Programming Shared-memory

Platforms with Pthreads

Xu Liu

Derived from John Mellor-Crummey’s COMP422 at Rice University

Topics for Today

e The POSIX thread API (Pthreads)

e Synchronization primitives in Pthreads

—mutexes
—condition variables
—reader/writer locks

e Thread-specific data

POSIX Thread API (Pthreads)

e Standard threads API supported by most vendors

e Concepts behind Pthreads interface are broadly applicable

—Ilargely independent of the API

—useful for programming with other thread APIs as well
— Windows threads
— Java threads

e Threads are peers, unlike Linux/Unix processes
—no parent/child relationship

PThread Creation

Asynchronously invoke thread function in a new thread

#include <pthread.h>
int pthread create(
pthread t *thread handle, [*returns handle here */
const pthread attr t *attribute,

void * (*thread function) (void *),
void *arg); [* single argument; perhaps a structure */

attribute created by pthread attr_ init

contains details about

 whether scheduling policy is inherited or explicit
« scheduling policy, scheduling priority

« stack size, stack guard region size

Thread Attributes

Special functions exist for getting/setting each attribute property
e.g., int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate)

e Detach state
—PTHREAD_CREATE_DETACHED, PTHREAD CREATE_JOINABLE
— reclaim storage at termination (detached) or retain (joinable)
e Scheduling policy

—SCHED_ OTHER: standard round robin (priority must be 0)

—SCHED_FIFO, SCHED_RR: real time policies
— FIFO: re-enter priority list at head; RR: re-enter priority list at tail

e Scheduling parameters
—only priority

¢ Inherit scheduling policy
—PTHREAD_INHERIT_SCHED, PTHREAD_ EXPLICIT_SCHED

e Thread scheduling scope
—PTHREAD_SCOPE_SYSTEM, PHHREAD—SGOREPROGESS

e Stack size 5

Wait for Pthread Termination

Suspend execution of calling thread until thread terminates

#include <pthread.h>
int pthread join (
pthread t thread, [*thread id */
void **ptr); [* ptrto location for return code a terminating
thread passes to pthread_exit */

Running Example: Monte Carlo Estimation of Pi

(0,0.5)

Approximate Pi

—generate random
points with x, y

[-0.5, 0.5]

—test if point inside
the circle, i.e.,
x?+y? < (0.5 (0.5,0)
—ratio of circle to (0,0)
square =
mr2/4r2=1/ 4

—T1r = 4 * (number of
points inside the
circle) / (hnumber of
points total)

Example: Creation and Termination (main)

#include <pthread.h>
#include <stdlib.h>
#define NUM_THREADS 32
void *compute pi (void *);

default attributes

int main(...) {

pthread_t p threads[NUM_THREADS];

pthread attr t attr; thread function
pthread attr init(&attr); j

for (i=0; i< NUM_THREADS; i++) ({
hits[i] = 0; '
pthread create(&p threads[i], &attr, compute pi,

(void*) &hii.:s[i]);“~~~,~§§§~~~~
}

thread argument

for (i=0; i< NUM_THREADS; i++) {
pthread_join(p_threads[i], NULL);
total_hits += hits[i];

}

Example: Thread Function (compute pi)

void *compute_pi (void *s) { taIIy how many random
int seed, i, *hit pointer;

double x coord, y coord; points fall in a unit circle

int local_hits; centered at the origin
hit pointer = (int *) s;
seed = *hit_pointer;
local_hits = 0;
for (1 = 0; i < sample points per thread; i++) {
X_coord = (double)(rand_r(&seed))/(RANQ=M§X) - 0.5;
y _coord =(double) (rand r(&seed))/(RAND MAX) - 0.5;
if ((x_coord * x coord + y _coord * y coord) < 0.25)
local hits++;

}
*hit pointer = local hits;
pthread exit(0); rand_r:reentrant
} random number
generation in

[0,RAND MAX]

Programming and Performance Notes

Performance on a 4-processor SGI Origin

—3.91 fold speedup at 4 threads
—parallel efficiency of 0.98

Code carefully minimizes false-sharing of cache lines
—false sharing
— multiple processors access words in the same cache line
— at least one processor updates a word in the cache line
— no word updated by one processor is accessed by another

10

Example: Thread Function (compute pi)

void *compute pi (void *s) {

int seed, i, *hit pointer;

double x_coord, y_ coord;

int local hits;

hit pointer = (int *) s;

seed = *hit_pointer;

local_hits = 0;

for (1 = 0; i < sample points per thread; i++) {
x _coord = (double) (rand r(&seed))/(RAND MAX) - 0.5;
y _coord =(double) (rand r(&seed))/(RAND MAX) - 0.5;
if ((x_coord * x coord + y _coord * y coord) < 0.25)

local hits++;

