is the total area in the block in which jobs are executing. The idle area is the complement: the total area in
which processors are idle. Therefore, for a particular block Bi, Wi + Ii = m · (bi+1 � bi). As mentioned earlier,
the work performed by a particular job Jj in the SET schedule is denoted

wj ¼ kjtj ¼ pj þ kjðkj � 1Þc: ð2Þ

Similarly in an optimal schedule, if k�j is the number of processors assigned to Jj, the work performed by job Jj

is denoted

w�j ¼ pj þ k�j ðk�j � 1Þc P pj:

In addition, we let

W ¼
X

j

wj ¼
X

j

ðpj þ kjðkj � 1ÞcÞ

and

W � ¼
X

j

w�j ¼
X

j

ðpj þ k�j ðk�j � 1ÞcÞP
X

j

pj

be the total work in the SET and optimal schedules, respectively. Also, we let I and I* be the total idle areas in
the SET and optimal schedules, respectively. Then the makespan of the SET schedule is C = (W + I)/m and
the optimal makespan is C* = (W* + I*)/m. Using this notation, we note a simple lower bound on C*:

Lemma 4.1. C� P W �=m P
P

jpj=m.

Proof. Since I* P 0 and by the definition of W*, C� ¼ ðW � þ I�Þ=m P W �=m P
P

jpj=m. h

4.1. Upper bound for odd m P 3

We will explicitly prove the upper bound for odd m P 3. In the next subsection, we will explain how to
modify the proof for even m P 2.

Theorem 4.1. R½SET � 6 4m=ðmþ 1Þ for odd m P 3 when all jobs arrive at time 0.

Proof. We claim that the result follows if

I 6
m� 1

mþ 1
W þ 2m

mþ 1

X
j

ðpj � kjðkj � 1ÞcÞ þ mb; ð3Þ

where b is a term that is independent of the job sequence and the schedule constructed, but may be a function
of m. This claim is true because

bi bi+1 bi bi+1 bi bi+1

Fig. 4. Possible Type IIa blocks (m = 7). The medium gray represents the work on the d processors defined in the text. The dark gray
represents job Jl. The light gray represents the area where other jobs could also be executing. If a Type IIb block exists, it looks like this as
well, but lacks the following large job Jl.

1132 J.T. Havill, W. Mao / European Journal of Operational Research 187 (2008) 1126–1142

Author's personal copy

C ¼ 1

m
ðW þ IÞ

6
2

mþ 1
W þ 2

mþ 1

X
j

ðpj � kjðkj � 1ÞcÞ þ b ðby ð3ÞÞ

¼ 2

mþ 1

X
j

ðpj þ kjðkj � 1ÞcÞ þ 2

mþ 1

X
j

ðpj � kjðkj � 1ÞcÞ þ b ðby ð2ÞÞ

¼ 4

mþ 1

X
j

pj þ b

6
4m

mþ 1

� �
C� þ b ðby Lemma 4:1Þ:

For block Bi, let Fi denote the set of indices of jobs executing during (bi,bi+1). For each j 2 Fi, let aji, where
0 < aji 6 1, denote the fraction of the work wj of job Jj executed in block Bi. If j 62 Fi, then aji = 0. For any j,P

iaji ¼ 1. For an arbitrary schedule constructed by SET, we will prove the following version of inequality (3)
for sets of blocks {Bi,Bi+1, . . . ,Bq}, where q P i:

Xq

r¼i

I r 6

Xq

r¼i

m� 1

mþ 1
W r þ

2m
mþ 1

X
j2F r

ajrðpj � kjðkj � 1ÞcÞ
 !

þ mb;

where the additive mb term can only appear in the inequality for the Type IIb block (if it exists). Since the sets
we consider will constitute a partition of the schedule, we will then be able to sum these values to arrive at (3).

We first consider Type IIa blocks Bi. Recall that a Type IIa block must be followed by a job Jl with sl = bi+1

and kl P (m + 3)/2. We will analyze a Type IIa block together with the consecutive Type I blocks Bi+1, . . . ,Bq

that together contain job Jl. Also recall that d processors must be busy at all times in the interval [bi,bi+1),
where m � kl + 1 6 d 6 (m � 1)/2. Let x = d · (bi+1 � bi) denote the work performed on these d processors in
the interval (bi,bi+1) and let F 0i denote the set of indices of jobs executing on these d processors in the interval
(bi,bi+1). Notice that F 0i � F i and, since no job starts in (bi,bi+1),

P
j2F 0i

kj ¼ d. Now we consider the
relationship between

Pq
r¼iI r and

Pq
r¼iW r.

