

Copyright © 2006 The McGraw-Hill Companies, Inc.

CSC312 Principles of Programming Languages :

Type System

Copyright © 2006 The McGraw-Hill Companies, Inc.

Ch. 6 Type System

6.1 Type System for Clite
6.2 Implicit Type Conversion
6.3 Formalizing the Clite Type System

Copyright © 2006 The McGraw-Hill Companies, Inc.

Type System

Type? Type error?
Type checking: The detection of type errors, either at

compile time or at run time.

Type system: provides a means of defining new types
and determining the right way to use types.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Defining a Type System

Informally: a set of rules in stylized English, along
with an algorithm that implements them.

Formally: A set of boolean-valued functions.

Example: CLite type system.

Copyright © 2006 The McGraw-Hill Companies, Inc.

CLite Properties

Static binding
Single function: main
Single scope: no nesting, no globals
Name resolution errors detected at compile time

– Each declared variable must have a unique identifier
– Identifier must not be a keyword (syntactically enforced)
– Each variable referenced must be declared.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Example Clite Program (Fig 6.1)
// compute the factorial of integer n
void main () {
! int n, i, result;
! n = 8;
! i = 1;
! result = 1;
! while (i < n) {
! !! i = i + 1;
! !! result = result * i;
! }
}

What type rules do you
think would be reasonable?

How to check whether the
program violates the rules?

Copyright © 2006 The McGraw-Hill Companies, Inc.

Data Structure: Type Map
– Type map is a set of ordered pairs

 E.g., {<n, int>, <i, int>, <result, int>}
– Can implement as a hash table (e.g., dictionary)

– Two related functions
– Function typing creates a type map
– Function typeOf retrieves the type of a variable:

 typeOf(id) = type

Copyright © 2006 The McGraw-Hill Companies, Inc.

public static TypeMap typing (Declarations d) {
 ! TypeMap map = new TypeMap();
 ! for (Declaration di : d) {
 ! map.put (di.v, di.t);
 ! }
 ! return map;
}

The typing Function creates a type map

Copyright © 2006 The McGraw-Hill Companies, Inc.

Type Rule 6.1

All referenced variables must be declared.

if (typeOf(id)) print “undefined variable”+id

Xu Liu
!

Copyright © 2006 The McGraw-Hill Companies, Inc.

Type Rule 6.2
All declared variables must have unique names.

public static void V (Declarations d) {
 !for (int i=0; i<d.size() - 1; i++){
 Declaration di = d.get(i);
 ! for (int j=i+1; j<d.size(); j++) {
 ! Declaration dj = d.get(j);
 ! check(! (di.v.equals(dj.v)),
 ! ! "duplicate declaration: " + dj.v);
 }
 }
}

Copyright © 2006 The McGraw-Hill Companies, Inc.

Rule 6.2 example
// compute the factorial of integer n
void main () {
! int n, i, result;
! n = 8;
! i = 1;
! result = 1;
! while (i < n) {
! !! i = i + 1;
! !! result = result * i;
! }
}

These must all be unique

Copyright © 2006 The McGraw-Hill Companies, Inc.

Type Rule 6.3

A program is valid if
– its Declarations are valid and
– its Block body is valid with respect to the type map

for those Declarations

public static void V (Program p) {
 V (p.decpart);
 V (p.body, typing (p.decpart));
}

Copyright © 2006 The McGraw-Hill Companies, Inc.

Rule 6.3 Example
// compute the factorial of integer n
void main () {
! int n, i, result;
! n = 8;
! i = 1;
! result = 1;
! while (i < n) {
! !! i = i + 1;
! !! result = result * i;
! }
}

These must be valid.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Type Rule 6.4

Validity of a Statement:
– A Skip is always valid
– An Assignment is valid if:

• Its target Variable is declared
• Its source Expression is valid
• If the target Variable is float, then the type of the source Expression

must be either float or int
• Otherwise if the target Variable is int, then the type of the source

Expression must be either int or char
• Otherwise the target Variable must have the same type as the source

Expression.

what kind of type
conversions?

Copyright © 2006 The McGraw-Hill Companies, Inc.

– A Conditional is valid if:
• Its test Expression is valid and has type bool

• Its thenbranch and elsebranch Statements are valid

Type Rule 6.4 (Conditional)

Copyright © 2006 The McGraw-Hill Companies, Inc.

Type Rule 6.4 (Loop)

– A Loop is valid if:
• Its test Expression is valid and has type bool

• Its Statement body is valid

Copyright © 2006 The McGraw-Hill Companies, Inc.

Type Rule 6.4 (Block)

– A Block is valid if all its Statements are valid.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Rule 6.4 Example
// compute the factorial of integer n
void main () {
! int n, i, result;
! n = 8;
! i = 1;
! result = 1;
! while (i < n) {
! !! i = i + 1;
! !! result = result * i;
! }
}

This assignment is valid if:
 n is declared,
 8 is valid, and
 the type of 8 is int or char
 (since n is int).

Copyright © 2006 The McGraw-Hill Companies, Inc.

