
Parallel Programming
An Introduction

Xu Liu

Derived from Prof. John Mellor-Crummey’s COMP 422 from Rice University

2

Applications need
performance

(speed)

3

The Need for Speed: Complex Problems
• Science

—understanding matter from elementary particles to cosmology
—storm forecasting and climate prediction
—understanding biochemical processes of living organisms

• Engineering
—combustion and engine design
—computational fluid dynamics and airplane design
—earthquake and structural modeling
—pollution modeling and remediation planning
—molecular nanotechnology

• Business
—computational finance - high frequency trading
—information retrieval
—data mining

• Defense
—nuclear weapons stewardship
—cryptology

4

Earthquake Simulation

Earthquake Research Institute, University of Tokyo
 Tonankai-Tokai Earthquake Scenario
 Photo Credit: The Earth Simulator Art Gallery, CD-ROM, March 2004

5

Ocean Circulation Simulation

Ocean Global Circulation Model for the Earth Simulator
 Seasonal Variation of Ocean Temperature
 Photo Credit: The Earth Simulator Art Gallery, CD-ROM, March 2004

6

Air Velocity (Front)

7

Air Velocity (Side)

8

Mesh Adaptation (front)

9

Mesh Adaptation (side)

10

Parallel Hardware
in the Large

11

Hierarchical Parallelism in Supercomputers
• Cores with pipelining and short vectors

• Multicore processors

• Shared-memory multiprocessor nodes

• Scalable parallel systems

Image credit: http://www.nersc.gov/news/reports/bluegene.gif

Blue Gene/Q Packaging Hierarchy

12

Figure credit: Ruud Haring, Blue
Gene/Q compute chip, Hot Chips
23, August, 2011.

Scale of the Largest HPC Systems (Nov 2013)

13

hybrid
CPU+GPU

all
> 100K
cores

> 1.5M
cores

14

Top Petascale Systems

(PetaFLOPS = 1015 FLoating-point Operations Per Second)

• China: NUDT Tianhe-1a
—hybrid architecture

– 14,336 6-core Intel Westmere processors
– 7,168 NVIDIA Tesla M2050M GPU

—proprietary interconnect
—peak performance ~4.7 petaflop

• ORNL Jaguar system
—6-core 2.6GHz AMD Opteron processors
—over 224K processor cores
—toroidal interconnect topology: Cray Seastar2+
—peak performance ~2.3 petaflop
—upgraded 2009

Image credits: http://www.lanl.gov/news/albums/computer/Roadrunner_1207.jpg

Challenges of Parallelism in the Large

• Parallel science applications are often very sophisticated
— e.g. adaptive algorithms may require dynamic load balancing

• Multilevel parallelism is difficult to manage

• Extreme scale exacerbates inefficiencies
— algorithmic scalability losses
— serialization and load imbalance
— communication or I/O bottlenecks
— insufficient or inefficient parallelization

• Hard to achieve top performance even on individual nodes
— contention for shared memory bandwidth
— memory hierarchy utilization on multicore processors

15

16

Parallel
Programming

Concept

17

Decomposing Work for Parallel Execution

• Divide work into tasks that can be executed concurrently

• Many different decompositions possible for any computation

• Tasks may be same, different, or even indeterminate sizes

• Tasks may be independent or have non-trivial order

• Conceptualize tasks and ordering as task dependency DAG
—node = task
—edge = control dependence

T1

T2

T4

T3
T5

T6
T7

T9

T10

T12

T13

T15

T11

T14
T16

T17

T8

18

Example: Dense Matrix-Vector Multiplication

• Computing each element of output vector y is independent

• Easy to decompose dense matrix-vector product into tasks
—one per element in y

• Observations
—task size is uniform
—no control dependences between tasks
—tasks share b

A b y2 n
Task 1

2

n

1

19

Granularity of Task Decompositions

• Granularity = task size
—depends on the number of tasks

• Fine-grain = large number of tasks
• Coarse-grain = small number of tasks
• Granularity examples for dense matrix-vector multiply

— fine-grain: each task represents an individual element in y
—coarser-grain: each task computes 3 elements in y

20

Degree of Concurrency

• Definition: number of tasks that can execute in parallel

• May change during program execution

• Metrics
—maximum degree of concurrency

– largest # concurrent tasks at any point in the execution
—average degree of concurrency

– average number of tasks that can be processed in parallel

• Degree of concurrency vs. task granularity
—inverse relationship

21

Example: Dense Matrix-Vector Multiplication

• Computing each element of output vector y is independent

• Easy to decompose dense matrix-vector product into tasks
—one per element in y

• Observations
—task size is uniform
—no control dependences between tasks
—tasks share b

Question: Is n the maximum number of tasks possible?

A b y2 n
Task 1

2

n

1

22

Critical Path

• Edge in task dependency graph represents task serialization

• Critical path = longest weighted path though graph

• Critical path length = lower bound on parallel execution time

23

Critical Path Length

Questions:
 What are the tasks on the critical path for each dependency graph?

 What is the shortest parallel execution time for each decomposition?
 How many processors are needed to achieve the minimum time?

 What is the maximum degree of concurrency?
 What is the average parallelism?