Xq

r¼i

I r 6
m� d

d
xþ m� kl

kl
wl ðby Fig: 5Þ

¼ m� 1

mþ 1
xþ wlð Þ þ m� d

d
� m� 1

mþ 1

� �
xþ m� kl

kl
� m� 1

mþ 1

� �
wl

6
m� 1

mþ 1
W i þ

Xq

r¼iþ1

W r

 !
þ m

d
� 2m

mþ 1

� �X
j2F 0i

aji pj þ kjðkj � 1Þc
� �

þ m
kl
� 2m

mþ 1

� �
ðpl þ klðkl � 1ÞcÞ ðby ð2ÞÞ

¼ m� 1

mþ 1

Xq

r¼i

W r þ
2m

mþ 1

X
j2F 0i

ajiðpj � kjðkj � 1ÞcÞ þ ðpl � klðkl � 1ÞcÞ

0
@

1
A

þ m
d
� 4m

mþ 1

� �X
j2F 0i

ajipj þ
m
d

X
j2F 0i

ajikjðkj � 1Þcþ m
kl
� 4m

mþ 1

� �
pl þ mðkl � 1Þc

6

Xq

r¼i

m� 1

mþ 1
W r þ

2m
mþ 1

X
j2F r

ajrðpj � kjðkj � 1ÞcÞ
 !

þ m
d
� 4m

mþ 1

� �X
j2F 0i

ajipj

þ m
d

X
j2F 0i

ajikjðkj � 1Þcþ m
kl
� 4m

mþ 1

� �
pl þ mðkl � 1Þc: ð4Þ

J.T. Havill, W. Mao / European Journal of Operational Research 187 (2008) 1126–1142 1133

Author's personal copy

We can bound the last two terms of (4) as follows:

m
kl
� 4m

mþ 1

� �
pl þ mðkl � 1Þc < m

kl
� 4m

mþ 1

� �
klðkl � 1Þcþ mðkl � 1Þc

ðsince m=kl � 4m=ðmþ 1Þ < 0 and by Fact 1Þ

¼ �2mðkl � 1Þð2kl � m� 1Þc
mþ 1

6
�2mðm� dÞðm� 2d þ 1Þc

mþ 1

ðsince kl P m� d þ 1 > ðmþ 1Þ=2Þ: ð5Þ

To bound the second and third terms of (4), we consider two cases. (Lemmas A.1–A.4 can be found in Appen-
dix A.)

Case 1: 1 6 d 6 (m + 1)/4. In this case, m/d � 4m/(m + 1) P 0. Therefore,

m
d
� 4m

mþ 1

� �X
j2F 0i

ajipjþ
m
d

X
j2F 0i

ajikjðkj� 1Þc6 m
d
� 4m

mþ 1

� �X
j2F 0i

pjþ
m
d

X
j2F 0i

kjðkj� 1Þc

6
m
d
� 4m

mþ 1

� �X
j2F 0i

kjðkjþ 1Þcþm
d

X
j2F 0i

kjðkj� 1Þc ðby Fact 1Þ

6
m
d
� 4m

mþ 1

� �
dðdþ 1Þcþm

d
dðd� 1Þc ðby Lemma A:1Þ

¼ 2mdðm� 2d� 1Þc
mþ 1

: ð6Þ

Substituting (5) and (6) into (4), we conclude that

Xq

r¼i

I r 6

Xq

r¼i

m� 1

mþ 1
W r þ

2m
mþ 1

X
j2F r

ajrðpj � kjðkj � 1ÞcÞ
 !

� 2mðm2 þ m� 4md þ 4d2Þc
mþ 1

<
Xq

r¼i

m� 1

mþ 1
W r þ

2m
mþ 1

X
j2F r

ajrðpj � kjðkj � 1ÞcÞ
 !

ðby Lemma A:2Þ: ð7Þ

Case 2: (m + 1)/4 < d 6 (m � 1)/2. In this case, m/d � 4m/(m + 1) < 0. Therefore,

bi bi+1

xd

m-d

kl

m-kl

x/d

wl

wl / kl

{
{ }

}

{ {
Fig. 5. Variables in the analysis of a Type IIa block, applied to the third block in Fig. 4.

