
Xu Liu

Derived from John Mellor-Crummey’s COMP422 at Rice University

Programming Shared-memory
Platforms with Pthreads

2

Topics for Today

• The POSIX thread API (Pthreads)

• Synchronization primitives in Pthreads
—mutexes
—condition variables
—reader/writer locks

• Thread-specific data

3

POSIX Thread API (Pthreads)

• Standard threads API supported by most vendors

• Concepts behind Pthreads interface are broadly applicable
—largely independent of the API
—useful for programming with other thread APIs as well

– Windows threads
– Java threads
– …

• Threads are peers, unlike Linux/Unix processes
—no parent/child relationship

4

PThread Creation

Asynchronously invoke thread_function in a new thread

! #include <pthread.h>
! int pthread_create(
! pthread_t *thread_handle, /* returns handle here */
! const pthread_attr_t *attribute,

! void * (*thread_function)(void *),
! void *arg); /* single argument; perhaps a structure */

attribute created by pthread_attr_init

contains details about
• whether scheduling policy is inherited or explicit
• scheduling policy, scheduling priority
• stack size, stack guard region size

5

Thread Attributes

• Detach state
—PTHREAD_CREATE_DETACHED, PTHREAD_CREATE_JOINABLE

– reclaim storage at termination (detached) or retain (joinable)

• Scheduling policy
—SCHED_OTHER: standard round robin (priority must be 0)
—SCHED_FIFO, SCHED_RR: real time policies

– FIFO: re-enter priority list at head; RR: re-enter priority list at tail

• Scheduling parameters
—only priority

• Inherit scheduling policy
—PTHREAD_INHERIT_SCHED, PTHREAD_EXPLICIT_SCHED

• Thread scheduling scope
—PTHREAD_SCOPE_SYSTEM, PTHREAD_SCOPE_PROCESS

• Stack size

 Special functions exist for getting/setting each attribute property
 e.g., int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate)

6

Wait for Pthread Termination

 Suspend execution of calling thread until thread terminates

 #include <pthread.h>
 int pthread_join (

 pthread_t thread, /* thread id */
 void **ptr); /* ptr to location for return code a terminating
 thread passes to pthread_exit */

Running Example: Monte Carlo Estimation of Pi

Approximate Pi
—generate random

points with x, y ∈
[-0.5, 0.5]

—test if point inside
the circle, i.e.,
 x2 + y2 < (0.5)2

—ratio of circle to
square =
πr2 / 4r2 = π / 4

—π ≈ 4 * (number of
points inside the
circle) / (number of
points total)

7

(0,0)
(0.5,0)

(0,0.5)

default attributes

8

Example: Creation and Termination (main)

#include <pthread.h>
#include <stdlib.h>
#define NUM_THREADS 32
void *compute_pi (void *);
...
int main(...) {

...
pthread_t p_threads[NUM_THREADS];
pthread_attr_t attr;
pthread_attr_init(&attr);
for (i=0; i< NUM_THREADS; i++) {

hits[i] = 0;
pthread_create(&p_threads[i], &attr, compute_pi,
 (void*) &hits[i]);

}
for (i=0; i< NUM_THREADS; i++) {

pthread_join(p_threads[i], NULL);
total_hits += hits[i];

}
...

thread function

thread argument

9

Example: Thread Function (compute_pi)

void *compute_pi (void *s) {
int seed, i, *hit_pointer;
double x_coord, y_coord;
int local_hits;
hit_pointer = (int *) s;
seed = *hit_pointer;
local_hits = 0;
for (i = 0; i < sample_points_per_thread; i++) {

x_coord = (double)(rand_r(&seed))/(RAND_MAX) - 0.5;
y_coord =(double)(rand_r(&seed))/(RAND_MAX) - 0.5;
if ((x_coord * x_coord + y_coord * y_coord) < 0.25)

local_hits++;
}
*hit_pointer = local_hits;
pthread_exit(0);

}
rand_r: reentrant
random number

generation in
[0,RAND_MAX]

tally how many random
points fall in a unit circle

centered at the origin

10

Programming and Performance Notes

• Performance on a 4-processor SGI Origin
—3.91 fold speedup at 4 threads
—parallel efficiency of 0.98

• Code carefully minimizes false-sharing of cache lines
—false sharing

– multiple processors access words in the same cache line
– at least one processor updates a word in the cache line
– no word updated by one processor is accessed by another

11

Example: Thread Function (compute_pi)

void *compute_pi (void *s) {
int seed, i, *hit_pointer;
double x_coord, y_coord;
int local_hits;
hit_pointer = (int *) s;
seed = *hit_pointer;
local_hits = 0;
for (i = 0; i < sample_points_per_thread; i++) {

x_coord = (double)(rand_r(&seed))/(RAND_MAX) - 0.5;
y_coord =(double)(rand_r(&seed))/(RAND_MAX) - 0.5;
if ((x_coord * x_coord + y_coord * y_coord) < 0.25)

local_hits++;
}
*hit_pointer = local_hits;
pthread_exit(0);

