

Copyright © 2006 The McGraw-Hill Companies, Inc.

CSCI312 Principles of Programming
Languages!

Chapter 5
Types

Xu Liu!

Copyright © 2006 The McGraw-Hill Companies, Inc.

 !5.1 !Type Errors!
5.2 !Static and Dynamic Typing!
5.3 !Basic Types!
5.4 !NonBasic Types!
5.5 !Recursive Data Types!
5.6 !Functions as Types!
5.7 !Type Equivalence!
5.8 !Subtypes!
5.9 !Polymorphism and Generics!
5.10!Programmer-Defined Types

Copyright © 2006 The McGraw-Hill Companies, Inc.

 !A type is a collection of values and operations on
those values.

Example: Integer type has values ..., -2, -1, 0, 1, 2, ...

and operations +, -, *, /, <, ...

The Boolean type has values true and false and

operations ∧, ∨, ¬.

Copyright © 2006 The McGraw-Hill Companies, Inc.

 !Computer types have a finite number of values due to
fixed size allocation; problematic for numeric
types.

Exceptions:
•  Smalltalk uses unbounded fractions.
•  Haskell type Integer represents unbounded

integers.

Floating point problems?

Copyright © 2006 The McGraw-Hill Companies, Inc.

 !

Even more problematic is fixed sized floating point
numbers:

•  0.2 is not exact in binary.
•  So 0.2 * 5 is not exactly 1.0

•  Floating point is inconsistent with real numbers in
mathematics.

Copyright © 2006 The McGraw-Hill Companies, Inc.

 !
In the early languages, Fortran, Algol, Cobol, all of

the types were built in.

If needed a type color, could use integers; but what

does it mean to multiply two colors.

Purpose of types in programming languages is to

provide ways of effectively modeling a problem
solution.

Copyright © 2006 The McGraw-Hill Companies, Inc.

5.1 Type Errors!

Machine data carries no type information.
Basically, just a sequence of bits.

Example: 0100 0000 0101 1000 0000 0000 0000 0000

Copyright © 2006 The McGraw-Hill Companies, Inc.

 !

 0100 0000 0101 1000 0000 0000 0000 0000

•  The floating point number 3.375
•  The 32-bit integer 1,079,508,992

•  Two 16-bit integers 16472 and 0

•  Four ASCII characters: @ X NUL NUL!

Copyright © 2006 The McGraw-Hill Companies, Inc.

 !A type error is any error that arises because an
operation is attempted on a data type for which it is
undefined.

Type errors are common in assembly language
programming.

High level languages reduce the number of type
errors.

A type system provides a basis for detecting type
errors.

Copyright © 2006 The McGraw-Hill Companies, Inc.

5.2 Static and Dynamic Typing!

A type system imposes constraints such as the values
used in an addition must be numeric.

•  Cannot be expressed syntactically in EBNF.
•  Some languages perform type checking at compile

time (eg, C).

•  Other languages (eg, Python) perform type
checking at run time.

•  Still others (eg, Java) do both.

Copyright © 2006 The McGraw-Hill Companies, Inc.

 !

A language is statically typed if the types of all
variables are fixed when they are declared at
compile time.

A language is dynamically typed if the type of a
variable can vary at run time depending on the
value assigned.

Can you give examples of each?

Copyright © 2006 The McGraw-Hill Companies, Inc.

 A language is strongly typed if its type system allows
all type errors in a program to be detected either at
compile time or at run time.

A strongly typed language can be either statically
(e.g., Ada, Java) or dynamically typed (e.g., Python
and Perl).

Copyright © 2006 The McGraw-Hill Companies, Inc.

An Example C Program

int main(){
 union {int a; float p;} u;
 u.a = -1;
 float x=0;
 x = x + u.p;
 printf ("x=%f\n", x);

 float y=0;
 y = y + (float)u.a;
 printf ("y=%f\n", y);

 return 0;
}

Union makes a hole in type
checking.

C/C++ are not strongly
typed.

00000...00100000000
u.a
u.p

x = -nan
y = -1.0000

Copyright © 2006 The McGraw-Hill Companies, Inc.

5.3 Basic Types!

Terminology in use with current 32-bit computers:
•  Nibble: 4 bits

•  Byte: 8 bits
•  Half-word: 16 bits

•  Word: 32 bits

•  Double word: 64 bits
•  Quad word: 128 bits

Copyright © 2006 The McGraw-Hill Companies, Inc.

 !

In most languages, the numeric types are finite in size.
So a + b may overflow the finite range.

Unlike mathematics:
 a + (b + c) ≠ (a + b) + c!

