

Copyright © 2006 The McGraw-Hill Companies, Inc.

CSCI312 Principles of Programming
Languages!

Chapter 2
Syntax!

Xu Liu

Copyright © 2006 The McGraw-Hill Companies, Inc.

Review!
Principles of PL

 syntax, naming, types, semantics

Paradigms of PL design

 imperative, OO, functional, logic

What makes a successful PL
 simplicity and readability
 clarity about binding
 reliability
 support
 abstraction
 orthogonality
 efficient implementation

Copyright © 2006 The McGraw-Hill Companies, Inc.

Contents!
2.1 Grammars!

!2.1.1 Backus-Naur Form!
!2.1.2 Derivations!
!2.1.3 Parse Trees!
!2.1.4 Associativity and Precedence!
!2.1.5 Ambiguous Grammars!

2.2 Extended BNF!
2.3 Syntax of a Small Language: Clite!

!2.3.1 Lexical Syntax!
!2.3.2 Concrete Syntax!

2.4 Compilers and Interpreters!
2.5 Linking Syntax and Semantics!

!2.5.1 Abstract Syntax!
!2.5.2 Abstract Syntax Trees!
!2.5.3 Abstract Syntax of Clite!

Copyright © 2006 The McGraw-Hill Companies, Inc.

Thinking about Syntax!
The syntax of a programming language is a precise

description of all its grammatically correct
programs.

Precise syntax was first used with Algol 60, and has
been used ever since.

Three levels:
–  Lexical syntax

–  Concrete syntax
–  Abstract syntax

Copyright © 2006 The McGraw-Hill Companies, Inc.

Levels of Syntax!

Lexical syntax = all the basic symbols of the
language (names, values, operators, etc.)

Concrete syntax = rules for writing expressions,
statements and programs.

Abstract syntax = internal representation of the
program, favoring content over form. E.g.,
–  C: if (expr) ... discard ()

–  Ada: if (expr) then discard then

Copyright © 2006 The McGraw-Hill Companies, Inc.

2.1 Grammars!

A metalanguage is a language used to define other
languages.

A grammar is a metalanguage used to define the
syntax of a language.

Our interest: using grammars to define the syntax of
a programming language.

Copyright © 2006 The McGraw-Hill Companies, Inc.

2.1.1 Backus-Naur Form (BNF)!

•  Stylized version of a context-free grammar (cf.
Chomsky hierarchy)

•  Sometimes called Backus Normal Form
•  First used to define syntax of Algol 60
•  Now used to define syntax of most major languages

Copyright © 2006 The McGraw-Hill Companies, Inc.

BNF Grammar!

Set of productions: P

 terminal symbols: T
 nonterminal symbols: N
 start symbol:

A production has the form

where and

€

S ∈ N

€

A ∈ N

€

ω ∈ (N∪T) *

€

A→ω

Copyright © 2006 The McGraw-Hill Companies, Inc.

Example: Binary Digits!

Consider the grammar:
 binaryDigit → 0
 binaryDigit → 1

or equivalently:

 binaryDigit → 0 | 1

Here, | is a metacharacter that separates alternatives.

Copyright © 2006 The McGraw-Hill Companies, Inc.

2.1.2 Derivations!

Consider the grammar:
Integer → Digit | Integer Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

We can derive any unsigned integer, like 352, from
this grammar.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Derivation of 352 as an Integer!

A 6-step process, starting with:

Integer

Copyright © 2006 The McGraw-Hill Companies, Inc.

Derivation of 352 (step 1)!

Use a grammar rule to enable each step:

Integer ⇒ Integer Digit

Copyright © 2006 The McGraw-Hill Companies, Inc.

Derivation of 352 (steps 1-2)!

Replace a nonterminal by a right-hand side of one of
its rules:

Integer ⇒ Integer Digit
 ⇒ Integer 2

Copyright © 2006 The McGraw-Hill Companies, Inc.

Derivation of 352 (steps 1-3)!

Each step follows from the one before it.

Integer ⇒ Integer Digit

 ⇒ Integer 2
 ⇒ Integer Digit 2

Copyright © 2006 The McGraw-Hill Companies, Inc.

Derivation of 352 (steps 1-4)!

Integer ⇒ Integer Digit

 ⇒ Integer 2
 ⇒ Integer Digit 2
 ⇒ Integer 5 2

Copyright © 2006 The McGraw-Hill Companies, Inc.

Derivation of 352 (steps 1-5)!

Integer ⇒ Integer Digit
 ⇒ Integer 2
 ⇒ Integer Digit 2
 ⇒ Integer 5 2
 ⇒ Digit 5 2

Copyright © 2006 The McGraw-Hill Companies, Inc.

Derivation of 352 (steps 1-6)!

You know you’re finished when there are only
terminal symbols remaining.

Integer ⇒ Integer Digit

 ⇒ Integer 2
 ⇒ Integer Digit 2
 ⇒ Integer 5 2
 ⇒ Digit 5 2
 ⇒ 3 5 2

Copyright © 2006 The McGraw-Hill Companies, Inc.

A Different Derivation of 352!

Integer ⇒ Integer Digit
 ⇒ Integer Digit Digit
 ⇒ Digit Digit Digit
 ⇒ 3 Digit Digit
 ⇒ 3 5 Digit
 ⇒ 3 5 2

This is called a leftmost derivation, since at each step
the leftmost nonterminal is replaced.
(The first one was a rightmost derivation.)

Copyright © 2006 The McGraw-Hill Companies, Inc.

Notation for Derivations!

Integer ⇒* 352
 Means that 352 can be derived in a finite number of steps
using the grammar for Integer.

352 ∈ L(G)

 Means that 352 is a member of the language defined by
grammar G.