}
*hit pointer = local hits;
pthread _exit (0);

avoid false sharing by using a local accumulator l_

11

Data Races in a Pthreads Program

Consider

I* threads compete to update global variable best _cost */
if (my_cost < best cost)
best _cost = my cost;
—two threads
—initial value of best _cost is 100
—values of my_cost are 50 and 75 for threads t1 and t2

o After execution, best cost could be 50 or 75

e 75 does not correspond to any serialization of the threads

12

Critical Sections and Mutual Exclusion

e Critical section = must execute code by only one thread at a time
[* threads compete to update global variable best_cost */
if (my cost < best cost)
best _cost = my cost;

e Mutex locks enforce critical sections in Pthreads

—mutex lock states: locked and unlocked
—only one thread can lock a mutex lock at any particular time

e Using mutex locks created by

—request lock before executing critical section Pthread_mui_:feX_attr_init
—enter critical section when lock granted specify type:

] .) normal, recursive, errorcheck
—release lock when leaving critical section

e Operations

int pthread_mutex_init (pthread_mutex_t *mutex

const pthread mutexattr_t *lock_attr)éﬁ
int pthread_mutex_lock(pthread mutex_t *mutex lock)
<:i////"int pthread mutex unlock(pthread mutex t *mutex_ lock)

atomic operation 13

Mutex Types

Normal
—thread deadlocks if tries to lock a mutex it already has locked

Recursive

— single thread may lock a mutex as many times as it wants
— increments a count on the number of locks

—thread relinquishes lock when mutex count becomes zero

Errorcheck

—report error when a thread tries to lock a mutex it already locked
—report error if a thread unlocks a mutex locked by another

14

Example: Reduction Using Mutex Locks

pthread mutex t cost lock;

use default (normal) lock type

int main() { ///

pthread mutex init (&cost_lock, NULL);

}
void *find best(void *list ptr) {

pthread mutex_lock(&cost_lock); /* lock the mutex */
if (my cost < best cost)

best cost = my_ cost;

critical section

pthread mutex unlock(&cost lock); /* unlock the mutex */

15

Producer-Consumer Using Mutex Locks

Constraints

Producer thread

—must not overwrite the shared buffer until previous task has
picked up by a consumer

Consumer thread

—must not pick up a task until one is available in the queue
—must pick up tasks one at a time

16

Producer-Consumer Using Mutex Locks

pthread mutex t task_queue_lock;
int task_available;

main() {
task_available = 0;
pthread mutex init(&task_queue lock, NULL);

}

void *producer(void *producer thread data) {

while (!done()) {

inserted = 0; Critical SeCtion
create_task(&my_task);
while (inserted == 0) {

pthread mutex lock(&task_queue_lock);
if (task_available == 0) { :

insert_into_queue(my_task); task_available =1
inserted = 1;

°
14

}

pthreaé_mutex_uniock(&task_queue_iock);

} 17

Producer-Consumer Using Locks

void *consumer (void *consumer thread data) ({
int extracted;
struct task my task;
/* local data structure declarations */
while (!done()) {
extracted = 0; critical section
while (extracted == 0) {
pthread mutex lock(&task queue_ lock);
if (task _available == 1) {
extract_ from queue(&my task);
task_available = 0;
extracted 1;

)

pthread _mutex_unlock(&task_queue_lock);

}

process_ task(my task);

18

Overheads of Locking

Locks enforce serialization
—threads must execute critical sections one at a time

Large critical sections can seriously degrade performance
Reduce overhead by overlapping computation with waiting

int pthread mutex trylock(pthread mutex t *mutex_ lock)

—acquire lock if available
—return EBUSY if not available
—enables a thread to do something else if lock unavailable

19

Condition Variables for Synchronization

Condition variable: associated with a predicate and a mutex

Using a condition variable
—thread can block itself until a condition becomes true
— thread locks a mutex
— tests a predicate defined on a shared variable
if predicate is false, then wait on the condition variable
waiting on condition variable unlocks associated mutex

—when some thread makes a predicate true
— that thread can signal the condition variable to either

wake one waiting thread
wake all waiting threads
— when thread releases the mutex, it is passed to first waiter

20

Pthread Condition Variable API

[* initialize or destroy a condition variable */

int pthread cond init(pthread cond t *cond,
const pthread condattr_t *attr);

int pthread cond destroy(pthread cond t *cond);

I* block until a condition is true */
int pthread cond wait(pthread cond t *cond,
pthread mutex t *mutex);

int pthread cond timedwait (pthread cond t *cond,

pthread_mutex t *mutex, f\ abort wait if time exceeded

const struct timespec *wtime);