Also in C-like languages, the equality and relational
operators produce an int, not a Boolean

Copyright © 2006 The McGraw-Hill Companies, Inc.

An operator or function is overloaded when its

meaning varies depending on the types of its
operands or arguments or result.

Python: a + b (ignoring size)

• integer add
• floating point add

• string concatenation

Overloading

• What if a is integer while b is floating point?

Copyright © 2006 The McGraw-Hill Companies, Inc.

A type conversion is a narrowing conversion if the

result type permits fewer bits, thus potentially losing
information. E.g., float -> int

Otherwise it is termed a widening conversion.

 E.g., int -> float

Explicit conversion: 2 + int(1.3);

Implicit conversion: 2 + 1.3;

Should languages use narrowing or widening for
implicit conversions?

Type Conversion

Copyright © 2006 The McGraw-Hill Companies, Inc.

5.4 Nonbasic Types!

Enumeration:
enum day {Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday, Sunday};!
enum day myDay = Wednesday;!
In C/C++ the above values of this type are 0, ..., 6.
More powerful in Java:
for (day d : day.values())!

!Sytem.out.println(d);!

Copyright © 2006 The McGraw-Hill Companies, Inc.

Pointers!

C, C++, Ada, Pascal
Java???
Value is a memory address

Indirect referencing

Operator in C: *

Copyright © 2006 The McGraw-Hill Companies, Inc.

Pointer Operations

If T is a type and refT is a pointer:
& : T → refT. Eg. &x: returns the address of x

* : refT → T. Eg. *p: returns the value in the location
that p references.

For an arbitrary variable x:
*(&x) = x

Copyright © 2006 The McGraw-Hill Companies, Inc.

Example

int main(){
 int v = 3;
 int * p = &v;

 (*p) = -3;

 printf("v=%d\n", v);

 return 0;
}

Copyright © 2006 The McGraw-Hill Companies, Inc.

Pointers are convenient in some cases

struct Node {
! int key;
! struct Node* next;
};
struct Node* head;

Example: Linked List

Copyright © 2006 The McGraw-Hill Companies, Inc.

E.g. Buffer overflow problem

Particularly troublesome in C as points and array are
regarded the same.

But Error-Prone

String copy:

 while (*p++ == *q++);

q points to “a string$”
p points to a 3-char buffer.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Equivalence between arrays and pointers

 int a[100]; // declare an array

• a == &a[0]

• a[i] == *(a + i)

float sum(float a[], int n) {
int i;
float s = 0.0;
for (i = 0; i<n; i++)! ! !
! s += a[i];
return s;

float sum(float *a, int n) {
int i;
float s = 0.0;
for (i = 0; i<n; i++)
! s += *a++;
return s;

Copyright © 2006 The McGraw-Hill Companies, Inc.

Arrays and Lists

int a[10];
float x[3][5]; /* odd syntax vs. math */

char s[40];

Copyright © 2006 The McGraw-Hill Companies, Inc.

Indexing
The only operation for arrays and lists in many languages

Type signature

[] : T[] × int → T

Example

float x[3] [5];

type of x: float[][]
type of x[1]: float[]

type of x[1][2]: float

Copyright © 2006 The McGraw-Hill Companies, Inc.

Strings

Now so fundamental, directly supported.

In C, a string is a 1D array with the string value
terminated by a NUL character (value = 0).

In Java, Perl, Python, a string variable can hold an
unbounded number of characters.

Libraries of string operations and functions.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Structures

Analogous to a tuple in mathematics
Collection of elements of different types

Used first in Cobol, PL/I
Absent from Fortran, Algol 60

Common to Pascal-like, C-like languages
Omitted from Java as redundant

Copyright © 2006 The McGraw-Hill Companies, Inc.

struct employeeType {
 int id;

 char name[25];
 int age;

 float salary;
 char dept;

};

struct employeeType employee;
...

employee.age = 45;

Copyright © 2006 The McGraw-Hill Companies, Inc.

Unions

C: union
Pascal: case-variant record

Logically: multiple views of same storage
Useful in some systems applications

union {int a; float p;} u;

Copyright © 2006 The McGraw-Hill Companies, Inc.

 Contents

5.1! Type Errors
5.2! Static and Dynamic Typing
5.3! Basic Types
5.4! NonBasic Types
5.5! Recursive Data Types
5.6! Functions as Types
5.7! Type Equivalence
5.8! Subtypes
5.9! Polymorphism and Generics
5.10!Programmer-Defined Types

Copyright © 2006 The McGraw-Hill Companies, Inc.

5.5 Recursive Data Type

struct Node {
! int key;
! struct Node* next;
};
struct Node* head;

Example: Linked List

Others?

