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CSC312 Principles of Programming Languages : 

Type System
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Ch. 6    Type System

6.1  Type System for Clite
6.2  Implicit Type Conversion
6.3  Formalizing the Clite Type System
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Type System

Type? Type error?
Type checking: The detection of type errors, either at 

compile time or at run time.

Type system: provides a means of defining new types 
and determining the right way to use types.
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Defining a Type System

Informally:  a set of rules in stylized English, along 
with an algorithm that implements them.

Formally: A set of boolean-valued functions.

Example: CLite type system.
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CLite Properties

Static binding
Single function: main
Single scope: no nesting, no globals
Name resolution errors detected at compile time

– Each declared variable must have a unique identifier
– Identifier must not be a keyword (syntactically enforced)
– Each variable referenced must be declared.
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Example Clite Program (Fig 6.1)
// compute the factorial of integer n
void main ( ) {
! int n, i, result;
! n = 8;
! i = 1;
! result = 1;
! while (i < n) {
! !! i = i + 1;
! !! result = result * i;
! }
}

What type rules do you 
think would be reasonable?

How to check whether the 
program violates the rules?
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Data Structure: Type Map
– Type map is a set of ordered pairs

 E.g., {<n, int>, <i, int>, <result, int>}
– Can implement as a hash table (e.g., dictionary)

– Two related functions
– Function typing creates a type map
– Function typeOf retrieves the type of a variable:

 typeOf(id) = type
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public static TypeMap typing (Declarations d) {
  ! TypeMap map = new TypeMap( );
  ! for (Declaration di : d) {
      ! map.put (di.v, di.t);
  ! }
  ! return map;
}

The typing Function creates a type map
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Type Rule 6.1

All referenced variables must be declared.

if (typeOf(id))    print “undefined variable”+id

Xu Liu
!
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Type Rule 6.2
All declared variables must have unique names.

public static void V (Declarations d) {
   !for (int i=0; i<d.size() - 1; i++){
         Declaration di = d.get(i);  
       ! for (int j=i+1; j<d.size(); j++) {
           ! Declaration dj = d.get(j);
           ! check( ! (di.v.equals(dj.v)),
               ! !  "duplicate declaration: " + dj.v);
         }
    }
}
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Rule 6.2 example
// compute the factorial of integer n
void main ( ) {
! int n, i, result;
! n = 8;
! i = 1;
! result = 1;
! while (i < n) {
! !! i = i + 1;
! !! result = result * i;
! }
}

These must all be unique
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Type Rule 6.3

A program is valid if
– its Declarations are valid and
– its Block body is valid with respect to the type map 

for those Declarations

public static void V (Program p) {
    V (p.decpart);
    V (p.body, typing (p.decpart));
}
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Rule 6.3 Example
// compute the factorial of integer n
void main ( ) {
! int n, i, result;
! n = 8;
! i = 1;
! result = 1;
! while (i < n) {
! !! i = i + 1;
! !! result = result * i;
! }
}

These must be valid.
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Type Rule 6.4

Validity of a Statement:
– A Skip is always valid
– An Assignment is valid if:

• Its target Variable is declared
• Its source Expression is valid
• If the target Variable is float, then the type of the source Expression 

must be either float or int
• Otherwise if the target Variable is int, then the type of the source 

Expression must be either int or char
• Otherwise the target Variable must have the same type as the source 

Expression.

what kind of type 
conversions?
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– A Conditional is valid if:
• Its test Expression is valid and has type bool

• Its thenbranch and elsebranch Statements are valid

Type Rule 6.4 (Conditional)
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Type Rule 6.4 (Loop)

– A Loop is valid if:
• Its test Expression is valid and has type bool

• Its Statement body is valid



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

Type Rule 6.4 (Block)

– A Block is valid if all its Statements are valid.
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Rule 6.4 Example
// compute the factorial of integer n
void main ( ) {
! int n, i, result;
! n = 8;
! i = 1;
! result = 1;
! while (i < n) {
! !! i = i + 1;
! !! result = result * i;
! }
}

This assignment is valid if:
   n is declared,
   8 is valid, and
   the type of 8 is int or char 
      (since n is int).
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Rule 6.4 Example
// compute the factorial of integer n
void main ( ) {
! int n, i, result;
! n = 8;
! i = 1;
! result = 1;
! while (i < n) {
! !! i = i + 1;
! !! result = result * i;
! }
}

This loop is valid if
   i < n is valid,
   i < n has type bool, and
   the loop body is valid
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Type Rule 6.5

