

Copyright © 2006 The McGraw-Hill Companies, Inc.

Chapter 13
Object Oriented Programming

Copyright © 2006 The McGraw-Hill Companies, Inc.

Contents

13.1 Prelude: Abstract Data Types
13.2 The Object Model
13.4 Java

Copyright © 2006 The McGraw-Hill Companies, Inc.

13.1 Prelude: Abstract Data Types

Imperative programming paradigm
– Algorithms + Data Structures = Programs

– Produce a program by functional decomposition
• Start with function to be computed

• Systematically decompose function into more primitive functions

• Stop when all functions map to program statements

Copyright © 2006 The McGraw-Hill Companies, Inc.

Procedural Abstraction

Concerned mainly with interface
– Function

– What it computes

– Ignore details of how

– Example: sort(list, length);

Copyright © 2006 The McGraw-Hill Companies, Inc.

Data Abstraction

Or: abstract data types
Extend procedural abstraction to include data
– Example: type float

Extend imperative notion of type by:
– Providing encapsulation of data/functions

– Example: stack of int's

– Separation of interface from implementation

Copyright © 2006 The McGraw-Hill Companies, Inc.

Defn: Encapsulation is a mechanism which allows
logically related constants, types, variables,
methods, and so on, to be grouped into a new
entity.

Examples:

• Procedures
• Packages

• Classes

Copyright © 2006 The McGraw-Hill Companies, Inc.

A Simple Stack in C
Figure 13.1

Copyright © 2006 The McGraw-Hill Companies, Inc.

A Simple Stack in C

#include <stdio.h>

struct Node {
 int val;

 struct Node* next;

};
typdedef struct Node* STACK;

STACK theStack = NULL;

Copyright © 2006 The McGraw-Hill Companies, Inc.

int empty() { return theStack == NULL; }

int pop () {

 STACK temp = theStack;

 int result = theStack->val;
 theStack = theStack->next;

 free(temp);
 return result;

}

Copyright © 2006 The McGraw-Hill Companies, Inc.

int top() { return theStack ->val; }

void push (int newval) {

 STACK temp = (STACK)malloc(sizeof(

 struct Node));
 temp->val = newval;

 temp->next = theStack;
 theStack = temp;

}

Copyright © 2006 The McGraw-Hill Companies, Inc.

Problems

Users cannot declare a variable of type stack.
– The code defines only a single instance of a stack.

Restricted to a stack of integers.

Copyright © 2006 The McGraw-Hill Companies, Inc.

A Stack Type in C with Better Encapsulation
Figure 13.2

Xu Liu
stack.h

Copyright © 2006 The McGraw-Hill Companies, Inc.

Implementation of
Stack Type in C
Figure 13.3

Xu Liu
stack.c

Copyright © 2006 The McGraw-Hill Companies, Inc.

Problems

Permit accesses as a linked list rather than a real stack.

Restricted to a stack of integers.
Not easy to extend the type.

Now, users can declare a variable of type stack.

just need to include the header file.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Goal of Data Abstraction
Package
– Data type

– Functions

Into a module so that functions provide:
– public interface

– defines type

Ada introduces packages.

Copyright © 2006 The McGraw-Hill Companies, Inc.

generic

 type element is private;

package stack_pck is

 type stack is private;
 procedure push (in out s : stack; i : element);

 procedure pop (in out s : stack) return element;
 procedure isempty(in s : stack) return boolean;

 procedure top(in s : stack) return element;

Copyright © 2006 The McGraw-Hill Companies, Inc.

private

 type node;
 type stack is access node;

 type node is record

 val : element;
 next : stack;

 end record;
end stack_pck;

Copyright © 2006 The McGraw-Hill Companies, Inc.

package body stack_pck is

 procedure push (in out s : stack; i : element) is
 temp : stack;

 begin

 temp := new node;
 temp.all := (val => i, next => s);

 s := temp;
 end push;

Copyright © 2006 The McGraw-Hill Companies, Inc.

procedure pop (in out s : stack) return element is

 temp : stack;
 elem : element;

 begin

 elem := s.all.val;
 temp := s;

 s := temp.all.next;
 dispose(temp);

 return elem;

 end pop;

Copyright © 2006 The McGraw-Hill Companies, Inc.

 procedure isempty(in s : stack) return boolean is

 begin
 return s = null;

 end isempty;

 procedure top(in s : stack) return element is

 begin
 return s.all.val;

 end top;

end stack_pck;

Copyright © 2006 The McGraw-Hill Companies, Inc.

13.2 The Object Model

Problems remained:
• Automatic initialization and finalization
• No simple way to extend a data abstraction

Concept of a class

Object decomposition, rather than function
decomposition

Copyright © 2006 The McGraw-Hill Companies, Inc.

Defn: A class is a type declaration which encapsulates
constants, variables, and functions for manipulating
these variables.

A class is a mechanism for defining an abstract data
type (ADT).

Copyright © 2006 The McGraw-Hill Companies, Inc.

class MyStack {
 class Node {
 Object val;
 Node next;
 Node(Object v, Node n) { val = v;
 next = n; }
 }
 Node theStack;

 MyStack() { theStack = null; }

 boolean empty() { return theStack == null; }

Copyright © 2006 The McGraw-Hill Companies, Inc.

