CSC312 Principles of Programming Languages:
Functional Programming Language

Overview of Functional Languages

- They emerged in the 1960's with Lisp
- Functional programming mirrors mathematical functions: domain $=$ input, range $=$ output
- Variables are mathematical symbols: not associated with memory locations.
- Pure functional programming is state-free: no assignment
- Referential transparency: a function's result depends only upon the values of its parameters.

14.1 Functions and the Lambda Calculus

The function Square has \mathbf{R} (the reals) as domain and range.
Square : $\mathbf{R} \rightarrow \mathbf{R}$
Square $(n)=n^{2}$
A function is total if it is defined for all values of its domain.
Otherwise, it is partial. E.g., Square is total.

Lambda Calculus

A clean, concise way to express a function.
Example:
A square function expressed in Python:

$$
\begin{aligned}
& \text { definitions: } \\
& \text { def squareFunction (x): } \\
& y=x * x ; \\
& \text { return } \mathrm{y} ;
\end{aligned}
$$

invocation:
squareFunction (100)

The same function expressed in Lambda Calculus:

> invocation:
> $(\lambda x \cdot x * x) 100$
specify the formal parameter
specify the function body

Definition of (Pure) Lambda Calculus

A lambda expression is a particular way to define a function:
LambdaExpression \rightarrow variable $|(M N)|(\lambda$ variable.$M)$
$M \rightarrow$ LambdaExpression
$N \rightarrow$ LambdaExpression

$$
\lambda x \cdot x * x
$$

() can be omitted when no confusion would be caused.

Examples

1. compute the area of a circle.

$$
\lambda x . x^{*} x^{*} \pi
$$

2. compute the area of a rectangle.

$$
\lambda x \cdot \lambda y \cdot \mathrm{x} * \mathrm{y}
$$

3. compute the factorial of n ?

Will be answered in future classes.

Substitution

In $(\lambda x . M), x$ is bound. Other variables in M are free.
A substitution of N for all occurrences of a variable x in M is written $M[x \leftarrow N]$. Examples:
$x[x \leftarrow y]=y$
$(x x)[x \leftarrow y]=(y y)$
$(z w)[x \leftarrow y]=(z w)$
$(z x)[x \leftarrow y]=(z y)$
$(\lambda x \cdot(z x))[x \leftarrow y]=(\lambda x \cdot(z x))$
$(\lambda x \cdot(z x))[y \leftarrow x]=(\lambda u \cdot(z u))[y \leftarrow x]=(\lambda u \cdot(z u))$
Definition of the substitution:

1. If the free variables in N have no bound occurrences in M , then the term $\mathrm{M}[\mathrm{x} \leftarrow N]$ is formed by replacing all free occurrences of x in M by N.
2. O.w., renaming the bound variables in M until meeting condition 1.

Beta Reduction

A beta reduction $((\lambda x . M) \mathrm{N})$ is a substitution of all bound occurrences of x in M by N :

$$
((\lambda x \cdot M) \mathrm{N})=\mathrm{M}[\mathrm{x} \leftarrow N]
$$

E.g.

$$
\begin{aligned}
& \left(\left(\lambda x \cdot x^{2}\right) 5\right)=\mathrm{x}^{2}[\mathrm{x} \leftarrow 5]=5^{2} \\
& \left(\lambda x \cdot x^{2}\right)[\mathrm{x} \leftarrow 5]=\left(\lambda x \cdot x^{2}\right)
\end{aligned}
$$

The typical, intuitive way for function to get evaluated.

More examples

1. $(((x y z)[x \leftarrow 3])[y \leftarrow 4])[z \leftarrow 5]=345$
2. $(\mathrm{xyz})[\mathrm{x} \leftarrow \mathrm{y}]=\mathrm{yyz}$
3. $((\lambda x \cdot \lambda y \cdot \mathrm{x}+\mathrm{y})[\mathrm{x} \leftarrow 5])[\mathrm{y} \leftarrow 6]=\lambda x \cdot \lambda y \cdot \mathrm{x}+\mathrm{y}$
4. $(\lambda x \cdot \lambda y \cdot \mathrm{x}+\mathrm{y}) 5=\lambda y .5+\mathrm{y}$
5. $((\lambda x \cdot \lambda y \cdot \mathrm{x}+\mathrm{y}) 5) 6=5+6$

Function Evaluation

In pure lambda calculus, no built-in constants or functions. So, $\left(\left(\lambda x \cdot x^{*} x\right) 5\right)=5 * 5$. Not 25 .

In applied lambda calculus, some built-in constants and functions. All functional languages are applied lambda calculus.
$(\lambda x . x * x) 5=5 * 5=25$.

Lazy v.s. Eager Evaluation

Lazy evaluation = delaying argument evaluation in a function call until the argument is needed.

- Advantage: flexibility

Eager evaluation $=$ evaluating arguments at the beginning of the call.

- Advantage: efficiency
if $(=x 0) 1(1 / x)$ runtime error when eager evaluation.

