
Copyright © 2006 The McGraw-Hill Companies, Inc.

CSCI312 Principles of Programming
Languages

Chapter 1
Overview

Xu Liu

Copyright © 2006 The McGraw-Hill Companies, Inc.

Notation for
–  Describing a computation that is machine-translatable (and

human-readable)
–  Is capable of expressing any computer program

Why need so many PLs
–  Same theoretical power
–  Different practical power

–  Facilitate or impede certain modes of thought

What is a Programming Language (PL)

Copyright © 2006 The McGraw-Hill Companies, Inc.

•  Various paradigms for specifying programs
•  How to give (precise) meaning to programs

•  How to use programming languages to prevent runtime
errors

•  Explore these concepts in real-world languages

What We will Learn

Copyright © 2006 The McGraw-Hill Companies, Inc.

Help choose a language
–  C vs. Modula-3 vs. C++ for system programming

–  Fortran vs. APL vs. Ada for numerical computations
–  Ada vs. Modula-2 for embedded systems

–  Common Lisp vs. Scheme vs. ML for symbolic data
manipulations

–  Java vs. C/CORBA for networked PC programs

Why Study PLs?

Copyright © 2006 The McGraw-Hill Companies, Inc.

Make It Easier to Learn New Languages
–  similar syntax/semantics for languages

•  iteration, recursion, abstraction, function call, …

Why Study PLs?

Copyright © 2006 The McGraw-Hill Companies, Inc.

Help Make Better Use of Whatever Language You Use
–  Understand obscure features

•  In C, help understand unions, arrays, pointers, separate compilation,
varargs, catch and throw

•  In Common Lisp, help understand first-class functions/closures,
streams, catch and throw, symbol internals

–  Understand implementation costs
•  Use simple arithmetic equal (x*x instead of x**2)

•  Avoid call by value with large data sets

Why Study PLs?

Copyright © 2006 The McGraw-Hill Companies, Inc.

•  Instructor: Xu Liu (McGl 117; xliu13@wm.edu)
–  Office hours: 11am-12:00pm MWF

•  TA: Jialiang Tan (jtan02@email.wm.edu)
–  Office hours: see webpage below

•  Most contents are on
–  http://www.cs.wm.edu/~xl10/cs312

•  Assignment submissions and grades are on Blackboard

Course Administration

Copyright © 2006 The McGraw-Hill Companies, Inc.

•  Required: None
•  Recommended

–  Tucker and Noonan. Programming Languages: Principles
and Paradigms. 2006.

–  Scott. Programming Languages Pragmatics. (fourth edition)
2016.

Textbooks

Copyright © 2006 The McGraw-Hill Companies, Inc.

•  A project-centric course
–  six projects

•  Midterm and final exams
•  Attendance

–  in-class quizzes

Course Requirements

Copyright © 2006 The McGraw-Hill Companies, Inc.

•  Breakdown
–  Projects: 40%

–  Midterm: 15%
–  Attendance: 10%

–  Final: 35%

•  10% late penalty per day
•  Final grade is curved

–  90% guaranteed A-, 80% B-, etc.

Grading

Copyright © 2006 The McGraw-Hill Companies, Inc.

•  Programming assignments
–  May complete alone or in pairs

–  If in pairs, must follow “the rules of pair programming”,
linked on the course web page
•  can change your partner for each project, but not during one project

•  Any cheating will result in an F and referral to honor
code violation committee

•  Plagiarism-detection software will be used

Collaboration

Copyright © 2006 The McGraw-Hill Companies, Inc.

Contents
1.1 Principles
1.2 Paradigms
1.3 Special Topics
1.4 A Brief History
1.5 On Language Design

 1.5.1 Design Constraints
 1.5.2 Outcomes and Goals

1.6 Compilers and Virtual Machines

Copyright © 2006 The McGraw-Hill Companies, Inc.

Programming languages have four properties:
–  Syntax

–  Naming
–  Types

–  Semantics

For any language:
–  Its designers must define these properties

–  Its programmers must master these properties

Principles of PL

Copyright © 2006 The McGraw-Hill Companies, Inc.

Syntax

The syntax of a programming language is a precise
description of all its grammatically correct programs.

When studying syntax, we answer questions like:
–  What are the basic statements for the language?

–  How do I write a ... ?

–  Why is this a syntax error?

Copyright © 2006 The McGraw-Hill Companies, Inc.

Naming
Many entities in a program have names:

 variables, types, functions, parameters, classes, objects, …

Named entities are bound in a running program to:
–  Scope

–  Visibility

–  Type
–  Lifetime

Copyright © 2006 The McGraw-Hill Companies, Inc.

Types

A type is a collection of values and a collection of
operations on those values.

•  Simple types
–  numbers, characters, booleans, …

•  Structured types
–  Strings, lists, trees, hash tables, …

•  A language’s type system can help to:
–  Determine legal operations

–  Detect type errors

Copyright © 2006 The McGraw-Hill Companies, Inc.

Semantics
The meaning of a program is called its semantics.
In studying semantics, we answer questions like:

–  What does each statement mean?
–  What underlying model governs run-time behavior, such

as function call?

–  How are objects allocated to memory at run-time?

Copyright © 2006 The McGraw-Hill Companies, Inc.