}

avoid false sharing by using a local accumulator

12

Data Races in a Pthreads Program

 Consider
 /* threads compete to update global variable best_cost */
 if (my_cost < best_cost)

 best_cost = my_cost;
—two threads
—initial value of best_cost is 100
—values of my_cost are 50 and 75 for threads t1 and t2

• After execution, best_cost could be 50 or 75

• 75 does not correspond to any serialization of the threads

atomic operation 13

Critical Sections and Mutual Exclusion
• Critical section = must execute code by only one thread at a time

 /* threads compete to update global variable best_cost */
 if (my_cost < best_cost)

 best_cost = my_cost;

• Mutex locks enforce critical sections in Pthreads
—mutex lock states: locked and unlocked
—only one thread can lock a mutex lock at any particular time

• Using mutex locks
—request lock before executing critical section
—enter critical section when lock granted
—release lock when leaving critical section

• Operations
 int pthread_mutex_init (pthread_mutex_t *mutex_lock,

 const pthread_mutexattr_t *lock_attr)

 int pthread_mutex_lock(pthread_mutex_t *mutex_lock)
 int pthread_mutex_unlock(pthread_mutex_t *mutex_lock)

created by
pthread_mutex_attr_init

specify type:
normal, recursive, errorcheck

14

Mutex Types

• Normal
—thread deadlocks if tries to lock a mutex it already has locked

• Recursive
— single thread may lock a mutex as many times as it wants

– increments a count on the number of locks
—thread relinquishes lock when mutex count becomes zero

• Errorcheck
—report error when a thread tries to lock a mutex it already locked
—report error if a thread unlocks a mutex locked by another

15

Example: Reduction Using Mutex Locks

 pthread_mutex_t cost_lock;
...
int main() {

...
pthread_mutex_init(&cost_lock, NULL);
...

}
void *find_best(void *list_ptr) {

...
pthread_mutex_lock(&cost_lock); /* lock the mutex */

 if (my_cost < best_cost)
 best_cost = my_cost;
pthread_mutex_unlock(&cost_lock); /* unlock the mutex */

}

critical section

use default (normal) lock type

16

Producer-Consumer Using Mutex Locks

Constraints

• Producer thread
—must not overwrite the shared buffer until previous task has

picked up by a consumer

• Consumer thread
—must not pick up a task until one is available in the queue
—must pick up tasks one at a time

critical section

17

Producer-Consumer Using Mutex Locks
pthread_mutex_t task_queue_lock;
int task_available;
...
main() {

...
task_available = 0;
pthread_mutex_init(&task_queue_lock, NULL);
...

}
void *producer(void *producer_thread_data) {

...
while (!done()) {

inserted = 0;
create_task(&my_task);
while (inserted == 0) {

pthread_mutex_lock(&task_queue_lock);
if (task_available == 0) {

insert_into_queue(my_task); task_available = 1;
inserted = 1;

}
pthread_mutex_unlock(&task_queue_lock);

}
}

}

critical section

18

Producer-Consumer Using Locks

void *consumer(void *consumer_thread_data) {
int extracted;
struct task my_task;
/* local data structure declarations */
while (!done()) {

extracted = 0;
while (extracted == 0) {

pthread_mutex_lock(&task_queue_lock);
if (task_available == 1) {

extract_from_queue(&my_task);
task_available = 0;
extracted = 1;

}
pthread_mutex_unlock(&task_queue_lock);

}
process_task(my_task);

}

19

Overheads of Locking

• Locks enforce serialization
—threads must execute critical sections one at a time

• Large critical sections can seriously degrade performance

• Reduce overhead by overlapping computation with waiting

 int pthread_mutex_trylock(pthread_mutex_t *mutex_lock)
—acquire lock if available
—return EBUSY if not available
—enables a thread to do something else if lock unavailable

20

Condition Variables for Synchronization

Condition variable: associated with a predicate and a mutex

• Using a condition variable
—thread can block itself until a condition becomes true

– thread locks a mutex
– tests a predicate defined on a shared variable

 if predicate is false, then wait on the condition variable
 waiting on condition variable unlocks associated mutex

—when some thread makes a predicate true
– that thread can signal the condition variable to either

 wake one waiting thread
 wake all waiting threads

– when thread releases the mutex, it is passed to first waiter

21

Pthread Condition Variable API

/* initialize or destroy a condition variable */
int pthread_cond_init(pthread_cond_t *cond,

const pthread_condattr_t *attr);
int pthread_cond_destroy(pthread_cond_t *cond);

