CSC312 Principles of Programming Languages :

Lambda Calculus in Further Depth

i
— — . ——— . e ai —.

Lambda Calculus

A clean, concise way to express a function.
Example:
A square function expressed 1n Python:

definitions. invocation.

def squareFunction (x): squareFunction (100)
y =X ¥ X
return y;

The same function expressed in Lambda Calculus:

definitions: invocation:
L) (Ax.x *x) 100
specify the specify the

formal parameter function body

Copyright © 2006 The McGraw-Hill Companies, Inc

Lambda Calculus

» There are many programming languages we could talk about

» But pretty much all real languages are complex, large and
obscure many important issues in irrelevant details

» We want: "as simple as possible” language to study properties
of programming languages

» This language is known as lambda calculus

6Th : ies, Inc. S SSaEie——

Definition of Lambda Calculus

— Principle Components of a programming language?
— Syntax

— Semantics

- RTNNVNTTRNTY T——— e
Lambda Calculus Syntax

» There are only four expressions in lambda calcus:

» Expression 1: constants
» 1, 7, "yourName" are all valid expressions in lambda calculus

» Expression 2: identifiers
» Will usually use x, y, etc for those

» Expression 3: lambda abstraction
» written as Az.e

» Expression 4: application
» written as e; ey

I, === Copyright @J2006 The McGraw-tiill Cofppdies ine. M 0 F 01 || I

Lambda Calculus Syntax

» Or, more concisely, the syntax of a lambda calculus expression
as context-free grammar is given by:

e=c|id| Aid.e | e; e

With it, we can now check whether an expression 1s a lambda
calculus.

How? What do we need to check?
(Think of your Grammar project.)

6Th w- ies, Inc. B S Tee—

Example:

» Consider the expression: A = (Az.z) 3

» Now, recalling the syntax
e=c|id| Aid.e | e; e
we can give a derivation proving that A is valid
» e—>e e— e 3 (Aze)3— (Az.z) 3

» Any expression for which we can find a derivation is
syntactically valid lambda calculus

Are we done?

» We can now decide if any string is lambda calculus

| ambda calculus semantics

» Let's define the meaning for each expression in our
production:

» Constant c¢: The meaning of ¢ is the value of ¢
» ldentifier id: The meaning of id is id
» Lambda Az.e: The meaning: Az.e

» Application Az.e e;: The meaning: ee;/z]

» e|ey/z] is substitution. We replace all free occurrences of z by
ez In expression €

» An occurrence of a variable is free if it is not bound by a A
Example: (Az.z)[2/z] = Az.z

» Upshot: We can define anonymous functions with binding
operator A.

06 The McGraw-Hill Companies, Inc. e Te—

Examples

» Meaning (or value) of (Az.z) 17
» (Az.z) 1 > z[l/z] > 1
» (Az.(Az.2)z)l = (Az.2)2)[1/2] = (AZ.2)1 — ...

» Substitution is capture-avoiding: Does not replace variables
bound by other A's

» Convention: We assume that A-bindings extend as far to the
right as possible

» We read Az.\y.zy as (Az.(Ay.zy)) But use parenthesis to be
safe

ies, Inc.

More Examples

» To make lambda calculus slightly more interesting, we will
also allow arithmetic operators with their usual meaning.

» We could give them precise semantics, but too boring. We all
know their semantics

» (Az.bxz) 1 — (bxz)[l/z] > (5x1) =5

» Az y.z+y) 35— (A\y.z+9)3/z]) 5= Ay.3+7vy)5—
(B+y)5/yl = (3+5)—8

IO e P Copyright ©2006 The MeGraw-Hil Companies, Inc. B S Tee—

Quick Review: Lambda Calculus

— Syntax

— Semantics

zx—yl=y

(zz)[z « y| = (yy)

(2w) [z «— y] = (2w)

(2z)[z « y] = (2y)

(Az - (2z)) [z « y] = (Mu - (2u))[z «— y] = (Au - (2u))
(Az - (2z))[y « z] = (Mu - (2u))[y « z] = (Au - (2u))

Properties of lambda expressions

» We have seen that to compute the value of lambda
expressions, we only needed to define application: Az.e ey as

elex/z]
» In lambda calculus, this is called 3-reduction.
» Confluence: Order of reductions is provably irrelevant
» Other property of lambda expressions: A\z.e & Ay.(e[y/z])
» This is called a—reduction

» Simply encodes that the name of lambda bound variables is
irrelevant

» Analogy: [e *dz= [[Te ¥dy

" 06 The McGraw-Hill Compahies, Inc. B SER—

Expression Equivalence

» Using a— and S—reductions, we can prove equivalence of
expressions by computing their values using 3—reduction and
(if necessary) applying a—reductions.