[* signal one or all waiting threads that condition is true */

int pthread cond signal (pthread cond t *cond);
<iint pthread cond broadcast (pthread cond t *cond);

wake one \ wake all

21

Condition Variable Producer-Consumer (main)

pthread cond_t cond queue empty, cond queue full;
pthread mutex_t task _queue_cond lock;

int task available;

/* other data structures here */

default

main() { initializations

/* declarations and initializations */
task _available = 0; ‘/////

pthread init();

pthread cond init (&cond_queue empty, NULL)
pthread cond init(&cond _queue_ full, NULL);
pthread mutex init(&task_queue cond_ lock, NULL);

/* create and join producer and consumer threads */

22

Producer Using Condition Variables

void *producer(void *producer thread data) ({
int inserted;

while (!done()) {

create_ task();

releases mutex on wait

pthread mutex lock(&task_queue cond_ lock);
note | while (task_available == 1)
pthread cond wait (&cond_queue_ empty,

loop &task queue cond lock);
insert _into_queue();
task available = 1;
pthread cond signal (&cond_queue_ full);
pthread mutex unlock(&task_queue_cond lock);
}
}

reacquires mutex when woken

23

Consumer Using Condition Variables

void *consumer (void *consumer thread data) ({

while (!done()) { releases mutex on wait
pthread mutex lock(&task_queue cond lock);
note while (task_available == 0)
kXDp pthread cond wait (&cond_queue full,
&task_queug_cond lock)¥™
my task = extract_ from queue();
task_available = 0;
pthread cond signal (&cond_queue_ empty);
pthread mutex unlock(&task_queue_cond lock);
process_task(my_task);
}
} reacquires mutex when woken

24

Composite Synchronization Constructs

e Pthreads provides only basic synchronization constructs

e Build higher-level constructs from basic ones
—e.g., work queues, dynamic load balancing ...

25

Reader-Writer Locks

Purpose: access to data structure when

—frequent reads
—infrequent writes

Acquire read lock

—OK to grant when other threads already have acquired read locks

—if write lock on the data or queued write locks
— reader thread performs a condition wait

Acquire write lock

—if multiple threads request a write lock
— must perform a condition wait

26

Read-Write Lock Sketch

Rather than using pthread_rwlock, you could build your own
using basic primitives
Use a data type with the following components
—a count of the number of active readers
—0/1 integer specifying whether a writer is active
—a condition variable readers proceed
— signaled when readers can proceed
—a condition variable writer proceed
— signaled when one of the writers can proceed
—a count pending writers of pending writers

—a mutex read write_ lock
— controls access to the reader/writer data structure

27

Thread-Specific Data

Goal: associate some state with a thread

e Choices

—pass data as argument to each call thread makes
— not always an option, e.g. when using predefined libraries

—store data in a shared variable indexed by thread id
—using thread-specific keys

e Why thread-specific keys?

—Ilibraries want to maintain internal state

—don’t want to require clients to know about it and pass it back
—substitute for static data in a threaded environment

e Operations /f—§ associate NULL with key in each active thread

int pthread key create(pthread key t *key, void (*destroy) (void *))
int pthread_ setspecific(pthread key t key, const void *value)
i'oid *pthread getspecific(pthread_key t key)

retrieve value for current associate (key,value)
thread from key with current thread

28

Thread-Specific Data Example: Key Creation

Example: remember performance information for a thread

#include <pthread.h>

opaque handle

static pthread_key _t profiler_state; used to locate

initialize_profiler_state() {

}

thread-specific data

pthread_key_create(&profiler_state,

—

(void ¥) free_profilej;3

destructor for key value

void free_profile(profile *my_profile) {

}

free(my_profile);

29

Thread-Specific Data Example: Specific Data

Example: remember profiler state for a thread

void init_thread_profile(...) {
profile *my_profile = (profile *) malloc(...);

pthread_setspecific(profiler_state, (void *) my_profile);

}
void update_thread_profile(...) {

profile *my_profile = (profile *)
pthread getspecific(profiler_state);
I/l update profile

} 30

References

e Adapted from slides “Programming Shared Address Space
Platforms” by Ananth Grama.

e Bradford Nichols, Dick Buttlar, Jacqueline Proulx Farrell.
“Pthreads Programming: A POSIX Standard for Better
Multiprocessing.” O'Reilly Media, 1996.

e Chapter 7. “Introduction to Parallel Computing” by Ananth
Grama, Anshul Gupta, George Karypis, and Vipin Kumar.
Addison Wesley, 2003

31