CSCI312 Principles of Programming
Languages

Chapter 1

Overview

Xu Liu

Copyright © 2006 The McGraw-Hill Companies, Inc.

Programming languages have four properties:
–  Syntax

–  Naming
–  Types

–  Semantics

For any language:
–  Its designers must define these properties

–  Its programmers must master these properties

Principles of PL

Copyright © 2006 The McGraw-Hill Companies, Inc.

A programming paradigm is a pattern of problem-
solving thought that underlies a particular genre of
programs and languages.

There are four main programming paradigms:
–  Imperative

–  Object-oriented
–  Functional

–  Logic (declarative)

1.2 Paradigms

Copyright © 2006 The McGraw-Hill Companies, Inc.

Imperative Paradigm

Follows the classic von Neumann-Eckert model:
–  Program and data are indistinguishable in memory

–  Program = a sequence of commands
–  State = values of all variables when program runs

–  Large programs use procedural abstraction

Example imperative languages:
–  Cobol, Fortran, C, Ada, Perl, …

Copyright © 2006 The McGraw-Hill Companies, Inc.

The von Neumann-Eckert Model

Copyright © 2006 The McGraw-Hill Companies, Inc.

Object-oriented (OO) Paradigm

An OO Program is a collection of objects that interact by
passing messages that transform the state.

When studying OO, we learn about:
–  Sending Messages

–  Inheritance

–  Polymorphism

Example OO languages:

 Smalltalk, Java, C++, C#, and Ruby

Copyright © 2006 The McGraw-Hill Companies, Inc.

Functional Paradigm
Functional programming models a computation as a

collection of mathematical functions.
–  Input = domain
–  Output = range

Functional languages are characterized by:
–  Functional composition
–  Recursion

Example functional languages:
–  Lisp, Scheme, ML, Haskell, …

Copyright © 2006 The McGraw-Hill Companies, Inc.

Logic Paradigm
Logic programming declares what outcome the

program should accomplish, rather than how it
should be accomplished.

When studying logic programming we see:
–  Programs as sets of constraints on a problem

–  Programs that achieve all possible solutions
–  Programs that are nondeterministic

Example logic programming languages:
–  Prolog

Copyright © 2006 The McGraw-Hill Companies, Inc.

Copyright © 2006 The McGraw-Hill Companies, Inc.

What makes a successful language?

Key characteristics:
–  Simplicity and readability

–  Clarity about binding
–  Reliability

–  Support

–  Abstraction
–  Orthogonality

–  Efficient implementation

Copyright © 2006 The McGraw-Hill Companies, Inc.

Simplicity and Readability

•  Small instruction set
–  E.g., Java vs Scheme

•  Simple syntax
–  E.g., C/C++/Java vs Python

•  Benefits:
–  Ease of learning
–  Ease of programming

Copyright © 2006 The McGraw-Hill Companies, Inc.

A language element is bound to a property at the time
that property is defined for it.

So a binding is the association between an object and
a property of that object
–  Examples:

•  a variable and its type

•  a variable and its value

–  Early binding takes place at compile-time

–  Late binding takes place at run time

Clarity about Binding

Copyright © 2006 The McGraw-Hill Companies, Inc.

Reliability

A language is reliable if:
–  Program behavior is the same on different platforms

•  E.g., early versions of Fortran

–  Type errors are detected
•  E.g., C vs Haskell

–  Semantic errors are properly trapped
•  E.g., C vs C++

–  Memory leaks are prevented
•  E.g., C vs Java

Copyright © 2006 The McGraw-Hill Companies, Inc.

Language Support

•  Accessible (public domain) compilers/interpreters
•  Good texts and tutorials

•  Wide community of users
•  Integrated with development environments (IDEs)

Copyright © 2006 The McGraw-Hill Companies, Inc.

Abstraction in Programming

•  Data
–  Programmer-defined types/classes

–  Class libraries

•  Procedural
–  Programmer-defined functions

–  Standard function libraries

Copyright © 2006 The McGraw-Hill Companies, Inc.

Orthogonality 

A language is orthogonal if its features are built upon
a small, mutually independent set of primitive
operations.

•  Fewer exceptional rules = conceptual simplicity
–  E.g., restricting types of arguments to a function

•  Tradeoffs with efficiency

Copyright © 2006 The McGraw-Hill Companies, Inc.

Efficient implementation  

•  Embedded systems
–  Real-time responsiveness (e.g., navigation)

–  Failures of early Ada implementations

•  Web applications
–  Responsiveness to users (e.g., Google search)

•  Corporate database applications
–  Efficient search and updating

•  AI applications
–  Modeling human behaviors

Copyright © 2006 The McGraw-Hill Companies, Inc.

Simplicity

Copyright © 2006 The McGraw-Hill Companies, Inc.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Simplicity

Copyright © 2006 The McGraw-Hill Companies, Inc.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Compiler – produces machine code
Interpreter – executes instructions on a virtual

machine
•  Example compiled languages:

–  Fortran, Cobol, C, C++

•  Example interpreted languages:
–  Scheme, Haskell, Python

•  Hybrid compilation/interpretation
–  The Java Virtual Machine (JVM)

1.6 Compilers and Virtual Machines

Copyright © 2006 The McGraw-Hill Companies, Inc.

The Compiling Process

Copyright © 2006 The McGraw-Hill Companies, Inc.

The Interpreting Process