» Example: e, = (Az.z + 1) and e; = (Az.2 + 1).

» Using a—reduction, we can rewrite
ef =(Az.z+1) > (Az.z2+1)

» Have now proven that e; and ey are equivalent

IO e P Copyright ©2006 The MeGraw-Hil Companies, Inc. B S Tee—

Is Lambda Calculus expressive enough as a programming language?

» Lambda calculus looks very far from a real programming
language.

» On the face of it, many features missing.
» Multi-argument functions

» Declarations
» Conditionals
» Named Functions

» Recursion

» Next: How to express these features in basic lambda calculus

6Th : ies, Inc. S SSaEie——

Multi-argument functions

» How can we express adding two numbers?
» Recall earlier example: (Az.A\y.z +)3 5

» Here, we first reduce to
(AzAy.z+y) 35— (Ay.z+9y)3/z]) 5= (Ay3+1y)5

» In other words, we partially evaluate Az, resulting in a new
function (Ay.3 + v).

» This is equivalent to having a A-binding with multiple
arguments

» This is known as Currying

Declarations

» We want to be able to give names to subexpressions

» Equivalence in typical programming languages: Local
declarations

» Specifically, we want to add a let-construct of the following
form to lambda calculus

» letz=¢€;in e

» Insight: Can define meaning of let-construct in in terms of
basic lambda calculus: How?

Declarations

» One possibility: let z = e; in e; means ey[e; /z]
» Or equivalently: let z = e; in e means (Az.e2)e;

» Why are these definitions equivalent?

o RNy ——meeeea
Conditionals

» Conditional: if z then e; else e

x el e2
that 1s,

if x 18 True, return el
1f x 1s False, return e2.

that 1s,

When applying True on el and e2, return el;
When applying False on el and €2, return e2.

So, can we represent True and False as lambda expressions?

LLLAE L BN O LN NN | PR N Copyright © 2006 The McGraw-Hiill Companies, Inc. _ B L B L.

Conditionals

» Conditional: if z then e; else e

» Trick: We first define true and false as functions:
let true = (AzAy.z) let false = (AzAy.y)

» Recall: A-bindings extend as far to the right as possible:
(AzAy.z) = (Az(Ay.z))

» Then define conditional as:
if p then e; else es — (ApAeides.p e; e)

» Here,p is a predicate, i.e. function evaluating to true or false
» Example predicates are EQZ, GTZ, etc.

» Observation: If we define numbers carefully in A calculus, we
can also define those precisely, but we won't in class

TN s copyright ©2006 The MoGraw-Hill Companies, Inc. B Sl

Example:

if (w>v) then return w, else return v.

(Ap AXAY.pXYy) (W>V) WV glves
(W>V) w v (called S1)

If (w>v) then (w>v) gives True, that is,
AX Ay. X
So, S1 becomes
(AX Ay. X) W V=>Ww,

O.w., (w>v) gives False, that is,
AX Ay. y
So, S1 becomes
(AXAY. Y)WV =>V,

[N Copyright 92006 The McGraw-Hil Coinpénies, Inc. NI DU O

Named Functions

» We want to add functions with names

» Solution: Use the let-construct to name anonymous A terms:

To define f as the name of the following function:
Ax. el
in the context of e2.

Use let-construct:
let f=Ax. el 1n e2.

Use lambda calculus:
(M. e2) (Ax.el)

Example:

X =2
y=3
if (x>y) then return x, else return y.

AX.AY. (Ap. AW. Av.pw V) (X>y)Xxy)23