1134 J.T. Havill, W. Mao / European Journal of Operational Research 187 (2008) 1126–1142

Author's personal copy

m
d
� 4m

mþ 1

� �X
j2F 0i

ajipj þ
m
d

X
j2F 0i

ajikjðkj � 1Þc

<
2m
d
� 4m

mþ 1

� �X
j2F 0i

ajikjðkj � 1Þc ðby Fact 1Þ

6
2m
d
� 4m

mþ 1

� �X
j2F 0i

kjðkj � 1Þc ðsince 2m=d � 4m=ðmþ 1ÞP 0Þ

6
2m
d
� 4m

mþ 1

� �
dðd � 1Þc ðsince 2m=d � 4m=ðmþ 1ÞP 0 and by Lemma A:1Þ

¼ 2mðd � 1Þðm� 2d þ 1Þc
mþ 1

: ð8Þ

Substituting (5) and (8) into (4), we conclude thatXq

r¼i

I r 6

Xq

r¼i

m� 1

mþ 1
W r þ

2m
mþ 1

X
j2F r

ajrðpj � kjðkj � 1ÞcÞ
 !

� 2mðm� 2d þ 1Þ2c
mþ 1

6

Xq

r¼i

m� 1

mþ 1
W r þ

2m
mþ 1

X
j2F r

ajrðpj � kjðkj � 1ÞcÞ
 !

: ð9Þ

We now consider the Type I blocks Bi not analyzed with a Type IIa block above. Recall that, in a Type I
block, there are d P (m + 1)/2 processors busy at all times during the interval [bi,bi+1). Thus, we know that
Wi P (bi+1 � bi)(m + 1)/2 and Ii 6 (bi+1 � bi)(m � 1)/2. Therefore,

I i 6
m� 1

mþ 1
W i 6

m� 1

mþ 1
W i þ

2m
mþ 1

X
j2F i

ajiðpj � kjðkj � 1ÞcÞ; ð10Þ

since aji > 0 for all j 2 Fi and, by Fact 1, pj > kj(kj � 1)c for all j 2 Fi.
Finally, we consider the single Type IIb block Bi (if it exists). Bi is the last block and contains jobs that keep

d 6 (m � 1)/2 processors busy for the entire interval. As with a Type IIa block, let x = d · (bi+1 � bi) denote the
work performed on these d processors in the interval (bi,bi+1) and let F 0i denote the set of indices of jobs executing
on these d processors in the interval (bi,bi+1). Notice that F 0i � F i and, since no job starts in (bi,bi+1),

P
j2F 0i

kj ¼ d.

I i 6
m� d

d
x ¼ m� 1

mþ 1
xþ m� d

d
� m� 1

mþ 1

� �
x

6
m� 1

mþ 1
W i þ

m
d
� 2m

mþ 1

� �X
j2F 0i

aji pj þ kjðkj � 1Þc
� �

ðby ð2ÞÞ

¼ m� 1

mþ 1
W i þ

2m
mþ 1

X
j2F 0i

ajiðpj � kjðkj � 1ÞcÞ þ m
d
� 4m

mþ 1

� �X
j2F 0i

ajipj þ
m
d

X
j2F 0i

ajikjðkj � 1Þc

6
m� 1

mþ 1
W i þ

2m
mþ 1

X
j2F i

ajiðpj � kjðkj � 1ÞcÞ þ m
d
� 4m

mþ 1

� �X
j2F 0i

ajipj þ
m
d

X
j2F 0i

ajikjðkj � 1Þc: ð11Þ

We now consider the same two cases from the analysis of Type IIa blocks.

Case 1: 1 6 d 6 (m + 1)/4. In this case, we can substitute (6) into (11) to conclude that

I i 6
m� 1

mþ 1
W i þ

2m
mþ 1

X
j2F i

ajiðpj � kjðkj � 1ÞcÞ þ 2mdðm� 2d � 1Þc
mþ 1

6
m� 1

mþ 1
W i þ

2m
mþ 1

X
j2F i

ajiðpj � kjðkj � 1ÞcÞ þ mðm� 1Þ2c
4ðmþ 1Þ ðby Lemma A:3Þ: ð12Þ

J.T. Havill, W. Mao / European Journal of Operational Research 187 (2008) 1126–1142 1135

Author's personal copy

Case 2: (m + 1)/4 < d 6 (m � 1)/2. In this case, we can substitute (8) into (11) to conclude that

I i 6
m� 1

mþ 1
W i þ

2m
mþ 1

X
j2F i

ajiðpj � kjðkj � 1ÞcÞ þ 2mðd � 1Þðm� 2d þ 1Þc
mþ 1

6
m� 1

mþ 1
W i þ

2m
mþ 1

X
j2F i

ajiðpj � kjðkj � 1ÞcÞ þ mðm� 1Þ2c
4ðmþ 1Þ ðby Lemma A:4Þ: ð13Þ

In conclusion, we sum over all blocks (using (6), (8), (10), (12), and (13)), to get

I ¼
X

i

I i 6
m� 1

mþ 1

X
i

W i þ
2m

mþ 1

X
i

X
j2F i

ajiðpj � kjðkj � 1ÞcÞ þ mb

6
m� 1

mþ 1
W þ 2m

mþ 1

X
j

ðpj � kjðkj � 1ÞcÞ þ mb;

where b = (m � 1)2c/(4(m + 1)). h

4.2. Upper bound for even m P 2

For the case where m is even, we have the following theorem:

Theorem 4.2. R½SET� 6 4ðm� 1Þ=m for even m P 2 when all jobs arrive at time 0.

