

Copyright © 2006 The McGraw-Hill Companies, Inc.

CSC312 Principles of Programming Languages :

Functional Programming Language

Copyright © 2006 The McGraw-Hill Companies, Inc.

Overview of Functional Languages

• They emerged in the 1960’s with Lisp
• Functional programming mirrors mathematical

functions: domain = input, range = output
• Variables are mathematical symbols: not associated

with memory locations.
• Pure functional programming is state-free: no

assignment
• Referential transparency: a function’s result

depends only upon the values of its parameters.

Copyright © 2006 The McGraw-Hill Companies, Inc.

14.1 Functions and the Lambda Calculus

The function Square has R (the reals) as domain and range.
 Square : R → R
 Square(n) = n2

A function is total if it is defined for all values of its domain.
Otherwise, it is partial. E.g., Square is total.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Lambda Calculus
A clean, concise way to express a function.
Example:
 A square function expressed in Python:

 The same function expressed in Lambda Calculus:

definitions:
def squareFunction (x):
 y = x * x;
 return y;

definitions:
λ x . x * x

invocation:
squareFunction (100)

invocation:
(λ x . x * x) 100

specify the
formal parameter

specify the
function body

Copyright © 2006 The McGraw-Hill Companies, Inc.

Definition of (Pure) Lambda Calculus

A lambda expression is a particular way to define a function:
 LambdaExpression → variable | (M N) | (λ variable . M)
 M → LambdaExpression
 N → LambdaExpression

λ x . x * x
() can be omitted when no
confusion would be caused.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Examples

1. compute the area of a circle.

2. compute the area of a rectangle.

3. compute the factorial of n?
 Will be answered in future classes.

λ x . x*x*π

λ x . λ y . x*y

Copyright © 2006 The McGraw-Hill Companies, Inc.

Substitution
In (λ x . M), x is bound. Other variables in M are free.
A substitution of N for all occurrences of a variable x in M is

written M[x ← N]. Examples:

Definition of the substitution:
 1. If the free variables in N have no bound occurrences in M, then the term
M[x ← N] is formed by replacing all free occurrences of x in M by N.
 2. O.w., renaming the bound variables in M until meeting condition 1.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Beta Reduction

A beta reduction ((λ x . M)N) is a substitution of all bound
occurrences of x in M by N:

 ((λ x . M)N) = M[x ← N]
E.g.
 ((λ x . x2)5) = x2 [x ←5] = 52

(λ x . x2)[x ←5] = (λ x . x2)

The typical, intuitive way for function to get evaluated.

Copyright © 2006 The McGraw-Hill Companies, Inc.

More examples

 1. (((xyz)[x←3])[y←4])[z←5] = 345
 2. (xyz)[x←y]= yyz
 3. ((λ x . λ y . x+y) [x ←5])[y ←6] = λ x . λ y . x+y
 4. (λ x . λ y . x+y) 5 = λ y . 5+y
 5. ((λ x . λ y . x+y) 5) 6 = 5+6

Copyright © 2006 The McGraw-Hill Companies, Inc.

Function Evaluation

In pure lambda calculus, no built-in constants or functions.
 So, ((λ x . x*x)5) = 5*5. Not 25.

In applied lambda calculus, some built-in constants and
functions. All functional languages are applied lambda
calculus.

 (λ x . x*x)5 = 5*5 = 25.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Lazy v.s. Eager Evaluation

Lazy evaluation = delaying argument evaluation in a
function call until the argument is needed.
– Advantage: flexibility

Eager evaluation = evaluating arguments at the beginning
of the call.
– Advantage: efficiency

if (= x 0) 1 (1/x) runtime error when eager evaluation.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Status of Functions

In imperative and OO programming, functions have
different (lower) status than variables.