Status of Functions

In imperative and OO programming, functions have different (lower) status than variables.
In functional programming, functions have same status as variables; they are first-class entities.

- They can be passed as arguments in a call.
- They can transform other functions.

Functional Form

A function that operates on other functions is called a functional form. E.g., we can define

$$
\begin{aligned}
& g(f,[\mathrm{x} 1, \mathrm{x} 2, \ldots])=[f(\mathrm{x} 1), f(\mathrm{x} 2), \ldots] \text {, so that } \\
& g(\text { Square, }[2,3,5])=[4,9,25]
\end{aligned}
$$

Quick Review

- Functional Languages:
- State-free; referential transparency (depends only upon the values of its parameters.)
- Functions are first-order entities
- Lambda Calculus:
- Bound variables : λx
- Substitution : M[x $\leftarrow N]$
- Beta reduction: $((\lambda x . M) \mathrm{N})=\mathrm{M}[\mathrm{x} \leftarrow N]$

Functional Form

A function that operates on other functions is called a functional form. E.g., we can define

$$
\begin{aligned}
& g(f,[\mathrm{x} 1, \mathrm{x} 2, \ldots])=[f(\mathrm{x} 1), f(\mathrm{x} 2), \ldots] \text {, so that } \\
& g(\text { Square, }[2,3,5])=[4,9,25]
\end{aligned}
$$

Contents

14.3 Haskell
14.3.1 Introduction
14.3.2 Expressions
14.3.3 Lists and List Comprehensions
14.3.4 Elementary Types and Values
14.3.5 Control Flow
14.3.6 Defining Functions
14.3.7 Tuples
14.3.8 Example: Semantics of Clite
14.3.9 Example: Symbolic Differentiation
14.3.10 Example: Eight Queens

14.3 Haskell

A more modern functional language
Key distinctions from other functional languages (e.g.,
Lisp):
Lazy Evaluation
An Extensive Type System
Cleaner syntax
Notation closer to mathematics
Infinite lists

Minimal Syntax

-- equivalent definitions of factorial comment fact $1 \mathrm{n}=$ if $\mathrm{n}==0$ then 1 else n *fact $1(\mathrm{n}-1)$
fact2 n
| $\mathrm{n}==0=1$
I otherwise $=\mathrm{n}$ *fact2 $(\mathrm{n}-1$)
fact3 $0=1$
fact3 $n=n * \operatorname{fact} 3(n-1)$

Compiler: ghc ghci (interactive mode)

Available in our department machines.

Freely downloadable.

Infinite Precision Integers

Infinite precision integers:
> fact2 30
> 26525285981219105863630848000000

14.3.2 Expressions

Infix notation. E.g.,

$$
\begin{array}{lr}
5 *(4+6)-2 & -- \text { evaluates to } 48 \\
5 * 4 \wedge 2-2 & -- \text { evaluates to } 78
\end{array}
$$

... or prefix notation. E.g.,
$(-)((*) 5((+) 46)) 2$

Operators

Precedence	Left-Associative	Non-Associative	Right-Associative
9	!, !!, /1		.
8			**, \sim
7	```*, /, 'div', 'mod', 'rem', 'quot'```		
6	+, -	:+	
5		11	:, ++
4		```/=, <, <", =m, >, >=, 'elem', 'notElem'```	
3	-		
2			II
1	》, 》=	: $=$	
0			\$, 'seq'

--	Start of comment line
\{-	Start of short comment
- $\}$	End of short comment
+	Add operator
-	Subtract/negate operator
*	Multiply operator
/	Division operator
	Substitution operator, as in e\{ff/x\}
${ }^{\sim},{ }^{\sim}$, **	Raise-to-the-power operators
\&\&	And operator
11	Or operator
<	Less-than operator
<	Less-than-or-equal operator
==	Equal operator
/=	Not-equal operator
>=	Greater-than-or-equal operator
>	Greater-than operator
\backslash	Lambda operator
.	Function composition operator
	Name qualifier
1	Guard and case specifier
	Separator in list comprehension
	Alternative in data definition (enum type)

\}	Lambda operator
.	Function composition operator
	Name qualifier
I	Guard and case specifier
	Separator in list comprehension
	Alternative in data definition (enum type)
++	List concatenation operator
:	Append-head operator ("cons")
!!	Indexing operator
.	Range-specifier for lists
\1	List-difference operator
<-	List comprehension generator
	Single assignment operator in do-constr.
;	Definition separator
->	Function type-mapping operator.
	Lambda definition operator
	Separator in case construction
=	Type- or value-naming operator
:	Type specification operator, "has type"
=>	Context inheritance from class
()	Empty value in IO () type
>>	Monad sequencing operator
>>=	Monad sequencing operator with value passing
>®>	Object composition operator (monads)
(..)	Constructor for export operator (postfix)

[and]	List constructors, "," as separator
(and)	Tuple constructors, "," as separator
	Infix-to-prefix constructors
${ }^{\text {' }}$ and '	Prefix-to-infix constructors
' and '	Literal char constructors
" and "	String constructors
-	Wildcard in pattern
\sim	Irrefutable pattern
$!$	Force evaluation (strictness flag)
\mathbb{Q}	"Read As" in pattern matching

14.3.3 Lists and List Comprehensions

A list is a series of expressions separated by commas and enclosed in brackets.
The empty list is written [].
evens $=[0,2,4,6,8]$ declares a list of even numbers.
evens $=[0,2 . .8]$ is equivalent.