The proof for the even case follows almost exactly the proof for the odd case, so we will not repeat it here.
In most places, all that is necessary is to replace m with m � 1 in the text. In place of (3), the goal is to show:

I 6
m� 2

m
W þ 2ðm� 1Þ

m

X
j

ðpj � kjðkj � 1ÞcÞ þ mb: ð14Þ

5. Upper bounds for SET when arrival times are arbitrary

Previously, we assumed that all jobs arrived at time 0. However, our results still hold when each job Jj can
have an arbitrary arrival time aj P 0. As noted in the introduction, we assume that i < j) ai 6 aj.

Let W �
i;j denote the optimal work for jobs Ji,Ji+1, . . . ,Jj. First, we notice that, in the case of arbitrary arrival

times, the statement of Lemma 4.1 becomes

C� P max
j

aj þ
W �

j;n

m

	

: ð15Þ

Theorem 5.1. R½SET� 6 4ðm� 1Þ=m; m P 2 is even
4m=ðmþ 1Þ; m P 3 is odd

	
when arrival times are arbitrary.

Proof. To simplify notation, let

r ¼
4ðm� 1Þ=m; m P 2 is even

4m=ðmþ 1Þ; m P 3 is odd:

	

The proofs of Theorems 4.1 and 4.2 hinge on the fact that a Type IIa block Bi must be followed immedi-
ately by a job Jl with sl = bi+1 and kl P m � d + 1. However, when arrival times can be arbitrary, it is possible
that a Type IIa block is not followed immediately by such a job. Therefore, we must modify the analysis of
Type IIa blocks to show that the results still hold with arbitrary arrival times. The analyses of Type I and Type
IIb blocks are unchanged by the introduction of arbitrary arrival times.

1136 J.T. Havill, W. Mao / European Journal of Operational Research 187 (2008) 1126–1142

Author's personal copy

First, we notice that the given proofs of Theorems 4.1 and 4.2 hold for arbitrary online arrivals if all Type
IIa blocks Bi have d P 1 processors busy at all times in the interval [bi,bi+1), and are immediately followed by
a job Jl with sl = bi+1 and kl P m � d + 1. More generally, we can make the proofs hold if at least one of the
job(s) executing on the d processors that are busy at all times in any Type IIa block Bi is immediately followed
by a job Jl with kl P m � d + 1, but Jl is in some block Bi, where i P i + 1. (The jobs previously said to be
executing on these d processors in block Bi are actually contained in Type IIa blocks Bi,Bi+1, . . . ,Bi�1.) In each
of these cases, we can simply ignore any job(s) Jj with bi+1 6 sj = aj < sl, reset bi+1 = sl, and modify the indices
of successive blocks accordingly. Then the proof holds for the modified partition. See Fig. 6 for an illustration
of this modification.

Therefore, consider an online schedule containing a Type IIa block Bi in which the job(s) executing on the d

processors that are busy at all times in the block (and consecutive Type IIa blocks Bi,Bi+1, . . . ,Bi�1) are not
immediately followed by a job Jl with kl P m � d + 1 in block Bi. In particular, consider the last such Type IIa
block Bi. Let Jh be a job with kh 6 m � d, where d P 0 is the number of processors that are busy at all times in
Bi, and sh = ah = bi+1. Also, let JL be a job with CL = max16j<h{Cj}, and let Wi,j and Ii,j denote the work and
idle areas, respectively, of an online schedule for just jobs Ji,Ji+1, . . . ,Jj. We consider two cases:

Case 1: CL 6 ah. (See Fig. 7.) In this case, all jobs Jj with j P h are scheduled after all jobs Jj with j < h.
Therefore,

C ¼ ah þ
W h;n þ Ih;n

m

6 ah þ r
W �

h;n

m

� �
þ b ðfrom the proofs of Theorems 4:1 and 4:2Þ

< r ah þ
W �

h;n

m

� �
þ b

6 r max
j

aj þ
W �

j;n

m

	

þ b

6 rC� þ b ðby ð15ÞÞ:

Case 2: CL > ah. (See Fig. 8.) We first notice that there must not be any job Jj, where j < h, with Cj > ah and
kj P m � d + 1. Otherwise, this job would immediately follow the job(s) executing on the d proces-
sors that are busy at all times in Bi, and therefore satisfy the definition of Jl given above. Thus, in
particular, kL 6 m � d. Also, since there were at least m � d processors idle when Jh arrived and

0 Cbi
bi+1(new)bi+1(old)

Jl

Fig. 6. Modifying a Type IIa block Bi in the proof of Theorem 5.1.