Object pop() {
 Object result = theStack.val;
 theStack = theStack.next;
 return result;
 }

 Object top() { return theStack.val; }

 void push(Object v) {
 theStack = new Node(v, theStack);
 }
}

Copyright © 2006 The McGraw-Hill Companies, Inc.

• OO program: collection of objects which
communicate by sending messages

Defn: A language is object-oriented if it supports

• an encapsulation mechanism with information
hiding for defining abstract data types,

• virtual methods, and

• inheritance

Copyright © 2006 The McGraw-Hill Companies, Inc.

Some Terms

• Classes
– Determine type of an object

– Permit full type checking

• Method: function in OO.

• Class constructor: allocate heap space and
initialize the object.

• Class destructor: final operations before destroying
the object.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Some Terms (cont.)

Client of a class C
– Any other class or method that declares or uses an

object of class C

Class methods (Java static methods)
– invoked through the class name

• exception: constructor is invoked through the new operation.

Instance methods
– invoked through an object

Inner class
– A class defined inside another class

Copyright © 2006 The McGraw-Hill Companies, Inc.

class MyStack {
 class Node {
 Object val;
 Node next;
 Node(Object v, Node n) { val = v;
 next = n; }
 }
 Node theStack;

 MyStack() { theStack = null; }

 boolean empty() { return theStack == null; }

Copyright © 2006 The McGraw-Hill Companies, Inc.

Object pop() {
 Object result = theStack.val;
 theStack = theStack.next;
 return result;
 }

 Object top() { return theStack.val; }

 void push(Object v) {
 theStack = new Node(v, theStack);
 }
}

Copyright © 2006 The McGraw-Hill Companies, Inc.

Visibility of a variable or method

• public
– visible to any client and subclass of the class

• protected
– visible only to a subclass of the class

– (Java has a special meaning of protected classes:
– visible to every class in the same package)

• private
– visible only to the current class

Copyright © 2006 The McGraw-Hill Companies, Inc.

Inheritance
• Class hierarchy
– Subclass, parent or super class

• is-a relationship
– A stack is-a kind of a list

– So are: queue, deque, priority queue

• has-a relationship
– Identifies a class as a client of another class

– Aggregation

– A class is an aggregation if it contains other class objects

Copyright © 2006 The McGraw-Hill Companies, Inc.

Single inheritance
– A subclass can have only one parent class

– The class hierarchy hence forms a tree.

Rooted in a most general class: Object
Inheritance supports code reuse
Single inheritance languages: Smalltalk, Java

Copyright © 2006 The McGraw-Hill Companies, Inc.

Inheritance of Stack in Java:

Good or bad design?
Why?

Alternative design:
 Stack has a private
vector object.

Class Stack {
 private Vector stack;
 public push(...){...}
 public pop(...) {...}
}

Copyright © 2006 The McGraw-Hill Companies, Inc.

A common practice
– Make instance variables private

– Allow accesses only through the use of public or
protected methods

Good or bad? Why? Minimize needed changes if the class
is modified.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Multiple Inheritance

• Allows a class to be a subclass of zero, one, or
more classes.

• Class hierarchy is a directed graph

• Examples: C++, Python

Copyright © 2006 The McGraw-Hill Companies, Inc.

Example

• Adv: facilitates code reuse

• Disadv: more complicated semantics

• A method is defined in both parent classes, which one is

inherited by the child?

• Python uses left-to-right, depth-first search

• search child, then parent1 and its super classes,

then parent2 and its super classes, and so on.

ClosedFigure Drawable

Circle

Copyright © 2006 The McGraw-Hill Companies, Inc.

Polymorphism

Polymorphic - having many forms

Defn: In OO languages, it’s late binding of a call to
one of several different implementations of a
method in an inheritance hierarchy.

Virtual Method:

A method whose behavior can be overridden within an
inheriting class by a function with the same signature.

In Java, by default, all methods are virtual.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Consider the call: obj.m();
• obj of type T
• All subtypes must implement method m()
• In a statically typed language, verified at compile

time
• Actual method called can vary at run time

depending on actual type of obj

Copyright © 2006 The McGraw-Hill Companies, Inc.

for (Drawable obj : myList)
! obj.paint();
// paint method invoked varies
// each graphical object paints itself
// essence of OOP

Copyright © 2006 The McGraw-Hill Companies, Inc.

Defn: A subclass method is substitutable for a parent
class method if the subclass’s method performs the
same general function.

Thus, the paint method of each graphical object must
be transparent to the caller.

The code to paint each graphical object depends on
the principle of substitutability.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Templates or Generics

A kind of class generator
Can restrict a Collections class to holding a particular

kind of object
Defn: A template defines a family of classes

parameterized by one or more types.

Copyright © 2006 The McGraw-Hill Companies, Inc.

ArrayList<Drawable> list = new ArrayList<Drawable> ();

...

for (Drawable d : list)

! d.paint(g);