Validity of an Expression:
– A Value is always valid.
– A Variable is valid if it appears in the type map.
– A Binary is valid if:

• Its Expressions term1 and term2 are valid
• If its Operator op is arithmetic, then both Expressions must be 

either int or float
• If op is relational, then both Expressions must have the same type
• If op is && or ||, then both Expressions must be bool

– A Unary is valid if:
• Its Expression term is valid,
• …
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Type Rule 6.6

The type of an Expression e is:
– If e is a Value, then the type of that Value.
– If e is a Variable, then the type of that Variable.
– If e is a Binary op term1 term2, then:

• If op is arithmetic, then the (common) type of term1 or term2
• If op is relational, && or ||, then bool

– If e is a Unary op term, then:
• If op is ! then bool
• …
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Rule 6.5 and 6.6 Example
// compute the factorial of integer n
void main ( ) {
! int n, i, result;
! n = 8;
! i = 1;
! result = 1;
! while (i < n) {
! !! i = i + 1;
! !! result = result * i;
! }
}

This Expression is valid since:
   op is arithmetic (*) and
   the types of i and result are int.
Its result type is int since:
   the type of i is int.
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Examples on Gee Language
#  expression operators
relation    = "==" | "!=" | "<" | "<=" | ">" | ">="

#  expressions
expression = andExpr { "or" andExpr }
andExpr    = relationalExpr { "and" relationalExpr }
relationalExpr = addExpr [ relation addExpr ]
addExpr    = term { ("+" | "-") term }
term       = factor { ("*" | "/") factor }
factor     = number | string | ident |  "(" expression ")" 
            
# statements
stmtList =  {  statement  }
statement = ifStatement |  whileStatement  |  assign
assign = ident "=" expression  eoln
ifStatement = "if" expression block   [ "else" block ] 
whileStatement = "while"  expression  block
block = ":" eoln indent stmtList undent

#  goal or start symbol
script = stmtList

No declarations.

Only number and boolean types 
of values to consider.

But no test case or assignments 
will contain the Boolean 
constants True, False.
E.g., 
    v = True; // no
    v = (x> 0); // yes
    if (x==False) // no
    if (x>y)    // yes
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Examples on Gee Language
class Assign( Statement ):
        def __init__(self, var, expr):
            self.var = str(var)
            self.expr = expr
       def __str__( self ):
                return "= " + self.var + " " + str(self.expr)
       def meaning(self, state):
                state[self.var] = self.expr.value(state)
                return state
       def tipe(self, tm):
                tp = self.expr.tipe()
                if ( tp == “”)
                    ??
                if self.var is not in tm
                    ?? 
                else
                    ??                        

An Assignment is valid if:
• Its source Expression is valid
• If the target Variable has been 

defined, it must have the same 
type as the source Expression.
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Examples on Gee Language
class Assign( Statement ):
        def __init__(self, var, expr):
            self.var = str(var)
            self.expr = expr
       def __str__( self ):
                return "= " + self.var + " " + str(self.expr)
       def meaning(self, state):
                state[self.var] = self.expr.value(state)
                return state
       def tipe(self, tm):     # tm is the type map
                tp = self.expr.tipe();
                if (tp == “”)
                    error (“variable undefined!”)
                if self.var is not in tm
                    tm[self.var] = tp;
                else
                    if (tm[self.var] != tp)
                        error (“type mismatch!”)

An Assignment is valid if:
• Its source Expression is valid
• If the target Variable has been 

defined, it must have the same 
type as the source Expression.
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6.2  Implicit Type Conversion

Clite Assignment supports implicit widening 
conversions

We can transform the abstract syntax tree to insert 
explicit conversions as needed.

The types of the target variable and source expression 
govern what to insert.
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Suppose we have an assignment
 
 f = i - int(c); 

 (f, i, and c are float, int, 
    and char variables).

The abstract syntax tree is:

Example: Assignment of int to float
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So an implicit widening is 
inserted to transform the tree to:

Here, c2i denotes conversion 
from char to int, and
i2f denotes conversion from 
int to float.

Note: c2i is an explicit 
conversion given by the 
operator int() in the program.

Example (cont’d)
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6.3 Formalizing a Type System

A set of formal rules, written as logic functions with 
boolean returning values (true or false).

Nothing deep; just a different way to express those rules!

