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CSC312 Principles of Programming Languages : 

Functional Programming Language
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Overview of Functional Languages

• They emerged in the 1960’s with Lisp
• Functional programming mirrors mathematical 

functions: domain = input, range = output
• Variables are mathematical symbols: not associated 

with memory locations.
• Pure functional programming is state-free: no 

assignment
• Referential transparency: a function’s result 

depends only upon the values of its parameters.
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14.1  Functions and the Lambda Calculus

The function Square has R (the reals) as domain and range.
  Square : R → R
  Square(n) = n2

A function is total if it is defined for all values of its domain.  
Otherwise, it is partial.  E.g., Square is total.
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Lambda Calculus
A clean, concise way to express a function.
Example:
        A square function expressed in Python:

       The same function expressed in Lambda Calculus:
                    
               

definitions: 
def squareFunction (x):
        y = x * x;
        return y;

definitions: 
λ x . x * x 

invocation: 
squareFunction (100)

invocation: 
(λ x . x * x ) 100

specify the 
formal parameter

specify the 
function body
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Definition of (Pure) Lambda Calculus

A lambda expression is a particular way to define a function:
 LambdaExpression → variable | ( M N) | ( λ variable . M )
         M → LambdaExpression
         N → LambdaExpression

λ x . x * x 
( ) can be omitted when no 
confusion would be caused.
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Examples

1. compute the area of a circle.

2. compute the area of a rectangle.

3. compute the factorial of n?
                       Will be answered in future classes.

λ x . x*x*π

λ x . λ y . x*y
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Substitution
In (λ x . M), x is bound.  Other variables in M are free.
A substitution of N for all occurrences of a variable x in M is 

written M[x ← N].  Examples:

Definition of the substitution:
     1. If the free variables in N have no bound occurrences in M, then the term 
M[x ← N] is formed by replacing all free occurrences of x in M by N.
     2. O.w., renaming the bound variables in M until meeting condition 1.
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Beta Reduction

A beta reduction ((λ x . M)N) is a substitution of all bound 
occurrences of x in M by N: 

               ((λ x . M)N) = M[x ← N]
E.g. 
           ((λ x . x2)5)  = x2 [x ←5] = 52

(λ x . x2)[x ←5]  =  (λ x . x2)

The typical, intuitive way for function to get evaluated.
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More examples

   1.   (((xyz)[x←3])[y←4])[z←5] =  345
       2.        (xyz)[x←y]= yyz
       3.        ((λ x . λ y . x+y) [x ←5])[y ←6] = λ x . λ y . x+y
      4.         (λ x . λ y . x+y) 5  = λ y . 5+y
      5.          ((λ x . λ y . x+y) 5) 6  = 5+6
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Function Evaluation

In pure lambda calculus, no built-in constants or functions.
   So, ((λ x . x*x)5) = 5*5. Not 25. 

In applied lambda calculus, some built-in constants and 
functions. All functional languages are applied lambda 
calculus.

    (λ x . x*x)5  = 5*5 = 25.  
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Lazy v.s. Eager Evaluation

Lazy evaluation = delaying argument evaluation in a 
function call until the argument is needed.
– Advantage: flexibility

Eager evaluation = evaluating arguments at the beginning 
of the call.
– Advantage: efficiency

if (= x 0) 1 (1/x) runtime error when eager evaluation.
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Status of Functions

In imperative and OO programming, functions have 
different (lower) status than variables.

In functional programming, functions have same status 
as variables; they are first-class entities.
– They can be passed as arguments in a call.
– They can transform other functions.
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Functional Form

A function that operates on other functions is called a 
functional form.  E.g., we can define
 g(f, [x1, x2, … ]) = [f(x1), f(x2), …], so that
 g(Square, [2, 3, 5]) = [4, 9, 25]
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Quick Review

• Functional Languages:
– State-free; referential transparency (depends only upon 

the values of its parameters.)
– Functions are first-order entities

• Lambda Calculus:
– Bound variables : λ x
– Substitution : M[x ← N]
– Beta reduction: ((λ x . M)N) = M[x ← N]
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Functional Form

A function that operates on other functions is called a 
functional form.  E.g., we can define
 g(f, [x1, x2, … ]) = [f(x1), f(x2), …], so that
 g(Square, [2, 3, 5]) = [4, 9, 25]
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14.3 Haskell

A more modern functional language
Key distinctions from other functional languages (e.g., 

Lisp):
 Lazy Evaluation
 An Extensive Type System
 Cleaner syntax
 Notation closer to mathematics 
 Infinite lists
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Minimal Syntax

    -- equivalent definitions of factorial comment
! fact1 n = if n==0 then 1 else n*fact1(n-1)

! fact2 n 
! ! ! | n==0! ! = 1
! ! ! | otherwise != n*fact2(n-1)!

      fact3 0 = 1
 fact3  n = n * fact3(n - 1)
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Compiler: ghc
ghci (interactive mode)

Available in our department machines.

