
 

Copyright © 2006 The McGraw-Hill Companies, Inc.

Chapter 13
Object Oriented Programming



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

Quick Review
Abstract Data Types

Object Model
– Class, constructor, destructor, object-oriented 

languages, client of a class, class methods, instance 
methods, inner class

– Visibility

– Inheritance
• Is-a v.s. Has-a
• Single inheritance v.s. Multiple inheritance

– Templates and generics

– Abstract class and interface



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

Polymophism

In OO: it is materialized by late binding of method 
calls.

Virtual Method:

A method whose behavior can be overridden within an 
inheriting class by a function with the same signature.

In Java, by default, all methods are virtual.



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

for (Drawable obj : myList) 

! obj.paint( );

Principle: substitutability.

Drawable

Button Textbox Checkbox



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

Abstract Classes

Defn: An abstract class is one that is either declared 
to be abstract or has one or more abstract methods.

Defn: An abstract method is a method that contains 
no code beyond its signature.



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

Any subclass of an abstract class that does not provide 
an implementation of an inherited abstract method 
is itself abstract.

Because abstract classes have methods that cannot be 
executed, client programs cannot initialize an 
object that is a member an abstract class. 

This restriction ensures that a call will not be made to 
an abstract (unimplemented) method.



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

abstract class Expression { ... }

   class Variable extends Expression { ... }

   abstract class Value extends Expression { ... }

      class IntValue extends Value { ... }

      class BoolValue extends Value { ... }

      class FloatValue extends Value { ... }

      class CharValue extends Value { ... }

   class Binary extends Expression { ... }

   class Unary extends Expression { ... }



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

Interfaces

Defn: An interface encapsulates a collection of 
constants and abstract method signatures.

An interface may not include either variables,

constructors, or non-abstract methods.



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

public interface Map {

    public abstract boolean containsKey(Object key);

    public abstract boolean containsValue(Object value);

    public abstract boolean equals(Object o);

    public abstract Object get(Object key);

    public abstract Object remove(Object key);

    ...

}



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

Because it is not a class, an interface does not have a 
constructor, but an abstract class does.

Some like to think of an interface as an alternative

to multiple inheritance. 

Strictly speaking, however, an interface is not quite 
the same since it doesn't provide a means of 
reusing code;

i.e., all of its methods must be abstract.



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

An interface is similar to multiple inheritance

in the sense that an interface is a type.

A class that implements multiple interfaces

appears to be many different types,

one for each interface.



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

Virtual Method Table (VMT)

How is the appropriate virtual method called at run 
time?

At compile time the actual run time class of any 
object may be unknown.

MyList myList; 

...
System.out.println(myList.toString( ));



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

Each class has its own VMT, with each instance of the 
class having a reference (or pointer) to the VMT.  

A simple implementation of the VMT would be a hash 
table, using the method name (or signature, in the 
case of overloading) as the key and the run time 
address of the method invoked as the value.



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

For statically typed languages, 

the VMT is kept as an array.  

The method being invoked is converted to an index

into the VMT at compile time.



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

class A {
    Obj  a;
    void am1( ) { ... }
    void am2( ) { ... }
}
class B extends A {
    Obj  b;
    void bm1( ) { ... }
    void bm2( ) { ... }
    void am2( ) { ... }
}



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

class A {
    Obj  a;
    void am1( ) { ... }
    void am2( ) { ... }
}

class B extends A {
    Obj  b;
    void bm1( ) { ... }
    void bm2( ) { ... }
    void am2( ) { ... }
}

am1: 
...
...
am2:
...
...

bm1: 
...
...
bm2:
...
...

am2’: 
...
...



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

Run Time Type Identification

Defn: Run time type identification (RTTI) is the 
ability of the language to identify at run time the 
actual type or class of an object.  

All dynamically typed languages have this ability, 
whereas most statically typed imperative 
languages, such as C, lack this ability.  

At the machine level,  recall that data is basically 
untyped.



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

In Java, for example, given any object reference, we 
can determine its class via:

Class c = obj.getClass( );



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

Reflection

Reflection is a mechanism whereby a program can 
discover and use the methods of any of its objects 
and classes.

Reflection is essential for programming tools that 
allow plugins (such as Eclipse -- www.eclipse.org) 
and for JavaBeans components.



