CSC312 Principles of Programming Languages :

Functional Programming Language

Overview of Functional Languages

* They emerged in the 1960’s with Lisp

* Functional programming mirrors mathematical
functions: domain = input, range = output

* Jariables are mathematical symbols: not associated
with memory locations.

* Pure functional programming 1s state-free: no
assignment

* Referential transparency: a function’s result
depends only upon the values of its parameters.

Copyright © 2006 The McGraw-Hill Compan

14.1 Functions and the Lambda Calculus

The function Square has R (the reals) as domain and range.
Square : R - R
Square(n) = n?

A function 1s fotal if 1t 1s defined for all values of its domain.
Otherwise, 1t 1s partial. E.g., Square 1s total.

Copyright © 2006 The McGraw-Hill Companies, Inc

i
— — . ——— . e ai —.

Lambda Calculus

A clean, concise way to express a function.
Example:
A square function expressed 1n Python:

definitions. invocation.

def squareFunction (x): squareFunction (100)
y =X ¥ X
return y;

The same function expressed in Lambda Calculus:

definitions: invocation:
L) (Ax.x *x) 100
specify the specify the

formal parameter function body

Copyright © 2006 The McGraw-Hill Companies, Inc

Definition of (Pure) Lambda Calculus

A lambda expression is a particular way to define a function:
LambdaExpression — variable | (M N) | (A variable . M)
M — LambdaExpression
N — LambdaExpression

AXx.x *x

() can be omitted when no
confusion would be caused.

Copyright © 2006 The McGraw-Hill Companies, Inc

Examples

1. compute the area of a circle.
Ax . X*xX*7
2. compute the area of a rectangle.
Ax.hy.x*y
3. compute the factorial of n?
Will be answered 1n future classes.

TN s copyright ©2006 The MoGraw-Hill Companies, Inc. B Sl

NI DOy |

Substitution

In (A x . M), x is bound. Other variables in M are free.

A substitution of N for all occurrences of a variable x 1n M 1s
written M[x < N]. Examples:

z(z —yl=y

(zz)|z « y] = (yy)

(2w)[z « y] = (2w)

(22)[z — y| = (2y)

(Az - (22))[z — y] = (Az - (22))

(Az - (zz))[y « z] = (Au- (2u))|y « z] = (Au - (2u))

Definition of the substitution:
1. If the free variables in N have no bound occurrences in M, then the term

M[x < N] 1s formed by replacing all free occurrences of x in M by N.
2. O.w., renaming the bound variables in M until meeting condition 1.

Copyright © 2006 The McGraw-Hill Companies, Inc.

D TN TIr e
Beta Reduction

A beta reduction (M x . M)N) is a substitution of all bound
occurrences of x in M by N:

(L x . M)N) = M[x « N]
E.g.
(A x.x%)5) =x2% [x«5]=52

(Ax.x?)[x<5]= (Ax.x?)

The typical, intuitive way for function to get evaluated.

LLLAE L BN O LN NN | PR N Copyright © 2006 The McGraw-Hiill Companies, Inc. _ B L B L.

More examples

1. ((xyz)[x<3])[y«4])[z<5]=345

2. (Xyz)[X<yl=yyz

3. (Ax.Ay.xty)[x<5Dy<6]=Ax.Ay.xty
4. (Ax.Ay.xty)5=Ay.5+ty

5. (Wx.Ay.xty)5)6=5+6

6Th : ies, Inc. S SSaEie——

Function Evaluation

In pure lambda calculus, no built-in constants or functions.
So, (A x . x*x)5) = 5*5. Not 25.

In applied lambda calculus, some built-in constants and
functions. All functional languages are applied lambda
calculus.

(A x.x*)5 =5*5=25.

Copyright © 2006 The McGraw-Hill Companies,

——— e ————— e - - i —

Lazy v.s. Eager Evaluation

Lazy evaluation = delaying argument evaluation 1n a
function call until the argument is needed.

— Advantage: flexibility

Eager evaluation = evaluating arguments at the beginning
of the call.

— Advantage: efficiency

if (=x0) 1 (l/x)| runtime error when eager evaluation.

Copyright © 2006 The McGraw-Hill Companies, In

Status of Functions

In imperative and OO programming, functions have
different (lower) status than variables.

In functional programming, functions have same status
as variables; they are first-class entities.

— They can be passed as arguments in a call.

— They can transform other functions.