List Generator

A list comprehension can be defined using a generator:

$$
\text { moreevens }=[2 * x \mid x<-[0 . .10]]
$$

The condition that follows the vertical bar says,
"all integers x from 0 to 10 ."
The symbol <- suggests set membership (\in).

Infinite Lists

Generators may include additional conditions, as in: factors $n=[f \mid f<-[1 . . n], n$ `mod` $f==0]$
This means "all integers from 1 to n that divide f evenly."

List comprehensions can also be infinite. E.g.:

$$
\begin{aligned}
& \text { mostevens }=\left[2^{*} x \mid x<-[0,1 . .]\right] \\
& \text { mostevens }=[0,2 . .]
\end{aligned}
$$

List Transforming Functions

Suppose we define evens $=[0,2,4,6,8]$. Then:
head evens
tail evens
head (tail evens)
tail (tail evens)
tail $[6,8]$
tail [8]
-- gives 0
-- gives [2,4,6,8]
-- gives 2
-- gives [4,6,8]
-- gives [8]
-- gives []

List Transforming Functions

The operator : concatenates a new element onto the head of a list. E.g.,
4: $[6,8]$ gives the list $[4,6,8]$.
$[6,8]: 4$-- illegal

The operator ++ concatenates two lists. E.g.,
$[2,4]++[6,8]$ gives the list $[2,4,6,8]$. $4++[6,8]$-- illegal
$[4]++[6,8]-[4,6,8]$

List Transforming Functions

Here are some more functions on lists:
null []
null evens
$[1,2]==[1,2]$
$[1,2]==[2,1]$
5==[5]
type evens
-- gives True
-- gives False
-- gives True
-- gives False
-- gives an error (mismatched args)
-- gives [Int] (a list of integers)

14.3.4 Elementary Types and Values

Numbers
integers
floats
Numerical
Functions

Booleans
Characters
Strings
types Int (finite; like int in C, Java) and Integer (infinitely many)
type Float
abs, acos, atan, ceiling, floor, cos, sin log,logBase, pi, sqrt
type Bool; values True and False
type Char; e.g., `a`, `?`
type String = [Char]; e.g., "hello"

14.3.5 Control Flow

Conditional
if $x>=y \& \& x>=z$ then x
else if $y>=x \& \& y>=z$ then y
else z

Guarded command (used widely in defining functions)

$$
\begin{array}{ll}
\mid x>=y \& \& x>=z & =x \\
\mid y>=x \& \& y>=z & =y \\
\mid \text { otherwise } & =z
\end{array}
$$

14.3.6 Defining Functions

A Haskell Function is defined by writing:
its prototype (name, domain, and range) on the first line, and its parameters and body (meaning) on the remaining lines.
max3 :: Int -> Int -> Int -> Int
$\max 3 x y z$
$\mid x>=y \& \& x>=z \quad=x$
$\mid y>=x \& \& y>=z \quad=y$
| otherwise = z

Note: if the prototype is omitted, Haskell interpreter will infer it.

Iterative Factorial

factorial $\mathrm{n}=$ product $[1 . . \mathrm{n}$]

Using Pattern Matching

mysum [] $\quad=0$
mysum ($\mathrm{x}: \mathrm{xs}$) $=\mathrm{x}+$ mysum xs

Functions are polymorphic

Omitting the prototype gives the function its broadest possible meaning. E.g.,
$\max 3 x y z$

$$
\begin{array}{ll}
\mid x>=y \& \& x>=z & =x \\
\mid y>=x \& \& y>=z & =y \\
\text { | otherwise } & =z
\end{array}
$$

is now well-defined for any argument types:
$>\max 3641$
6
> max3 "alpha" "beta" "gamma"
"gamma"

The member Function

member :: Eq a => [a] -> a -> Bool member alist elt

$$
\begin{array}{ll}
\mid \text { alist }==[] & =\text { False } \\
\mid \text { elt }==\text { head alist } & =\text { True } \\
\mid \text { otherwise } & =\text { member (tail alist) elt }
\end{array}
$$

Pattern Matching

member [] elt = False
member (x:xs) elt $=$ elt $==\mathrm{x} \|$ member xs elt

Re: the latter can also be written: member (elt:xs) elt $=$ True
member (x:xs) elt = member xs elt
member ($\mathrm{x}: \mathrm{xs}$) elt $=$ if elt $==\mathrm{x}$ then True else member xs elt