0 Cbi bi+1

Jh
JL

Fig. 7. Case 1 in the proof of Theorem 5.1.

J.T. Havill, W. Mao / European Journal of Operational Research 187 (2008) 1126–1142 1137

Author's personal copy

aL 6 ah, sL 6 ah. Now consider a modified SET schedule in which jobs Jj, where h 6 j 6 n, are sched-
uled to start at or after time CL. Since the makespan of this modified schedule can be no shorter than
the makespan of the original SET schedule, we can bound the makespan of the original SET schedule
as follows:

C 6 CL þ
W h;n þ Ih;n

m

6 CL þ r
W �

h;n

m

� �
þ b ðfrom the proofs of Theorems 4:1 and 4:2Þ

< ðCL � ahÞ þ r ah þ
W �

h;n

m

� �
þ b

6 tL þ rC� þ b ðsince CL ¼ sL þ tL and sL 6 ah and by ð15ÞÞ
6 2kLcþ rC� þ b ðby Fact 1 since kL < mÞ
6 rC� þ ðbþ ðmþ 1ÞcÞ ðsince kL 6 m� d 6 ðmþ 1Þ=2Þ: �

6. General lower bounds

We do not know of any existing general lower bounds specifically for parallel job scheduling, although we
show below how lower bound instances for classical job scheduling [7] can be adapted to apply to our problem
if no additive constant is allowed in the definition of competitive ratio (i.e., a strong competitive ratio). We
then show that, if an additive constant proportional to m is allowed, the competitive ratio of any online algo-
rithm is still greater than 1.

We first show that the strong competitive ratio of any online algorithm is at least 3/2 for m P 2 and at least
5/3 for m P 3.

Theorem 6.1. The strong competitive ratio of any online algorithm is at least 3/2 for m P 2.

Proof. We frame the proof as a contest between an adversary, which issues the job sequence, and an arbitrary
online algorithm A. We will show that the adversary can force A to schedule its jobs so that its makespan is at
least 3/2 times the optimal makespan. The adversary first issues up to m jobs p1 = p2 = � � �pm = c. If A assigns
one or more of these m jobs to two or more processors, or two or more jobs to the same processor, the adver-
sary stops because A has incurred makespan at least 3/2 times the optimal makespan of c. Otherwise, the
adversary issues pm+1 = 2c. Since this job will require at least 2c units of time to execute, regardless of the num-
ber of processors assigned to it, A has incurred makespan at least 3c. On the other hand, the optimal make-
span is 2c. Therefore, A has competitive ratio at least 3/2. h

Similarly, we can adapt the classical scheduling lower bound for m P 3 [7].

Theorem 6.2. The strong competitive ratio of any online algorithm is at least 5/3 for m P 3.

Proof. Let A be an arbitrary online algorithm. An adversary begins by issuing m jobs p1 = p2 = � � � = pm = c/
3. If A assigns one or more of these jobs to two or more processors, or if it assigns two or more jobs to the
same processor, the adversary stops because A has incurred makespan at least twice the optimal makespan of

0 Cbi bi+1

Jh

JL

Fig. 8. Case 2 in the proof of Theorem 5.1.

1138 J.T. Havill, W. Mao / European Journal of Operational Research 187 (2008) 1126–1142

Author's personal copy

c/3. Otherwise, the adversary issues m additional jobs pm+1 = pm+2 = � � � = p2m = c. If A assigns any of these
latter m jobs to two or more processors, then at least two of them must be assigned to the same processor. In
this case, or if A otherwise assigns two or more to the same processor, the adversary stops, and A’s makespan
will be at least 7c/3. Since the optimal makespan at this point is 4c/3, A’s competitive ratio is at least 7/4.
Otherwise, the adversary issues a final job p2m+1 = 2c. Since this last job will require at least 2c units to execute
regardless of the number of processors assigned to it, A’s makepan will be at least 10c/3. On the other hand,
the optimal makespan is 2c, so A has competitive ratio at least 5/3. h

We now consider the case in which a constant proportional to m is allowed.