In functional programming, functions have same status
as variables; they are first-class entities.
– They can be passed as arguments in a call.
– They can transform other functions.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Functional Form

A function that operates on other functions is called a
functional form. E.g., we can define
 g(f, [x1, x2, …]) = [f(x1), f(x2), …], so that
 g(Square, [2, 3, 5]) = [4, 9, 25]

Copyright © 2006 The McGraw-Hill Companies, Inc.

Quick Review

• Functional Languages:
– State-free; referential transparency (depends only upon

the values of its parameters.)
– Functions are first-order entities

• Lambda Calculus:
– Bound variables : λ x
– Substitution : M[x ← N]
– Beta reduction: ((λ x . M)N) = M[x ← N]

Copyright © 2006 The McGraw-Hill Companies, Inc.

Functional Form

A function that operates on other functions is called a
functional form. E.g., we can define
 g(f, [x1, x2, …]) = [f(x1), f(x2), …], so that
 g(Square, [2, 3, 5]) = [4, 9, 25]

Copyright © 2006 The McGraw-Hill Companies, Inc.

Contents
14.3 Haskell

14.3.1 Introduction
14.3.2 Expressions
14.3.3 Lists and List Comprehensions
14.3.4 Elementary Types and Values
14.3.5 Control Flow
14.3.6 Defining Functions
14.3.7 Tuples
14.3.8 Example: Semantics of Clite
14.3.9 Example: Symbolic Differentiation
14.3.10 Example: Eight Queens

Copyright © 2006 The McGraw-Hill Companies, Inc.

14.3 Haskell

A more modern functional language
Key distinctions from other functional languages (e.g.,

Lisp):
 Lazy Evaluation
 An Extensive Type System
 Cleaner syntax
 Notation closer to mathematics
 Infinite lists

Copyright © 2006 The McGraw-Hill Companies, Inc.

Minimal Syntax

 -- equivalent definitions of factorial comment
! fact1 n = if n==0 then 1 else n*fact1(n-1)

! fact2 n
! ! ! | n==0! ! = 1
! ! ! | otherwise != n*fact2(n-1)!

 fact3 0 = 1
 fact3 n = n * fact3(n - 1)

Copyright © 2006 The McGraw-Hill Companies, Inc.

Compiler: ghc
ghci (interactive mode)

Available in our department machines.

Freely downloadable.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Infinite Precision Integers

Infinite precision integers:
> fact2 30
> 26525285981219105863630848000000

Copyright © 2006 The McGraw-Hill Companies, Inc.

14.3.2 Expressions

Infix notation. E.g.,
5*(4+6)-2! ! ! -- evaluates to 48
5*4^2-2!! ! -- evaluates to 78

… or prefix notation. E.g.,
 (-) ((*) 5 ((+) 4 6)) 2

Copyright © 2006 The McGraw-Hill Companies, Inc.

Operators

Copyright © 2006 The McGraw-Hill Companies, Inc.

Copyright © 2006 The McGraw-Hill Companies, Inc.

14.3.3 Lists and List Comprehensions
A list is a series of expressions separated by commas and enclosed

in brackets.
The empty list is written [].
evens = [0, 2, 4, 6, 8] declares a list of even numbers.
evens = [0, 2 .. 8] is equivalent.

Copyright © 2006 The McGraw-Hill Companies, Inc.

List Generator

A list comprehension can be defined using a generator:
 moreevens = [2*x | x <- [0..10]]

The condition that follows the vertical bar says,
“all integers x from 0 to 10.”
The symbol <- suggests set membership (∈).

Copyright © 2006 The McGraw-Hill Companies, Inc.

Infinite Lists
Generators may include additional conditions, as in:
 factors n = [f | f <- [1..n], n `mod` f == 0]
This means “all integers from 1 to n that divide f evenly.”

List comprehensions can also be infinite. E.g.:
 mostevens = [2*x | x <- [0,1..]]
 mostevens = [0,2..]

Copyright © 2006 The McGraw-Hill Companies, Inc.