Freely downloadable.
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Infinite Precision Integers

Infinite precision integers:
> fact2 30
> 26525285981219105863630848000000
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14.3.2  Expressions

Infix notation.  E.g.,
5*(4+6)-2! ! ! -- evaluates to 48
5*4^2-2!! ! -- evaluates to 78

… or prefix notation.  E.g.,
 (-) ((*) 5 ((+) 4 6)) 2
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Operators
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14.3.3  Lists and List Comprehensions
A list is a series of expressions separated by commas and enclosed 

in brackets.
The empty list is written []. 
evens = [0, 2, 4, 6, 8] declares a list of even numbers.
evens = [0, 2 .. 8] is equivalent.
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List Generator

A list comprehension can be defined using a generator:
  moreevens = [2*x | x <- [0..10]] 

The condition that follows the vertical bar says, 
“all integers x from 0 to 10.”  
The symbol <- suggests set membership (∈).
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Infinite Lists
Generators may include additional conditions, as in:
  factors n = [f | f <- [1..n], n `mod` f == 0]
This means “all integers from 1 to n that divide f evenly.”

List comprehensions can also be infinite. E.g.:
  mostevens = [2*x | x <- [0,1..]]
  mostevens = [0,2..]
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List Transforming Functions

Suppose we define evens = [0, 2, 4, 6, 8].  Then:
head evens  ! ! ! ! ! -- gives 0
tail evens ! ! ! ! ! ! -- gives [2,4,6,8]
head (tail evens)! ! ! ! -- gives 2
tail (tail evens)!! ! ! ! -- gives [4,6,8]
tail [6,8]      ! ! ! ! ! -- gives [8]
tail [8]! ! ! ! ! ! ! -- gives []
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List Transforming Functions

The operator : concatenates a new element onto the head of a 
list.  E.g., 

4:[6, 8] gives the list [4, 6, 8].
[6, 8]:4  -- illegal

The operator ++ concatenates two lists.  E.g., 
[2, 4]++[6, 8] gives the list [2, 4, 6, 8].
4++[6, 8]  -- illegal
[4]++[6, 8]  -- [4,6,8]
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List Transforming Functions

Here are some more functions on lists:
null []  ! ! ! ! -- gives True
null evens  !! ! -- gives False
[1,2]==[1,2] ! ! -- gives True
[1,2]==[2,1]! ! -- gives False
5==[5]! ! !     -- gives an error (mismatched args)
type evens      !! -- gives [Int] (a list of integers)
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14.3.4  Elementary Types and Values
Numbers
 integers   types Int (finite; like int in C, Java) and 
       Integer  (infinitely many)
 floats   type Float
Numerical 
 Functions  abs, acos, atan, ceiling, floor, 

! ! ! ! ! ! ! cos, sin log,logBase, pi, sqrt
Booleans    type Bool; values True and False  
Characters   type Char; e.g., `a`, `?`
Strings    type String = [Char]; e.g., “hello”  
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14.3.5  Control Flow

Conditional
if x>=y && x>=z then x
else if y>=x && y>=z then y
! !   else z

Guarded command (used widely in defining functions)
| x>=y && x>=z ! ! = x
| y>=x && y>=z ! ! = y
| otherwise !! ! ! = z

else part is mandatory.
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14.3.6  Defining Functions

A Haskell Function is defined by writing:
 its prototype (name, domain, and range) on the first line, and 

its parameters and body (meaning) on the remaining lines.

max3 :: Int -> Int -> Int -> Int
max3 x y z
! | x>=y && x>=z ! ! = x

| y>=x && y>=z ! ! = y
| otherwise !! ! ! = z

Note: if the prototype is omitted, Haskell interpreter will infer it.
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Iterative Factorial

factorial n = product [1 .. n]
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Using Pattern Matching

mysum [ ]          = 0
mysum (x:xs)   = x + mysum xs
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Functions are polymorphic

Omitting the prototype gives the function its broadest possible 
meaning.  E.g.,

max3 x y z
! ! | x>=y && x>=z ! ! = x

     | y>=x && y>=z ! ! = y
       | otherwise ! ! ! = z

is now well-defined for any argument types:
> max3 6 4 1
6
> max3 “alpha” “beta” “gamma”
“gamma”

max3:: Ord a=> a -> a -> a -> a



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

The member Function

member :: Eq a => [ a ] -> a -> Bool
member alist elt
 | alist == [ ]               = False
 | elt == head alist      = True
 | otherwise                = member (tail alist) elt
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Pattern Matching

member  [ ]  elt     =  False
member (x:xs) elt  = elt == x || member xs elt

Re: the latter can also be written:
member (elt:xs) elt  = True
member (x:xs) elt    = member xs elt

member (x:xs) elt  = if  elt ==x then True 
                                  else member xs elt