Copyright © 2006 The McGraw-Hill Companies, In

Functional Form

A function that operates on other functions is called a
functional form. E.g., we can define

a(f, [x1,x2, ...] = [f(x]), f(x2), ...], so that
g(Square, [2, 3, 5])=1[4, 9, 25]

TN s copyright ©2006 The MoGraw-Hill Companies, Inc. I SiSETe—

Quick Review

* Functional Languages:

— State-free,; referential transparency (depends only upon
the values of its parameters.)

— Functions are first-order entities
« Lambda Calculus:
— Bound variables : \ x
— Substitution : M[x < N]
— Beta reduction: (A x . M)N) = M[x < N]

Copyright © 2006 The McGraw-Hill Companies, Inc

Functional Form

A function that operates on other functions is called a
functional form. E.g., we can define

a(f, [x1,x2, ...] = [f(x]), f(x2), ...], so that
g(Square, [2, 3, 5])=1[4, 9, 25]

TN s copyright ©2006 The MoGraw-Hill Companies, Inc. I SiSETe—

Contents

14.3 Haskell

14.3.1
14.3.2
14.3.3
14.3.4
14.3.5
14.3.6
14.3.7
14.3.8
14.3.9

Introduction

Expressions

Lists and List Comprehensions
Elementary Types and Values
Control Flow

Defining Functions

Tuples

Example: Semantics of Clite
Example: Symbolic Differentiation

14.3.10 Example: Eight Queens

Copyright © 2006 The McGraw-Hill Companies, Inc

14.3 Haskell

A more modern functional language

Key distinctions from other functional languages (e.g.,
Lisp):

Lazy Evaluation

An Extensive Type System
Cleaner syntax

Notation closer to mathematics
Infinite lists

Copyright © 2006 The McGraw-Hill Companies, Inc

. — e e et et — —

Minimal Syntax

-- equivalent definitions of factorial comment
factl n = if n==0 then 1 else n*fact1(n-1)

factZ2 n
| Nn==0 =]
| otherwise = n*fact2(n-1)

fact3 0 =1
fact3 n=n*fact3(n-1)

Copyright © 2006 The McGraw-Hill Companies, Inc

Compiler: ghc

ghci (interactive mode)

Available 1n our department machines.

Freely downloadable.

6Th : ies, Inc. S SSaEie——

Infinite Precision Integers

Infinite precision integers:
> fact2 30
> 26525285981219105863630848000000

06 The McGraw-Hill Companies, Inc. e Te—

14.3.2 EXxpressions

Infix notation. E.g.,

5%*(4+6)-2 -- evaluates to 48

S*4A2-2 -- evaluates to 78
... or prefix notation. E.g.,

) (") 5((+) 46))2

Operators
Q Vot /Y !
8 *%x 7 ol ki
7 *, /, ‘div’,
‘mod’, ‘rem’,
‘quot’
6 +, - 3,
5 \ o
4 /=, <, &=, ==, >,
>=, ‘elem’,
‘notElem’ .
3 &&
2 Il
] », D= =
0 $, ‘seq’

Lambda operator

Function composition operator

Name qualifier

Guard and case specifier

Separator in list comprehension

Alternative in data definition (enum type)

List concatenation operator

Append-head operator (“cons”™)

Indexing operator

Range-specifier for lists

List-difference operator

List comprehension generator

Single assignment operator in do-constr.

Definition separator

Function type-mapping operator.

Lambda definition operator

Separator in case construction

Type- or value-naming operator

Type specification operator, “has type”

Context inheritance from class

Empty value in 10 () type

Monad sequencing operator

Monad sequencing operator with value passing

Object composition operator (monads)

Constructor for export operator (postfix)

as separator

- Start of comment line \
{- Start of short comment
-} End of short comment
+ Add operator :
- Subtract /negate operator
- Multiply operator Py
/ Division operator :
Substitution operator, as in e{f/x} I
=, °7, ** | Raise-to-the-power operators .
&k And operator W\
Il Or operator <-
< Less-than operator
<= Less-than-or-equal operator ;
- Equal operator =>
/= Not-equal operator
>= Greater-than-or-equal operator
> Greater-than operator .=.
\ Lambda operator =;
Function composition operator 0O
Name qualifier >
| Guard and case specifier S =
Separator in list comprehension >0>
Alternative in data definition (enum type) ..)
[and] | List constructors, “,” as separator
(and) | Tuple constructors, “,”
Infix-to-prefix constructors
“and ¢ | Prefix-to-infix constructors
> and ’ | Literal char constructors
" and " | String constructors
_ Wildcard in pattern
- Irrefutable pattern
! Force evaluation (strictness flag)
Q “Read As” in pattern matching

Copyright © 2006 The McGraw-Hill Companies, Inc.