Theorem 6.3. If an additive constant proportional to m is allowed in the definition of competitive ratio, then the

competitive ratio of any online algorithm is still strictly greater than 1 for any m P 2.

Proof. We frame the proof as a contest between an adversary, which issues the job sequence, and an arbi-
trary online algorithm A. We will show that the adversary can force A to schedule its jobs so that the dif-
ference between its makespan and the optimal makespan is arbitrarily large, thus yielding a competitive
ratio greater than 1. The adversary will issue jobs in phases. In each phase, the adversary begins by issuing
m jobs p1 = p2 = � � � pm = c. If A assigns one or more of these m jobs to two or more processors, or two or
more jobs to the same processor, A has used at least 2c units of time to schedule the m jobs. Otherwise, A

has used only c units of time to schedule the jobs, so the adversary issues another job pm+1 = 2c. Since this
job will require at least 2c units of time to execute, regardless of the number of processors assigned to it, A

has now used at least 3c units of time to schedule the m + 1 jobs. Now, to round out this phase, the adver-
sary issues a job with length Pc, where Pc is arbitrarily large (but finite). If A assigns this job to m proces-
sors, then A requires at least 2c + Pc/m + (m � 1)c units of time in a phase with m small jobs and at least
3c + Pc/m + (m � 1)c units of time in a phase with m + 1 small jobs. On the other hand, if A assigns the
large job to fewer than m processors, then A needs at least 2c + Pc/(m � 1) + (m � 2)c units of time in a
phase with m small jobs and at least 3c + Pc/(m � 1) + (m � 2)c units of time in a phase with m + 1 small
jobs. The adversary will repeatedly issue new phases of jobs, as described above, until A assigns the large
job to less than m processors.

Let f denote the number of phases and let a denote the number of phases, except the last, with m small jobs.
First, suppose that f is finite and, without loss of generality, that the last phase contains m small jobs. Then A’s
that makespan is at least

C P a 2cþ Pc
m
þ ðm� 1Þc

� �
þ ðf � a� 1Þ 3cþ Pc

m
þ ðm� 1Þc

� �
þ 2cþ Pc

m� 1
þ ðm� 2Þc

� �

¼ ððm� 1Þf þ 1ÞPc
mðm� 1Þ þ ððmþ 2Þf � a� 2Þc

and the optimal makespan is at most

C� 6 acþ ðf � a� 1Þð2cÞ þ cþ f
Pc
m
þ ðm� 1Þc

� �
¼ fPc

m
þ ððmþ 1Þf � a� 1Þc:

Therefore, the competitive ratio of A is greater than 1 since C � C* = Pc/(m(m � 1)) + (f � 1)c can be arbi-
trarily large.

On the other hand, if f is infinite, then A’s makespan is at least

C P a 2cþ Pc
m
þ ðm� 1Þc

� �
þ ðf � aÞ 3cþ Pc

m
þ ðm� 1Þc

� �
¼ fPc

m
þ ððmþ 2Þf � aÞc

and the optimal makespan is at most

C� 6 acþ ðf � aÞð2cÞ þ f
Pc
m
þ ðm� 1Þc

� �
¼ fPc

m
þ ððmþ 1Þf � aÞc:

Therefore, the competitive ratio of A is greater than 1 since C � C* = fc, which is arbitrarily large. h

J.T. Havill, W. Mao / European Journal of Operational Research 187 (2008) 1126–1142 1139

Author's personal copy

7. Conclusions

We studied the problem of scheduling perfectly malleable parallel jobs, in which a job with length pj that is
assigned to kj processors has execution time tj = pj/kj + (kj � 1)c, where c > 0 is a constant setup time associ-
ated with each processor beyond the first. For this problem, which models jobs employing data parallelism, we
showed that the competitive ratio of a simple online algorithm is 4(m � 1)/m for even m P 2 and 4m/(m + 1)
for odd m P 3.

There are three directions for future research. First, we would like to know whether there is another online
algorithm which might beat SET in terms of competitive ratio. A promising candidate is the algorithm that
assigns kj to minimize the completion time of a job instead of its execution time.

We also plan to study parallel job scheduling with other optimization criteria such as maximum or average
response time (Cj � aj), as these criteria are well suited for the general online problem with stretched arrival
times.

Finally, we are interested in similar scheduling problems that use a different formula for the execution time.
For example, as discussed in the introduction, one might define tj to be pj/kj + (kj � 1)cj to better reflect more
general message passing computations. We point out that the competitive ratio of SET is at least m for this
model, even though it is only slightly different from the model we studied in this paper.