Rule 6.4 Example
// compute the factorial of integer n
void main () {
! int n, i, result;
! n = 8;
! i = 1;
! result = 1;
! while (i < n) {
! !! i = i + 1;
! !! result = result * i;
! }
}

This loop is valid if
 i < n is valid,
 i < n has type bool, and
 the loop body is valid

Copyright © 2006 The McGraw-Hill Companies, Inc.

Type Rule 6.5

Validity of an Expression:
– A Value is always valid.
– A Variable is valid if it appears in the type map.
– A Binary is valid if:

• Its Expressions term1 and term2 are valid
• If its Operator op is arithmetic, then both Expressions must be

either int or float
• If op is relational, then both Expressions must have the same type
• If op is && or ||, then both Expressions must be bool

– A Unary is valid if:
• Its Expression term is valid,
• …

Copyright © 2006 The McGraw-Hill Companies, Inc.

Type Rule 6.6

The type of an Expression e is:
– If e is a Value, then the type of that Value.
– If e is a Variable, then the type of that Variable.
– If e is a Binary op term1 term2, then:

• If op is arithmetic, then the (common) type of term1 or term2
• If op is relational, && or ||, then bool

– If e is a Unary op term, then:
• If op is ! then bool
• …

Copyright © 2006 The McGraw-Hill Companies, Inc.

Rule 6.5 and 6.6 Example
// compute the factorial of integer n
void main () {
! int n, i, result;
! n = 8;
! i = 1;
! result = 1;
! while (i < n) {
! !! i = i + 1;
! !! result = result * i;
! }
}

This Expression is valid since:
 op is arithmetic (*) and
 the types of i and result are int.
Its result type is int since:
 the type of i is int.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Examples on Gee Language
expression operators
relation = "==" | "!=" | "<" | "<=" | ">" | ">="

expressions
expression = andExpr { "or" andExpr }
andExpr = relationalExpr { "and" relationalExpr }
relationalExpr = addExpr [relation addExpr]
addExpr = term { ("+" | "-") term }
term = factor { ("*" | "/") factor }
factor = number | string | ident | "(" expression ")"

statements
stmtList = { statement }
statement = ifStatement | whileStatement | assign
assign = ident "=" expression eoln
ifStatement = "if" expression block ["else" block]
whileStatement = "while" expression block
block = ":" eoln indent stmtList undent

goal or start symbol
script = stmtList

No declarations.

Only number and boolean types
of values to consider.

But no test case or assignments
will contain the Boolean
constants True, False.
E.g.,
 v = True; // no
 v = (x> 0); // yes
 if (x==False) // no
 if (x>y) // yes

Copyright © 2006 The McGraw-Hill Companies, Inc.

Examples on Gee Language
class Assign(Statement):
 def __init__(self, var, expr):
 self.var = str(var)
 self.expr = expr
 def __str__(self):
 return "= " + self.var + " " + str(self.expr)
 def meaning(self, state):
 state[self.var] = self.expr.value(state)
 return state
 def tipe(self, tm):
 tp = self.expr.tipe()
 if (tp == “”)
 ??
 if self.var is not in tm
 ??
 else
 ??

An Assignment is valid if:
• Its source Expression is valid
• If the target Variable has been

defined, it must have the same
type as the source Expression.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Examples on Gee Language
class Assign(Statement):
 def __init__(self, var, expr):
 self.var = str(var)
 self.expr = expr
 def __str__(self):
 return "= " + self.var + " " + str(self.expr)
 def meaning(self, state):
 state[self.var] = self.expr.value(state)
 return state
 def tipe(self, tm): # tm is the type map
 tp = self.expr.tipe();
 if (tp == “”)
 error (“variable undefined!”)
 if self.var is not in tm
 tm[self.var] = tp;
 else
 if (tm[self.var] != tp)
 error (“type mismatch!”)

An Assignment is valid if:
• Its source Expression is valid
• If the target Variable has been

defined, it must have the same
type as the source Expression.

Copyright © 2006 The McGraw-Hill Companies, Inc.

6.2 Implicit Type Conversion

Clite Assignment supports implicit widening
conversions

We can transform the abstract syntax tree to insert
explicit conversions as needed.

The types of the target variable and source expression
govern what to insert.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Suppose we have an assignment

 f = i - int(c);

 (f, i, and c are float, int,
 and char variables).

The abstract syntax tree is:

Example: Assignment of int to float

Copyright © 2006 The McGraw-Hill Companies, Inc.

So an implicit widening is
inserted to transform the tree to:

Here, c2i denotes conversion
from char to int, and
i2f denotes conversion from
int to float.

Note: c2i is an explicit
conversion given by the
operator int() in the program.

Example (cont’d)

Copyright © 2006 The McGraw-Hill Companies, Inc.

6.3 Formalizing a Type System

A set of formal rules, written as logic functions with
boolean returning values (true or false).

Nothing deep; just a different way to express those rules!

But, the formalism offers rigor and a convenient basis
for automatic inferences.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Some logic/mathematic notations

U : union. Example:

 i=1,2
U <namei, typei>

{ <name1, type1>, <name2, type2> }

Copyright © 2006 The McGraw-Hill Companies, Inc.

