CSCI 312 Principles of Programming Languages

Qingsen Wang gwang06@email.wm.edu

April 7, 2017

1.Haskell Quick Start

2.Knight Placement Problem

L]

‘Relax And Take it Fasyl — 3

The figure is from https://orlandoespinosa.files.wordpress.com/2014/05/relax-and-take-it-easy-orlando-espinosa.jpg

Haskell — How to play with your code

GHCI

> ghci

Prelude> :1 test
Prelude> :r
Prelude> :t main

GHC

> ghc -0 test test.hs

RUNHASKELL

> runhaskell test.hs

Haskell — Comments

—— some comments

Comments with multiple lines

Haskell — Basic Types

e Int

* Integer can be unlimited

* Float

* Double

e Bool True or False

e Char let c = 'a' A string is a list of chars

The first letter is capitalized!

Haskell — Basic Operations

addEx
subkEx
multkEx = 7 * 3
divEx = 7 / 3

modEx = mod 7 3
modEx = 7 mod 3

\ Make it an infix operator
powEx = 7 ~ 3

Logic operators: Equality test:
|| && not xor — _

and or — applytoalist

Haskell — List

Generate a list

List comprehension

emptyList = []

week = ["Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday", "Sunday"]

fromOneToTen = [1..10]

evenFromOneToTen = [2,4..10]
positivelnteger = [1..]
points = [[30,40], [20,501, [10,01]]

Tuple, just like Python

times3 = [x * 3 | x <-[1L.<10], x * 3 <= 50]

combinations = [(x, x <=-[1..10], y<-[1..10], x /= vy]

For tuple, you may check zip, unzip, £st and snd for more information.

Haskell — List

List Operation

null

maxi
mum

splitAt

listl!!1

null 1listl

O:1istl

maximum listl

splitAt 2
listl

False

[0,1,2,3,
4,5]

elem

length

++
minim
um

revers
e

listl=
list2=

elem 3 listl

length listl
listl ++
list?2

minimum listl

reverse listl

[1 2 3,4,5]

True

[5,4,3,2
r 1]

Haskell — List

List Operation (cont’)

drop drop 2 listl

init init listl

head head listl

sum sum listl

[3,4,5]

[1,2,3,4]

1

15

take

last

tail

product

listl=
list2=

[1_ 2 3,4,5]

take 2 listl

last 1listl 5
tail 1listl [2,3,4,5]

product 1listl 12

Haskell — Function

Declaration

areaOfRect
areaOfRect

addVectors
addVectors

a

Int -> Int -> Int

b =a*b

(Num a)

(fst

=> (a, a) —-> (a, a) —-> (a,
a +|fst b, snd a + snd Db)

v

Optional ! Why not bother yourself?

a)

Haskell — Function

Write a function

1 areaOfRect a b = a * b
num2Text 1 = "one"

9 num2Text 2 = "two"
num’2Text 3 = "three"
num2Text x = "1 don't care"

num2Text num

3 | num == = "one"
| num == = "two"
| num == = "three"
|

otherwise = "I don't care"

Haskell — Function

Write a function

bmiTell weight height

| bmi <= 18.5 = "You're underweight!"
4 | bmi <= 25.0 = "You're supposedly normal"
| bmi <= 30.0 = "Lose some weight!"
| otherwise = "You're a whale, congratulations!"

where bmi = weight / height © 2

tell [] = "The list 1s empty"

tell (x:[]) = "The list has one element: " ++ show x
5 tell (x:y:[]) = "The list has two elements: " ++

show x ++ " and " ++ show vy

tell (x:y:) = "This list 1s long. The first two

elements are: " ++ show x ++ " and " +4+ show y

Haskell — Function

More recursive

factorial n = product [1..n]

factorial 0 = 1

factorial n = n * factorial (n - 1)
myreverse [] = []
) myreverse (x:xXs) = myreverse xs ++ [X]
quicksort [] = []
3 quicksort (x:xs) = quicksort [a | a <- xs, a <= x]
++ [x] ++ quicksort [a | a <- xs, a > Xx]

N\

Same line

Haskell — Function

More math functions

= Thisis a constant
pi

exp
log

* K

A

Lruncate
round
ceilling
floor
sin

COS

Haskell — Other

Google Google Google!

Learn You a Haskell for Great Good! http://learnyouahaskell.com/chapters

More Examples

1 fib =1 : 1 : [atb | (a,b) <- zip fib (tail fib)]
queens n = solve n
where
solve O = [[]]
2 solve k = [g:b | b <= solve (k-1), g <= [0..(n-
1)], safe g b]
safe g b and [not (checks gb 1) | 1 <-

[0.. (length b - 1)]
b

]
checks g i =qg==>Db!!'1 || abs(g - b!!i) == 1+1

http://learnyouahaskell.com/chapters

Haskell — Other

7

N W
Input: the size 8
W
W
‘ﬂ? ¥ Output: A list of solutions
W : One solution: [7,5,3,1,6,4,2,0]
W
0 7/
queens n = solve n
where
solve 0 = []

[]
solve k = [g:b | b <= solve (k-1), g <= [0..(n-

1)], safe g b]

safe g b = and [not (checks g b 1) | 1 <-
[0.. (length b - 1)]]
checks g b 1 = g == Db!!i1 || abs(g - b!!i) == 1+1

The figure is from http://www.aiai.ed.ac.uk/~gwickler/images/8-queens-config.png

Knight Placement Problem

Problem Description
The knight can’t be caught by any queen
The knight can’t catch any queen

Input:
A placement plan of queens
eg.[0,0,6,0,3,0,0,0]

Output:

All the possible places to place the knight
e.g.[[1,2], [1,2], [O], [O], [O], [7,8], [7,8], [2,4,5,7,8]]

Knight Placement Problem

One simple way: (simple for thinking, may not for implementation)
Check whether each cell is safe -> if yes, include this cell; otherwise

skip
When is not safe?
Xg == xQ
Yk == Yo
|xK — xQ| == |y1< _le

X — xo| + vk — yo| ==

Feel free to implement your own ideas.

® Don’t get surprised if you can finish it within 20 lines.
® The index starts from 1 instead of 0
® Use the comments a lot so that we can understand you better

® You can assume all the inputs are valid

Reference

« Learn You a Haskell for Great Good!
http.//learnyouahaskell.com/chapters

« Hackage https://hackage.haskell.org/packages/

« Starting with Haskell https://www.fpcomplete.com/school/starting-with-
haskell

« Wikibook — Haskell https://en.wikibooks.org/wiki/Haskell

* A Gentile Introduction to Haskell https://www.haskell.org/tutorial/

« Programming Languages Principles and Paradigms, 2"¢ Edition, by Allen
B. Tucker and Robert E. Noonan

http://learnyouahaskell.com/chapters
https://hackage.haskell.org/packages/
https://www.fpcomplete.com/school/starting-with-haskell
https://en.wikibooks.org/wiki/Haskell
https://www.haskell.org/tutorial/