Copyright © 2006 The McGraw-Hill Companies, Inc.

5.6 Functions as Types

Needs example: a function to draw the curve for

 y=f(x).

Pascal example:

! function newton(a, b: real; function f: real): real;
Know that f returns a real value, but the arguments to

f are unspecified.

Copyright © 2006 The McGraw-Hill Companies, Inc.

public interface RootSolvable {
 double valueAt(double x);
}

public double Newton(double a, double b,
RootSolvable f);

Addressed by Java Interface

Copyright © 2006 The McGraw-Hill Companies, Inc.

5.7 Type Equivalence

Pascal Report:
The assignment statement serves to replace the current

value of a variable with a new value specified as an
expression. ... The variable (or the function) and the
expression must be of identical type.

Nowhere does it define identical type.

Copyright © 2006 The McGraw-Hill Companies, Inc.

struct complex {
 float re, im;
};
struct polar {
 float x, y;
};
struct {
 float re, im;
} a, b;
struct complex c, d;
struct polar e;
int f[5], g[10];
// which are equivalent types?

Copyright © 2006 The McGraw-Hill Companies, Inc.

Kinds of Type Equivalence

Name equivalence

Structural equivalence: # and order of fields of a
structure, and the name and type of each field.

Ada, Java: name equivalence.
C: name equivalence for structs and unions, structural

equivalence for other constructed types (arrays and
pointers). Size of an array doesn’t matter.

Copyright © 2006 The McGraw-Hill Companies, Inc.

struct complex {
 float re, im;
};
struct polar {
 float x, y;
};
struct {
 float re, im;
} a, b;
struct complex c, d;
struct polar e;
int f[5], g[10];
// which are equivalent types?

Name equivalence: a, b
Structural equivalence:
 a, b, c, d

f, g are equivalent in both cases.

Copyright © 2006 The McGraw-Hill Companies, Inc.

5.8 Subtypes

A subtype is a type that has certain constraints placed
on its values or operations.

In Ada subtypes can be directly specified.

Copyright © 2006 The McGraw-Hill Companies, Inc.

 subtype one_to_ten is Integer range 1 .. 10;

type Day is (Monday, Tuesday, Wednesday,
Thursday, Friday, Saturday, Sunday);

subtype Weekend is Day range Saturday .. Sunday;

type Salary is delta 0.01 digits 9
 range 0.00 .. 9_999_999.99;

subtype Author_Salary is Salary digits 5
 range 0.0 .. 999.99;

Copyright © 2006 The McGraw-Hill Companies, Inc.

Integer i = new Integer(3);
...
Number v = i;
...
Integer x = (Integer) v;
//Integer is a subclass of Number,
// and therefore a subtype

Example in Java

Copyright © 2006 The McGraw-Hill Companies, Inc.

Polymorphism and Generics

A function or operation is polymorphic if it can be
applied to any one of several related types and
achieve the same result.

An advantage of polymorphism is that it enables code
reuse.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Polymorphism

Comes from Greek
Means: having many forms

Example: overloaded built-in operators and functions
+ - * / == != ...

Java: + also used for string concatenation

Copyright © 2006 The McGraw-Hill Companies, Inc.

Ada, C++: define + - ... for new types
Java overloaded methods: number or type of parameters

Example: class PrintStream
print, println defined for:

boolean, char, int, long, float, double, char[], String, Object

Copyright © 2006 The McGraw-Hill Companies, Inc.

Java: instance variable, method
– name, name()

Ada generics: generic sort
– parametric polymorphism

– type binding delayed from code implementation to
compile time

– procedure sort is new generic_sort(integer);

Copyright © 2006 The McGraw-Hill Companies, Inc.

 generic
 type element is private;

 type list is array(natural range <>) of element;

 with function ">"(a, b : element) return boolean;

package sort_pck is

 procedure sort (in out a : list);

end sort_pck;

Copyright © 2006 The McGraw-Hill Companies, Inc.

package sort_pck is
procedure sort (in out a : list) is
begin
 for i in a'first .. a'last - 1 loop
 for j in i+1 .. a'last loop
 if a(i) > a(j) then
 declare t : element;
 begin
 t := a(i);
 a(i) := a(j);
 a(j) := t;
 end;
 end if;

Copyright © 2006 The McGraw-Hill Companies, Inc.

 Instantiation

package integer_sort is

 new generic_sort(Integer, ">");

Copyright © 2006 The McGraw-Hill Companies, Inc.

Programmer-defined Types

Recall the definition of a type:

 A set of values and a set of operations on those
values.

Structures allow a definition of a representation;
problems:

• Representation is not hidden

• Type operations cannot be defined
Defer further until Chapter 12.