/* block until a condition is true */
int pthread_cond_wait(pthread_cond_t *cond,

pthread_mutex_t *mutex);
int pthread_cond_timedwait(pthread_cond_t *cond,

pthread_mutex_t *mutex,
const struct timespec *wtime);

/* signal one or all waiting threads that condition is true */
int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);

abort wait if time exceeded

wake one wake all

22

Condition Variable Producer-Consumer (main)

pthread_cond_t cond_queue_empty, cond_queue_full;

pthread_mutex_t task_queue_cond_lock;

int task_available;

/* other data structures here */

main() {
/* declarations and initializations */

task_available = 0;

pthread_init();

pthread_cond_init(&cond_queue_empty, NULL);
pthread_cond_init(&cond_queue_full, NULL);

pthread_mutex_init(&task_queue_cond_lock, NULL);

/* create and join producer and consumer threads */

}

default
initializations

reacquires mutex when woken

23

Producer Using Condition Variables

note
loop

void *producer(void *producer_thread_data) {
int inserted;
while (!done()) {

create_task();
pthread_mutex_lock(&task_queue_cond_lock);
while (task_available == 1)

pthread_cond_wait(&cond_queue_empty,
&task_queue_cond_lock);

insert_into_queue();
task_available = 1;
pthread_cond_signal(&cond_queue_full);
pthread_mutex_unlock(&task_queue_cond_lock);

}

}

releases mutex on wait

releases mutex on wait

reacquires mutex when woken

24

Consumer Using Condition Variables

void *consumer(void *consumer_thread_data) {
while (!done()) {

 pthread_mutex_lock(&task_queue_cond_lock);

 while (task_available == 0)
 pthread_cond_wait(&cond_queue_full,

 &task_queue_cond_lock);
my_task = extract_from_queue();
task_available = 0;
pthread_cond_signal(&cond_queue_empty);
pthread_mutex_unlock(&task_queue_cond_lock);
process_task(my_task);

}

}

note
loop

25

Composite Synchronization Constructs

• Pthreads provides only basic synchronization constructs

• Build higher-level constructs from basic ones
—e.g., work queues, dynamic load balancing ...

26

Reader-Writer Locks

• Purpose: access to data structure when
—frequent reads
—infrequent writes

• Acquire read lock
—OK to grant when other threads already have acquired read locks
—if write lock on the data or queued write locks

– reader thread performs a condition wait

• Acquire write lock
—if multiple threads request a write lock

– must perform a condition wait

27

Read-Write Lock Sketch

• Rather than using pthread_rwlock, you could build your own
using basic primitives

• Use a data type with the following components
—a count of the number of active readers
—0/1 integer specifying whether a writer is active
—a condition variable readers_proceed

– signaled when readers can proceed
—a condition variable writer_proceed

– signaled when one of the writers can proceed
—a count pending_writers of pending writers
—a mutex read_write_lock

– controls access to the reader/writer data structure

28

Thread-Specific Data

Goal: associate some state with a thread

• Choices
—pass data as argument to each call thread makes

– not always an option, e.g. when using predefined libraries
—store data in a shared variable indexed by thread id
—using thread-specific keys

• Why thread-specific keys?
—libraries want to maintain internal state
—don’t want to require clients to know about it and pass it back
—substitute for static data in a threaded environment

• Operations
 int pthread_key_create(pthread_key_t *key, void (*destroy)(void *))

 int pthread_setspecific(pthread_key_t key, const void *value)

 void *pthread_getspecific(pthread_key_t key)

associate NULL with key in each active thread

retrieve value for current
thread from key

associate (key,value)
with current thread

29

Thread-Specific Data Example: Key Creation

Example: remember performance information for a thread

 #include <pthread.h>

 static pthread_key_t profiler_state;

 initialize_profiler_state() {

 …

 pthread_key_create(&profiler_state,
 (void *) free_profile);

 …

 }

 void free_profile(profile *my_profile) {

 free(my_profile);

 }

opaque handle
used to locate

thread-specific data

destructor for key value

30

Thread-Specific Data Example: Specific Data

Example: remember profiler state for a thread

 void init_thread_profile(…) {

 profile *my_profile = (profile *) malloc(…);

 pthread_setspecific(profiler_state, (void *) my_profile);

 …

 }

 void update_thread_profile(...) {

 profile *my_profile = (profile *)
 pthread_getspecific(profiler_state);
 // update profile

 }

31

References

• Adapted from slides “Programming Shared Address Space
Platforms” by Ananth Grama.

• Bradford Nichols, Dick Buttlar, Jacqueline Proulx Farrell.
“Pthreads Programming: A POSIX Standard for Better
Multiprocessing.” O'Reilly Media, 1996.

• Chapter 7. “Introduction to Parallel Computing” by Ananth
Grama, Anshul Gupta, George Karypis, and Vipin Kumar.
Addison Wesley, 2003