Formalizing the Clite Type System

�

tm = {< v1,t1 >,< v2,t2 >,...,< vn ,tn >}Type map:

Created by:

�

typing :Declarations→ TypeMap

typing(d) = < di .v,di .t >
i∈{1,...,n}

V :Declarations→B
V (d) = ∀i, j ∈ {1,...,n}(i ≠ j⇒ di .v ≠ d j .v)

Copyright © 2006 The McGraw-Hill Companies, Inc.

Some logic/mathematic notations
 : for any. Example:

d ∈ { live animals }, d only eats meat ⇒ d is a carnivore.

i, j ∈ {1, 2, ..., k }, sibling(Kidi,Kidj) ⇒
lastNamei=lastNamej ∧ parenti=parentj

Copyright © 2006 The McGraw-Hill Companies, Inc.

Type Rule 6.2

�

typing :Declarations→ TypeMap

typing(d) = < di .v,di .t >
i∈{1,...,n}

V :Declarations→B
V (d) = ∀i, j ∈ {1,...,n}(i ≠ j⇒ di .v ≠ d j .v)

All declared variables must have unique names.

oolean

Copyright © 2006 The McGraw-Hill Companies, Inc.

Validity of a Clite Program

(Type Rule 6.3)
A program is valid if

– its Declarations are valid and
– its Block body is valid with respect to the type map for those

Declarations

�

V :Program→B
V (p) =V (p.decpart)∧V (p.body, typing(p.decpart))

Copyright © 2006 The McGraw-Hill Companies, Inc.

Type Rule 6.4
Validity of a Statement:

– A Skip is always valid
– An Assignment is valid if: (simplified from our prior def.)

• Its target Variable is declared
• Its source Expression is valid
• The target Variable must have the same type as the source

Expression.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Validity of a Clite Statement
(Type Rule 6.4, simplified version for an Assignment)

�

V : Statement ×TypeMap→B
V (s,tm) = true if s is a Skip

 = s.target ∈ tm∧V (s.source,tm)∧
 typeOf (s.target, tm) = typeOf (s.source,tm)

if s is an Assignment

 =V (s.test,tm)∧ typeOf (s.test,tm) = bool∧
 V (s.thenbranch,tm)∧V (s.elsebranch,tm)

if s is a Conditional

 =V (s.test,tm)∧ typeOf (s.test,tm) = bool∧
 V (s.body,tm)

if s is a Loop

 =V (b1,tm)∧V (b2,tm)∧ ...∧V (bn,tm) if s is a Block

Copyright © 2006 The McGraw-Hill Companies, Inc.

– A Conditional is valid if:
• Its test Expression is valid and has type bool

• Its thenbranch and elsebranch Statements are valid

Type Rule 6.4 (Conditional)

– A Loop is valid if:
• Its test Expression is valid and has type bool

• Its Statement body is valid

– A Block is valid if all its Statements are valid.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Validity of a Clite Statement
(Type Rule 6.4, simplified version for an Assignment)

�

V : Statement ×TypeMap→B
V (s,tm) = true if s is a Skip

 = s.target ∈ tm∧V (s.source,tm)∧
 typeOf (s.target, tm) = typeOf (s.source,tm)

if s is an Assignment

 =V (s.test,tm)∧ typeOf (s.test,tm) = bool∧
 V (s.thenbranch,tm)∧V (s.elsebranch,tm)

if s is a Conditional

 =V (s.test,tm)∧ typeOf (s.test,tm) = bool∧
 V (s.body,tm)

if s is a Loop

 =V (b1,tm)∧V (b2,tm)∧ ...∧V (bn,tm) if s is a Block

Copyright © 2006 The McGraw-Hill Companies, Inc.

Validity of a Clite Expression
(Type Rule 6.5, abbreviated versions for Binary and Unary)

�

V : Expression ×TypeMap→B
V (e,tm) = true if e is a Value

 = e ∈ tm if e is a Variable

 =V (e.term1,tm)∧V (e.term2,tm)∧
 typeOf (e.term1,tm) ∈ { float,int}∧
 typeOf (e.term2,tm) ∈ { float,int}∧
 typeOf (e.term1,tm) = typeOf (e.term2,tm)

if e is a Binary∧
e.op ∈ ArithmeticOp∪
 Re lationalOp

 =V (e.term,tm)∧e.op = ! ∧
 typeOf (e.term,tm) = bool

if e is a Unary

Copyright © 2006 The McGraw-Hill Companies, Inc.

Type of a Clite Expression
(Type Rule 6.6, abbreviated version)

�

typeOf : Expression ×TypeMap→ Type
typeOf (e,tm) = e.type if e is a Value

 = e.type if e is a Variable∧e ∈ tm

 = typeOf (e.term1,tm)
 = boolean

if e is a Binary∧e.op ∈ ArithmeticOp
if e is a Binary∧e.op ∉ ArithmeticOp

 = typeOf (e.term,tm)
 = boolean

if e is a Unary ∧e.op = −
if e is a Unary ∧e.op = !