Theorem 7.1. If tj = pj/kj + (kj � 1)cj, where cj may be different for each job, then the competitive ratio of SET is

at least m.

Proof. Consider an instance consisting of n = 2am jobs, where a is a positive integer. For odd j, we define
pj = B and cj = B/2. For even j, we define pj = 1 + �, where � > 0 is arbitrarily small, and cj = 1/(m(m � 1)).
For all j, aj = 0. SET will assign each of the odd-indexed jobs to one processor and each of the even-indexed
jobs to m processors. If backfilling is not allowed, the algorithm will schedule all the jobs at different start
times, and thus in a sequential order. Therefore, the makespan of the schedule on this sequence, as �! 0, is

C ¼ n
2

Bþ 1

m
þ ðm� 1Þ 1

mðm� 1Þ

� �
¼ n

B
2
þ 1

m

� �
:

On the other hand, an offline algorithm can construct a better schedule by assigning each job to one processor
and executing all the odd-indexed jobs followed by the even-indexed jobs. In this case, the optimal makespan,
as �! 0, is

C� 6
n

2m
ðBþ 1Þ:

Thus, the competitive ratio of SET is at least (mB + 2)/(B + 1)! m for arbitrarily small � > 0 and arbitrarily
large B > 0. h

Acknowledgements

We would like to thank the anonymous referees for their meticulous readings of our manuscript and their
helpful suggestions, which improved the quality of the paper.

Appendix A. Lemmas referenced in the proof of Theorem 4.1

Lemma A.1. If
P

j2Skj ¼ d, then
P

j2Skjðkj þ 1Þ 6 dðd þ 1Þ and
P

j2Skjðkj � 1Þ 6 dðd � 1Þ, where kj 2
{1,2, . . .d} for all j 2 S.

Proof. Let ni,k be the number of elements in S with kj = k. Then
P

j2Skj and
P

j2Skjðkj þ 1Þ can be rewritten asPd
k¼1kni;k and

Pd
k¼1kðk þ 1Þni;k, respectively. Therefore,

P
j2Skjðkj þ 1Þ ¼

Pd
k¼1kðk þ 1Þni;k 6 ðd þ 1ÞPd

k¼1kni;k ¼ ðd þ 1Þ
P

j2F 0i
kj ¼ dðd þ 1Þ: The proof of the second inequality is similar. h

1140 J.T. Havill, W. Mao / European Journal of Operational Research 187 (2008) 1126–1142

Author's personal copy

Lemma A.2. �2m(m2 + m � 4md + 4d2)c/(m + 1) < 0 for m P 2 and 1 6 d 6 (m + 1)/4.

Proof. Let f(m,d) = �2m(m2 + m � 4md + 4d2)c/(m + 1). The first partial derivative of f with respect to d is
fd(m,d) = �2m(8d � 4m)c/(m + 1) which gives an extremum at d = m/2. The second partial derivative
fdd(m,d) = �16mc/(m + 1) < 0 indicates that the function is concave down. Therefore, f(m,d) 6 f(m,m/
2) = �2m2c/(m + 1) < 0. h

Lemma A.3. 2md(m � 2d � 1)c/(m + 1) 6 m(m � 1)2c/(4(m + 1)) for 1 6 d 6 (m + 1)/4.

Proof. Let f(m,d) = 2md(m � 2d � 1)c/(m + 1). The first partial derivative of f with respect to d is
fd(m,d) = 2m(m � 4d � 1)c/(m + 1) which gives an extremum at d = (m � 1)/4. The second partial derivative
fdd(m,d) = � 8mc/(m + 1) < 0 indicates that the function is concave down. Therefore, f(m,d) 6 f(m,(m � 1)/
4) = m(m � 1)2c/(4(m + 1)). h

Lemma A.4. 2m(d � 1)(m � 2d + 1)c/(m + 1) 6 m(m � 1)2c/(4(m + 1)) for (m + 1)/4 < d 6 (m � 1)/2.

Proof. Let f(m,d) = 2m(d � 1)(m � 2d + 1)c/(m + 1). The first partial derivative of f with respect to d is
fd(m,d) = 2m(m � 4d + 3)c/(m + 1) which gives an extremum at d = (m + 3)/4. The second partial derivative
fdd(m,d) = � 8mc/(m + 1) < 0 indicates that the function is concave down. Therefore, f(m,d) 6 f(m, (m + 3)/
4) = m(m � 1)2c/(4(m + 1)). h

References

[1] A. Allahverdi, J.N.D. Gupta, T. Aldowaisan, A review of scheduling research involving setup considerations, Omega, The
International Journal of Management Science 27 (2) (1999) 219–239.