But, the formalism offers rigor and a convenient basis 
for automatic inferences.
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Some logic/mathematic notations

U :  union.  Example:     

 

  

   i=1,2
U     <namei, typei>

{ <name1, type1>, <name2, type2> }
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Formalizing the Clite Type System

� 

tm = {< v1,t1 >,< v2,t2 >,...,< vn ,tn >}Type map:

Created by:

  

� 

typing :Declarations→ TypeMap

typing(d) = < di .v,di .t >
i∈{1,...,n}


V :Declarations→B
V (d) = ∀i, j ∈ {1,...,n}(i ≠ j⇒ di .v ≠ d j .v)
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Some logic/mathematic notations
   :  for any.  Example:     

d ∈ { live animals },   d only eats meat ⇒ d is a carnivore.

i, j ∈ {1, 2, ..., k }, sibling(Kidi,Kidj) ⇒ 
lastNamei=lastNamej ∧ parenti=parentj
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Type Rule 6.2

  

� 

typing :Declarations→ TypeMap

typing(d) = < di .v,di .t >
i∈{1,...,n}


V :Declarations→B
V (d) = ∀i, j ∈ {1,...,n}(i ≠ j⇒ di .v ≠ d j .v)

All declared variables must have unique names.

oolean
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Validity of a Clite Program

(Type Rule 6.3)
A program is valid if

– its Declarations are valid and
– its Block body is valid with respect to the type map for those 

Declarations

� 

V :Program→B
V (p) =V (p.decpart)∧V (p.body, typing(p.decpart))
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Type Rule 6.4
Validity of a Statement:

– A Skip is always valid
– An Assignment is valid if:  (simplified from our prior def.)

• Its target Variable is declared
• Its source Expression is valid
• The target Variable must have the same type as the source 

Expression.
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Validity of a Clite Statement
(Type Rule 6.4, simplified version for an Assignment)

� 

V : Statement ×TypeMap→B
V (s,tm) = true if s is a Skip

     = s.target ∈ tm∧V (s.source,tm)∧
         typeOf (s.target, tm) = typeOf (s.source,tm)

if s is an Assignment

     =V (s.test,tm)∧ typeOf (s.test,tm) = bool∧
         V (s.thenbranch,tm)∧V (s.elsebranch,tm)

if s is a Conditional

     =V (s.test,tm)∧ typeOf (s.test,tm) = bool∧
         V (s.body,tm)

if s is a Loop

     =V (b1,tm)∧V (b2,tm)∧ ...∧V (bn,tm) if s is a Block
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– A Conditional is valid if:
• Its test Expression is valid and has type bool

• Its thenbranch and elsebranch Statements are valid

Type Rule 6.4 (Conditional)

– A Loop is valid if:
• Its test Expression is valid and has type bool

• Its Statement body is valid

– A Block is valid if all its Statements are valid.
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Validity of a Clite Statement
(Type Rule 6.4, simplified version for an Assignment)

� 

V : Statement ×TypeMap→B
V (s,tm) = true if s is a Skip

     = s.target ∈ tm∧V (s.source,tm)∧
         typeOf (s.target, tm) = typeOf (s.source,tm)

if s is an Assignment

     =V (s.test,tm)∧ typeOf (s.test,tm) = bool∧
         V (s.thenbranch,tm)∧V (s.elsebranch,tm)

if s is a Conditional

     =V (s.test,tm)∧ typeOf (s.test,tm) = bool∧
         V (s.body,tm)

if s is a Loop

     =V (b1,tm)∧V (b2,tm)∧ ...∧V (bn,tm) if s is a Block
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Validity of a Clite Expression
(Type Rule 6.5, abbreviated versions for Binary and Unary)

� 

V : Expression ×TypeMap→B
V (e,tm) = true if e is a Value

     = e ∈ tm if e is a Variable

     =V (e.term1,tm)∧V (e.term2,tm)∧
         typeOf (e.term1,tm) ∈ { float,int}∧
         typeOf (e.term2,tm) ∈ { float,int}∧
         typeOf (e.term1,tm) = typeOf (e.term2,tm)

if e is a Binary∧
e.op ∈ ArithmeticOp∪
           Re lationalOp

     =V (e.term,tm)∧e.op =  ! ∧
         typeOf (e.term,tm) = bool

if e is a Unary
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Type of a Clite Expression
(Type Rule 6.6, abbreviated version)

� 

typeOf : Expression ×TypeMap→ Type
typeOf (e,tm) = e.type if e is a Value

     = e.type if e is a Variable∧e ∈ tm

     = typeOf (e.term1,tm)
     = boolean

if e is a Binary∧e.op ∈ ArithmeticOp
if e is a Binary∧e.op ∉ ArithmeticOp

     = typeOf (e.term,tm)
     = boolean

if e is a Unary ∧e.op = −
if e is a Unary ∧e.op =  !