List Transforming Functions

Suppose we define evens = [0, 2, 4, 6, 8]. Then:
head evens ! ! ! ! ! -- gives 0
tail evens ! ! ! ! ! ! -- gives [2,4,6,8]
head (tail evens)! ! ! ! -- gives 2
tail (tail evens)!! ! ! ! -- gives [4,6,8]
tail [6,8] ! ! ! ! ! -- gives [8]
tail [8]! ! ! ! ! ! ! -- gives []

Copyright © 2006 The McGraw-Hill Companies, Inc.

List Transforming Functions

The operator : concatenates a new element onto the head of a
list. E.g.,

4:[6, 8] gives the list [4, 6, 8].
[6, 8]:4 -- illegal

The operator ++ concatenates two lists. E.g.,
[2, 4]++[6, 8] gives the list [2, 4, 6, 8].
4++[6, 8] -- illegal
[4]++[6, 8] -- [4,6,8]

Copyright © 2006 The McGraw-Hill Companies, Inc.

List Transforming Functions

Here are some more functions on lists:
null [] ! ! ! ! -- gives True
null evens !! ! -- gives False
[1,2]==[1,2] ! ! -- gives True
[1,2]==[2,1]! ! -- gives False
5==[5]! ! ! -- gives an error (mismatched args)
type evens !! -- gives [Int] (a list of integers)

Copyright © 2006 The McGraw-Hill Companies, Inc.

14.3.4 Elementary Types and Values
Numbers
 integers types Int (finite; like int in C, Java) and
 Integer (infinitely many)
 floats type Float
Numerical
 Functions abs, acos, atan, ceiling, floor,

! ! ! ! ! ! ! cos, sin log,logBase, pi, sqrt
Booleans type Bool; values True and False
Characters type Char; e.g., `a`, `?`
Strings type String = [Char]; e.g., “hello”

Copyright © 2006 The McGraw-Hill Companies, Inc.

14.3.5 Control Flow

Conditional
if x>=y && x>=z then x
else if y>=x && y>=z then y
! ! else z

Guarded command (used widely in defining functions)
| x>=y && x>=z ! ! = x
| y>=x && y>=z ! ! = y
| otherwise !! ! ! = z

else part is mandatory.

Copyright © 2006 The McGraw-Hill Companies, Inc.

14.3.6 Defining Functions

A Haskell Function is defined by writing:
 its prototype (name, domain, and range) on the first line, and

its parameters and body (meaning) on the remaining lines.

max3 :: Int -> Int -> Int -> Int
max3 x y z
! | x>=y && x>=z ! ! = x

| y>=x && y>=z ! ! = y
| otherwise !! ! ! = z

Note: if the prototype is omitted, Haskell interpreter will infer it.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Iterative Factorial

factorial n = product [1 .. n]

Copyright © 2006 The McGraw-Hill Companies, Inc.

Using Pattern Matching

mysum [] = 0
mysum (x:xs) = x + mysum xs

Copyright © 2006 The McGraw-Hill Companies, Inc.

Functions are polymorphic

Omitting the prototype gives the function its broadest possible
meaning. E.g.,

max3 x y z
! ! | x>=y && x>=z ! ! = x

 | y>=x && y>=z ! ! = y
 | otherwise ! ! ! = z

is now well-defined for any argument types:
> max3 6 4 1
6
> max3 “alpha” “beta” “gamma”
“gamma”

max3:: Ord a=> a -> a -> a -> a

Copyright © 2006 The McGraw-Hill Companies, Inc.

The member Function

member :: Eq a => [a] -> a -> Bool
member alist elt
 | alist == [] = False
 | elt == head alist = True
 | otherwise = member (tail alist) elt

Copyright © 2006 The McGraw-Hill Companies, Inc.

Pattern Matching

member [] elt = False
member (x:xs) elt = elt == x || member xs elt

Re: the latter can also be written:
member (elt:xs) elt = True
member (x:xs) elt = member xs elt

member (x:xs) elt = if elt ==x then True
 else member xs elt