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

In Java the Class class provides the following 
information about an object:

• The superclass or parent class.

• The names and types of all fields.

• The names and signatures of all methods.

• The signatures of all constructors.

• The interfaces that the class implements.



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

Class class = obj.getClass( );
Constructor[ ] cons = class.getDeclaredConstructors( );
for (int i=0; i < cons.length; i++) {
    System.out.print(class.getName( ) + "(" );
    Class[ ] param = cons[i].getParameterTypes( );
    for (int j=0; j < param.length; j++) {
        if (j > 0) System.out.print(", ");
            System.out.print(param[j].getName( );
    }
    System.out.println( ")" );
}



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

13.4 Java
• mixed language

– primitive types: int, double, boolean
– objects

• statically typed with some dynamic flavor
• single inheritance



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

Direct support for:

• inner classes 

• visibility modifiers

• abstract classes

• interfaces

• generics

• run time type identification

• reflection



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

Example: Symbolic Differentiation

• Implement symbolic differentiation

• State rules

• Separate simplification (not included in this 
example)

• Use of abstract syntax



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

Symbolic Differentiation Rules
Figure 13.19



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

Example

d/dx (2*x+1)
d/dx (2*x+1) = d/dx (2*x) + d/dx 1

= x * d/dx 2 + 2 * d/dx x + 0

= x * 0 + 2 * 1 + 0

-- simplified algebraically: 2



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

Abstract Syntax of Expressions
Expression = Variable | Value | Binary 

Variable = String id

Value = int value

Binary = Add | Subtract | Multiply | Divide

Add = Expression left, right

Subtract = Expression left, right

Multiply = Expression left, right

Divide = Expression left, right



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

public abstract class Expression {

    public abstract Expression diff(Variable x);

}



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

class Value extends Expression {

    private int value;
    public Value(int v) { value = v; }

    public Expression diff(Variable x) {

        return new Value(0);
    }

}



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

class Variable extends Expression {

    private String id;

    static final private Value zero = new Value(0);

    static final private Value one  = new Value(1);

    public Variable(String s) { id = s; }

    public Expression diff(Variable x) {

        return id.equals(x.id) ? one : zero;

    }

}



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

abstract class Binary extends Expression {

    protected Expression left, right;

    protected Binary(Expression u, Expression v) {

        left = u; right = v;

    }

}



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

class Add extends Binary {
    public Add(Expression u, Expression v) {
        super(u, v);
    }
    public Expression diff(Variable x) {
        return new Add(left.diff(x), right.diff(x));
    }
}

... ...
differentiation of 2*x + 1 on x 

(with appropriate print 
function):

      2*1 + x * 0 + 0



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

Prolog Program
d(X, U+V, DU+DV) :- d(X, U, DU), d(X, V, DV).
d(X, U-V, DU-DV) :- d(X, U, DU), d(X, V, DV).
d(X, U*V, U*DV + V*DU) :- d(X, U, DU), d(X, V, DV).
d(X, U/V, (V*DU - U*DV)/(V*V)) :- d(X, U, DU), d(X, V, DV).
d(X, C, 0) :- atomic(C), C\=X.
d(X, X, 1).

differentiation of 2*x + 1 on x:

      2*1 + x * 0 + 0



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

Haskell Program
data Expr = Num Int | Var String | Add  Expr Expr |
! ! ! ! Sub Expr Expr | Mul Expr Expr |
! ! ! ! Div Expr Expr deriving (Eq, Ord, Show)

diff :: String -> Expr -> Expr
diff x (Num c) = Num 0
diff x (Var y) = if x == y then Num 1 else Num 0 
diff x (Add u v) = Add (diff x u) (diff x v)
diff x (Sub u v) = Sub (diff x u) (diff x v)
diff x (Mul u v) = Add (Mul u (diff x v)) 
! ! ! ! ! ! ! (Mul v (diff x u))
diff x (Div u v) = Div (Sub (Mul v (diff x u)) 
! ! ! ! ! ! !       (Mul u (diff x v))) (Mul v v)



 

Copyright © 2006 The McGraw-Hill Companies, Inc.

Haskell Output

differentiation of 2*x + 1 on x:

Add (Add (Mul (Num 2) (Num 1))
!           (Mul (Var “x”) (Num 0))) (Num 0))