L(G) = { ω ∈ T* | Integer ⇒* ω }

 Means that the language defined by grammar G is the set
of all symbol strings ω that can be derived as an Integer.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Problem in this Grammar!

Consider the grammar:
Integer → Digit | Integer Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

We can derive 031, 0003, 0000

Integer → Digit | SDigit AInteger
AInteger → Digit | AInteger Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
SDigit → 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Copyright © 2006 The McGraw-Hill Companies, Inc.

2.1.3 Parse Trees!

A parse tree is a graphical representation of a
derivation.
Each internal node of the tree corresponds to a step in the

derivation.

The children of a node represents a right-hand side of a
production.

Each leaf node represents a symbol of the derived string,
reading from left to right.

Copyright © 2006 The McGraw-Hill Companies, Inc.

E.g., The step Integer ⇒ Integer Digit 
appears in the parse tree as:  
 !

Integer!

Integer! Digit!

Copyright © 2006 The McGraw-Hill Companies, Inc.

Parse Tree for 352
as an Integer
Figure 2.1

Copyright © 2006 The McGraw-Hill Companies, Inc.

Arithmetic Expression Grammar!

The following grammar defines the language of
arithmetic expressions with 1-digit integers, addition,
and subtraction.

Expr → Expr + Term | Expr – Term | Term
Term → 0 | ... | 9 | (Expr)

Copyright © 2006 The McGraw-Hill Companies, Inc.

Parse of the
String 5-4+3
Figure 2.2

Copyright © 2006 The McGraw-Hill Companies, Inc.

2.1.4 Associativity and Precedence!

A grammar can be used to define associativity and
precedence among the operators in an expression.
E.g., + and - are left-associative operators in mathematics;

 * and / have higher precedence than + and - .

Consider the more interesting grammar G1:
Expr -> Expr + Term | Expr – Term | Term
Term -> Term * Factor | Term / Factor |

 Term % Factor | Factor
Factor -> Primary ** Factor | Primary
Primary -> 0 | ... | 9 | (Expr)

Copyright © 2006 The McGraw-Hill Companies, Inc.

Parse of 4**2**3+5*6+7
for Grammar G1
Figure 2.3

Copyright © 2006 The McGraw-Hill Companies, Inc.

Precedence Associativity Operators
 3 right **
 2 left * / %
 1 left + -

Note: These relationships are shown by the structure
of the parse tree: highest precedence at the bottom,
and left-associativity on the left at each level.

Associativity and Precedence
for Grammar G1
Table 2.1

Copyright © 2006 The McGraw-Hill Companies, Inc.

2.1.5 Ambiguous Grammars!

A grammar is ambiguous if one of its strings has two or
more diffferent parse trees.
E.g., Grammar G1 above is unambiguous.

C, C++, and Java have a large number of

–  operators and
–  precedence levels

Instead of using a large grammar, we can:

–  Write a smaller ambiguous grammar, and
–  Give separate precedence and associativity (e.g., Table 2.1)

Copyright © 2006 The McGraw-Hill Companies, Inc.

An Ambiguous Expression Grammar G2!

Expr -> Expr Op Expr | (Expr) | Integer
Op -> + | - | * | / | % | **

Notes:

–  G2 is equivalent to G1. I.e., its language is the same.
–  G2 has fewer productions and nonterminals than G1.
–  However, G2 is ambiguous.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Ambiguous Parse of 5-4+3
Using Grammar G2
Figure 2.4

Copyright © 2006 The McGraw-Hill Companies, Inc.

The Dangling Else!

IfStatement -> if (Expression) Statement |
 if (Expression) Statement else Statement

Statement -> Assignment | IfStatement | Block
Block -> { Statements }

Statements -> Statements Statement | Statement

Copyright © 2006 The McGraw-Hill Companies, Inc.

Example!

With which ‘if’ does the following ‘else’ associate
 !

!
!if (x < 0)!
! !if (y < 0) y = y - 1;!
! !else y = 0;!

!
Answer: either one! !

Copyright © 2006 The McGraw-Hill Companies, Inc.

The Dangling Else Ambiguity
Figure 2.5

Copyright © 2006 The McGraw-Hill Companies, Inc.

Solving the dangling else ambiguity!

1.  Algol 60, C, C++: associate each else with
closest if; use {} or begin…end to override.

2.  Algol 68, Modula, Ada: use explicit delimiter to
end every conditional (e.g., if…fi)

3.  Java: rewrite the grammar to limit what can
appear in a conditional:

IfThenStatement -> if (Expression) Statement
IfThenElseStatement -> if (Expression) StatementNoShortIf

 else Statement
 The category StatementNoShortIf includes all
except IfThenStatement.

Copyright © 2006 The McGraw-Hill Companies, Inc.

2.2 Extended BNF (EBNF)!

BNF:
–  recursion for iteration
–  nonterminals for grouping

EBNF: additional metacharacters
–  { } for a series of zero or more
–  () for a list, must pick one

–  [] for an optional list; pick none or one

Copyright © 2006 The McGraw-Hill Companies, Inc.

EBNF Examples!

Expression is a list of one or more Terms separated by
operators + and -
Expression -> Term { (+ | -) Term }
IfStatement -> if (Expression) Statement [else Statement]

C-style EBNF lists alternatives vertically and uses opt to
signify optional parts. E.g.,

 IfStatement:
 if (Expression) Statement ElsePartopt
 ElsePart:
 else Statement

Copyright © 2006 The McGraw-Hill Companies, Inc.

EBNF to BNF!

We can always rewrite an EBNF grammar as a BNF
grammar. E.g.,

 A -> x { y } z
can be rewritten:

 A -> x A' z
 A' -> | y A'

(Rewriting EBNF rules with (), [] is left as an exercise.)

While EBNF is no more powerful than BNF, its rules are
often simpler and clearer.

