
Haskell Tutorial

CSCI 312 Principles of Programming Languages

Qingsen Wang

April 7, 2017

qwang06@email.wm.edu

Outline

1.Haskell Quick Start

2.Knight Placement Problem

The figure is from https://orlandoespinosa.files.wordpress.com/2014/05/relax-and-take-it-easy-orlando-espinosa.jpg

Haskell – How to play with your code

GHCI

> ghci

Prelude> :l test

Prelude> :r

Prelude> :t main

RUNHASKELL

> ghc –o test test.hs

GHC

> runhaskell test.hs

-- some comments

{-

Comments with multiple lines

-}

Haskell – Comments

• Int

• Integer

• Float

• Double

• Bool

• Char let c = 'a'

can be unlimited

True or False

Haskell – Basic Types

A string is a list of chars

The first letter is capitalized!

addEx = 7 + 3

subEx = 7 - 3

multEx = 7 * 3

divEx = 7 / 3

modEx = mod 7 3

modEx = 7 `mod` 3

powEx = 7 ^ 3

Make it an infix operator

Haskell – Basic Operations

Logic operators:

|| && not xor

and or apply to a list

Equality test:

== /=

Generate a list

emptyList = []

week = ["Monday", "Tuesday", "Wednesday", "Thursday",

"Friday", "Saturday", "Sunday"]

fromOneToTen = [1..10]

evenFromOneToTen = [2,4..10]

positiveInteger = [1..]

points = [[30,40], [20,50], [10,0]]

times3 = [x * 3 | x <-[1..10], x * 3 <= 50]

combinations = [(x,y)| x <-[1..10], y<-[1..10], x /= y]

Tuple, just like Python

Haskell – List

For tuple, you may check zip, unzip, fst and snd for more information.

List comprehension

List Operation

Op. Example Value Op. Example Value

!! list1!!1 2 elem elem 3 list1 True

null null list1 False length length list1 5

: 0:list1
[0,1,2,3,

4,5]
++

list1 ++

list2

[1,2,3,4

,5,6,7]

maxi

mum
maximum list1 5

minim

um
minimum list1 1

splitAt
splitAt 2

list1

([1,2],[3

,4,5])

revers

e

reverse list1 [5,4,3,2

,1]

Haskell – List

list1=[1,2,3,4,5]

list2=[6,7]

List Operation (cont’)

Op. Example Value Op. Example Value

drop drop 2 list1 [3,4,5] take take 2 list1 [1,2]

init init list1 [1,2,3,4] last last list1 5

head head list1 1 tail tail list1 [2,3,4,5]

sum sum list1 15 product product list1 12

Haskell – List

list1=[1,2,3,4,5]

list2=[6,7]

Declaration

addVectors :: (Num a) => (a, a) -> (a, a) -> (a, a)

addVectors a b = (fst a + fst b, snd a + snd b)

Optional ! Why not bother yourself?

Haskell – Function

areaOfRect :: Int -> Int -> Int

areaOfRect a b = a * b

Write a function

Haskell – Function

areaOfRect a b = a * b

num2Text 1 = "one"

num2Text 2 = "two"

num2Text 3 = "three"

num2Text x = "I don't care"

num2Text num

| num == 1 = "one"

| num == 2 = "two"

| num == 3 = "three"

| otherwise = "I don't care"

1

2

3

Write a function

bmiTell weight height

| bmi <= 18.5 = "You're underweight!"

| bmi <= 25.0 = "You're supposedly normal"

| bmi <= 30.0 = "Lose some weight!"

| otherwise = "You're a whale, congratulations!"

where bmi = weight / height ^ 2

tell [] = "The list is empty"

tell (x:[]) = "The list has one element: " ++ show x

tell (x:y:[]) = "The list has two elements: " ++

show x ++ " and " ++ show y

tell (x:y:_) = "This list is long. The first two

elements are: " ++ show x ++ " and " ++ show y

Haskell – Function

4

5

Pattern match is used a lot in Haskell

More recursive

myreverse [] = []

myreverse (x:xs) = myreverse xs ++ [x]

quicksort [] = []

quicksort (x:xs) = quicksort [a | a <- xs, a <= x]

++ [x] ++ quicksort [a | a <- xs, a > x]

Haskell – Function

factorial 0 = 1

factorial n = n * factorial (n - 1)

factorial n = product [1..n]

Same line

1

2

3

More math functions

Haskell – Function

pi

exp

log

**

^

truncate

round

ceiling

floor

sin

cos

..

This is a constant

Google Google Google!

Learn You a Haskell for Great Good! http://learnyouahaskell.com/chapters

More Examples

fib = 1 : 1 : [a+b | (a,b) <- zip fib (tail fib)]

queens n = solve n

where

solve 0 = [[]]

solve k = [q:b | b <- solve (k-1), q <- [0..(n-

1)], safe q b]

safe q b = and [not (checks q b i) | i <-

[0..(length b - 1)]]

checks q b i = q == b!!i || abs(q - b!!i) == i+1

Haskell – Other

1

2

http://learnyouahaskell.com/chapters

Haskell – Other

The figure is from http://www.aiai.ed.ac.uk/~gwickler/images/8-queens-config.png

0 7

7

0

[7,5,3,1,6,4,2,0]

queens n = solve n

where

solve 0 = [[]]

solve k = [q:b | b <- solve (k-1), q <- [0..(n-

1)], safe q b]

safe q b = and [not (checks q b i) | i <-

[0..(length b - 1)]]

checks q b i = q == b!!i || abs(q - b!!i) == i+1

Input: the size

Output: A list of solutions

8

One solution:

Input:
A placement plan of queens

e.g. [0, 0, 6, 0, 3, 0, 0, 0]

Output:
All the possible places to place the knight

e.g. [[1,2], [1,2], [0], [0], [0], [7,8], [7,8], [2,4,5,7,8]]

Knight Placement Problem

No

No

Yes

Problem Description
The knight can’t be caught by any queen

The knight can’t catch any queen

One simple way: (simple for thinking, may not for implementation)

Check whether each cell is safe -> if yes, include this cell; otherwise

skip

When is not safe?

𝑥𝐾 == 𝑥𝑄
𝑦𝐾 == 𝑦𝑄
𝑥𝐾 − 𝑥𝑄 == 𝑦𝐾 − 𝑦𝑄
𝑥𝐾 − 𝑥𝑄 + 𝑦𝐾 − 𝑦𝑄 == 3

Feel free to implement your own ideas.

Knight Placement Problem

 Don’t get surprised if you can finish it within 20 lines.

 The index starts from 1 instead of 0

 Use the comments a lot so that we can understand you better

 You can assume all the inputs are valid

Reference

• Learn You a Haskell for Great Good!

http://learnyouahaskell.com/chapters

• Hackage https://hackage.haskell.org/packages/

• Starting with Haskell https://www.fpcomplete.com/school/starting-with-

haskell

• Wikibook – Haskell https://en.wikibooks.org/wiki/Haskell

• A Gentile Introduction to Haskell https://www.haskell.org/tutorial/

• Programming Languages Principles and Paradigms, 2nd Edition, by Allen

B. Tucker and Robert E. Noonan

http://learnyouahaskell.com/chapters
https://hackage.haskell.org/packages/
https://www.fpcomplete.com/school/starting-with-haskell
https://en.wikibooks.org/wiki/Haskell
https://www.haskell.org/tutorial/