24

Critical Path Length

Example: dependency graph for dense-matrix vector product

Questions:
 What does a task dependency graph look like for DMVP?

 What is the shortest parallel execution time for the graph?
 How many processors are needed to achieve the minimum time?

 What is the maximum degree of concurrency?
 What is the average parallelism?

A b y2 n
Task 1

2

n

1

25

Limits on Parallel Performance

• What bounds parallel execution time?
—minimum task granularity

– e.g. dense matrix-vector multiplication ≤ n2 concurrent tasks
—dependencies between tasks
—parallelization overheads

– e.g., cost of communication between tasks
—fraction of application work that can’t be parallelized

– Amdahl’s law

• Measures of parallel performance
—speedup = T1/Tp

—parallel efficiency = T1/(pTp)

26

Processes and Mapping Example

• Consider the dependency graphs in levels
—no nodes in a level depend upon one another
—compute levels using topological sort

• Assign all tasks within a level to different processes

27

Task
Decomposition

28

Decomposition Based on Output Data

• If each element of the output can be computed independently

• Partition the output data across tasks

• Have each task perform the computation for its outputs

A b y1 2 n
Task 1

2

n

Example:
dense matrix-vector

multiply

29

Output Data Decomposition: Example

• Matrix multiplication: C = A x B

• Computation of C can be partitioned into four tasks

Task 1:

Task 2:

Task 3:

Task 4:

Other task decompositions possible

30

Exploratory Decomposition

• Exploration (search) of a state space of solutions
—problem decomposition reflects shape of execution

• Examples
—theorem proving
—game playing

31

Exploratory Decomposition Example

Solving a 15 puzzle

• Sequence of three moves from state (a) to final state (d)

• From an arbitrary state, must search for a solution

32

Exploratory Decomposition: Example

 Solving a 15 puzzle
Search

—generate successor states of the current state
—explore each as an independent task

initial state

final state (solution)

after first move

33

Task Mapping

34

Mapping Techniques

Map concurrent tasks to processes for execution

• Overheads of mappings
—serialization (idling)
—communication

• Select mapping to minimize overheads

• Conflicting objectives: minimizing one increases the other
—assigning all work to one processor

– minimizes communication
– significant idling

—minimizing serialization introduces communication

35

Mapping Techniques for Minimum Idling

• Must simultaneously minimize idling and load balance
• Balancing load alone does not minimize idling

Time Time

36

Mapping Techniques for Minimum Idling

 Static vs. dynamic mappings

• Static mapping
—a-priori mapping of tasks to processes
—requirements

– a good estimate of task size

• Dynamic mapping
—map tasks to processes at runtime
—why?

– tasks are generated at runtime, or
– their sizes are unknown

Factors that influence choice of mapping
• size of data associated with a task
• nature of underlying domain

37

Schemes for Static Mapping

• Data partitionings

• Task graph partitionings

• Hybrid strategies

38

Mappings Based on Data Partitioning

Partition computation using a combination of
—data partitioning
—owner-computes rule

Example: 1-D block distribution for dense matrices

39

Block Array Distribution Schemes

Multi-dimensional block distributions

Multi-dimensional partitioning enables larger # of processes

x =

40

Data Usage in Dense Matrix Multiplication

x =

Multiplying two dense matrices C = A x B

41

Partitioning a Graph of Lake Superior

Random Partitioning

Partitioning for minimum edge-cut

42

Mapping a Sparse Matrix

Sparse matrix-vector product

sparse matrix structure

17 items to
communicate

partitioning
mapping

43

Mapping a Sparse Matrix

Sparse matrix-vector product

mapping

13 items to
communicate

partitioning

sparse matrix structure

17 items to
communicate

44

Schemes for Dynamic Mapping

• Dynamic mapping AKA dynamic load balancing

—load balancing is the primary motivation for dynamic mapping

• Styles
—centralized
—distributed

45

Centralized Dynamic Mapping

• Processes = masters or slaves

• General strategy
—when a slave runs out of work → request more from master

• Challenge
—master may become bottleneck for large # of processes

• Approach
—chunk scheduling: process picks up several of tasks at once
—however

– large chunk sizes may cause significant load imbalances
– gradually decrease chunk size as the computation progresses

46

Distributed Dynamic Mapping

• All processes as peers

• Each process can send or receive work from other processes
—avoids centralized bottleneck

• Four critical design questions
—how are sending and receiving processes paired together?
—who initiates work transfer?
—how much work is transferred?
—when is a transfer triggered?

• Ideal answers can be application specific

• Cilk uses a distributed dynamic mapping: “work stealing”

47

Minimizing Interaction Overheads (1)

“Rules of thumb”

• Minimize volume of data exchange
—partition interaction graph to minimize edge crossings

• Minimize frequency of communication
—try to aggregate messages where possible

• Minimize contention and hot-spots
—use decentralized techniques (avoidance)

48

Minimizing Interaction Overheads (2)

Techniques
• Overlap communication with computation

—use non-blocking communication primitives
– overlap communication with your own computation
– one-sided: prefetch remote data to hide latency

—multithread code on a processor
– overlap communication with another thread’s computation

• Replicate data or computation to reduce communication

• Use group communication instead of point-to-point primitives

• Issue multiple communications and overlap their latency
 (reduces exposed latency)