[2] A. Allahverdi, C.T. Ng, T.C.E. Cheng, M.Y. Kovalyov, A survey of scheduling problems with setup times or costs, European Journal
of Operational Research, in press, doi:10.1016/j.ejor.2006.06.060.

[3] K.P. Belkhale, P. Banerjee, An approximate algorithm for the partitionable independent task scheduling problem, in: Proceedings of
the IEEE International Parallel Processing Symposium, 1990, pp. 72–75.

[4] J. Blazewicz, M. Machowiak, G. Mounie, D. Trystram, Approximation algorithms for scheduling independent malleable tasks, in:
Proceedings of Euro-Par 2001, LNCS 2150, 2001, pp. 191–197.

[5] L.W. Dowdy, On the partitioning of multiprocessor systems. Technical report, Vanderbilt University, 1988.
[6] J. Du, J.Y.-H. Leung, Complexity of scheduling parallel task systems, SIAM Journal on Discrete Mathematics 2 (4) (1989) 473–487.
[7] U. Faigle, W. Kern, G. Turán, On the performance of on-line algorithms for partition problems, Acta Cybernetica 9 (2) (1989) 107–

119.
[8] D.G. Feitelson, L. Rudolph, U. Schwiegelshohn, K.C. Sevcik, P. Wong, Theory and practice in parallel job scheduling, in: Job

Scheduling Strategies for Parallel Processing, LNCS 1291, 1997, pp. 1–34.
[9] A. Feldmann, M.-Y. Kao, J. Sgall, S.-H. Teng, Optimal on-line scheduling of parallel jobs with dependencies, Journal of

Combinatorial Optimization 1 (4) (1998) 393–411.
[10] A. Feldmann, J. Sgall, S.-H. Teng, Dynamic scheduling on parallel machines, Theoretical Computer Science 130 (1) (1994) 49–72.
[11] M. Garey, R. Graham, Bounds for multiprocessor scheduling with resource constraints, SIAM Journal on Computing 4 (2) (1975)

187–200.
[12] J.T. Havill, A competitive online algorithm for a parallel job scheduling problem, in: Proceedings of the 12th IASTED International

Conference on Parallel and Distributed Computing and Systems, 2000, pp. 611–616.
[13] K. Jansen, Scheduling malleable parallel tasks: an asymptotic fully polynomial time approximation scheme, Algorithmica 39 (1)

(2004) 59–81.
[14] K. Jansen, L. Porkolab, Linear-time approximation schemes for scheduling malleable parallel tasks, Algorithmica 32 (3) (2002) 507–

520.
[15] B.P. Lester, The Art of Parallel Programming, Prentice Hall, 1993.
[16] W. Ludwig, P. Tiwari, Scheduling malleable and nonmalleable parallel tasks, in: Proceedings of the ACM-SIAM Symposium on

Discrete Algorithms, 1994, pp. 167–176.
[17] W. Mao, J. Chen, W. Watson III, On-line algorithms for a parallel job scheduling problem, in: Proceedings of the 11th IASTED

International Conference on Parallel and Distributed Computing and Systems, 1999, pp. 753–757.
[18] G. Mounie, C. Rapine, D. Trystram, Efficient approximation algorithms for scheduling malleable tasks, in: Proceedings of the ACM

Symposium on Parallel Algorithms and Architectures, 1999, pp. 23–32.
[19] C. Rapine, I.D. Scherson, D. Trystram, On-line scheduling of parallelizable jobs, in: Proceedings of the European Conference on

Parallel Computing, LNCS 1470, 1998, pp. 322–327.

J.T. Havill, W. Mao / European Journal of Operational Research 187 (2008) 1126–1142 1141

Author's personal copy

[20] K.C. Sevcik, Application scheduling processor allocation in multiprogrammed parallel processing systems, Performance Evaluation
19 (2–3) (1994) 107–140.

[21] J. Sgall, On-line scheduling of parallel jobs, in: Proceedings of the International Symposium on Mathematical Foundations of
Computer Science, LNCS 841, 1994, pp. 159–176.

[22] J. Turek, J.L. Wolf, P.S. Yu, Approximate algorithms for scheduling parallelizable tasks, in: Proceedings of the ACM Symposium on
Parallel Algorithms and Architectures, 1992, pp. 323–332.

[23] Q. Wang, K.H. Cheng, A heuristic of scheduling parallel tasks and its analysis, SIAM Journal on Computing 21 (2) (1992) 281–294.

1142 J.T. Havill, W. Mao / European Journal of Operational Research 187 (2008) 1126–1142