— NN i

14.3.3 Lists and List Comprehensions

A list 1s a series of expressions separated by commas and enclosed
in brackets.

The empty list is written [].

evens = [0, 2, 4, 6, 8] declares a list of even numbers.
evens = [0, 2 .. 8] is equivalent.

Copyright © 2006 The McGraw-Hill Companies, Inc

List Generator

A list comprehension can be defined using a generator:
moreevens = [2*x | x <- [0..10]]

The condition that follows the vertical bar says,
“all integers x from 0 to 10.”

The symbol <- suggests set membership (€).

(VHTTRVTTTET | TSRO Wi § Copyright © 2006 The McGraw-Hiill Companies, Inc. i 1l B DR NN

Infinite Lists

Generators may include additional conditions, as in:
factorsn=[flf<-[1..n],n 'mod™ f==0]
This means “all integers from 1 to n that divide f evenly.”
List comprehensions can also be infinite. E.g.:
mostevens = [2*x | x <- [0,1..]]
mostevens = [0,2..]

Copyright © 2006 The McGraw-Hill Companies, Inc

List Transforming Functions

Suppose we define evens = [0, 2, 4, 6, 8]. Then:

head evens
tail evens

head (tail evens)

ta
tai
tai

(tail evens)
[6,8]
[8]

-- gives O
-- gives [2,4,6,8]
-- gives 2

-- gives
-- gives
-- gives

Copyright © 2006 The McGraw-Hill Companies, In

4,6,8]
8]

]

List Transforming Functions

The operator : concatenates a new element onto the head of a
list. E.g.,

4:16, 8] gives the list [4, 6, 8].
[6, 8]:4 --1llegal

The operator ++ concatenates two lists. E.g.,
[2, 4]++[6, 8] gives the list [2, 4, 6, 8].
4++[6, 8] --1llegal

[41++[6, 8] -- [4,6,8]

Copyright © 2006 The McGraw-Hill Companies, In

List Transforming Functions

Here are some more functions on lists:

null [] -- gives True
null evens -- gives False
[1,2]==[1,2] -- gives True
[1,2]==[2,1] -- gives False
==[5] -- gives an error (mismatched args)

type evens -- gives [Int] (a list of integers)

Copyright © 2006 The McGraw-Hill Companies,

14.3.4 Elementary Types and Values

Numbers

integers types Int (finite; like int in C, Java) and

Integer (infinitely many)

floats type Float
Numerical

Functions abs, acos, atan, ceiling, floor,

cos, sin log,logBase, pi, sqrt

Booleans type Bool; values True and False
Characters type Char;eg., a, 7

Strings type String = [Char]; e.g., “hello”

Copyright © 2006 The McGraw-Hill Companies,

14.3.5 Control Flow

Conditional

If x>=y && x>=z then x

else part is mandatory.

else if y>=x && y>=z theny

else z
Guarded command (used widely in defining functions)
x>=y && x>=z = X
y>=X && y>=z =y
otherwise = Z

Copyright © 2006 The McGraw-Hill Companies, Inc

14.3.6 Defining Functions

A Haskell Function 1s defined by writing:

its prototype (name, domain, and range) on the first line, and
its parameters and body (meaning) on the remaining lines.

max3 :: Int -> Int -> Int -> Int

max3 Xy z
| x>=y && X>=2 = X
| y>=x && y>=z =y
| otherwise = Z

Note: 1f the prototype 1s omitted, Haskell interpreter will infer it.

Copyright © 2006 The McGraw-Hill Companies,

lterative Factorial

factorial n = product [1 .. n]

Using Pattern Matching

mysum |] =0
mysum (X:Xs) =X + mysum Xs

Functions are polymorphic

Omitting the prototype gives the function its broadest possible

meaning. E.g., max3:: Orda=>a->a->a->a
max3 Xy z
| Xx>=y && x>=z = X
| y>=x && y>=z =y
| otherwise =Z
1s now well-defined for any argument types:
>max3 6 4 1
6

> max3 “alpha” “beta” “gamma”
“gamma”

Copyright © 2006 The McGraw-Hill Companies, Inc

The member Function

member :: EQa=>[a]->a->Bool
member alist elt

alist == | = False
elt ==head alist = True
otherwise = member (tail alist) elt

TN s copyright ©2006 The MoGraw-Hill Companies, Inc. B Sl

Pattern Matching

member [] elt = False
member (Xx:xs) elt = elt == x || member xs elt

Re: the latter can also be written:
member (elt:xs) elt = True

member (x:xs) elt = member xs elt

member (x:xs) elt =if elt ==x then True
else member xs elt

Copyright © 2006 The McGraw-Hill Companies, In

