CSC312 Principles of Programming Languages :

Final Review

1. Introduction
2. Principle components of PL

3. Paradigms of PL design

PR —

1. Introduction
2. Principle components of PL

Syntax Semantics Name &Scoping Type
Grammar Def semantics Binding Type concepts
Derivation Expr semantics Scoping Type system
Parsing Subtile issues Subtle issues Example types
Two projects Project Project

3. Paradigms of PL design

Functional programming: Haskell {project)-

Parallel programming: OpenMP/Pthread (project)

A Calculas: sytax, expression, substitution, reductions

Copyright © 2006 The McGraw-Hill Companies, Inc

Functional programming: Haskell (project)

Parallel programming: OpenMP/Pthread (project)

λ Calculas: sytax, expression, substitution, reductions

1. Introduction (Ch. 1)

— What is PL
— Main components
— Paradigms

— Properties for success

2. Syntax (Ch. 2+3)

— Grammar

» left/right regular grammar, regular expression, deterministic
finite automaton (DFA), Chomsky hierarchy, BNF, EBNF,

context-free grammar, ambiguous grammar

— Derivation and Parsing

* leftmost/rightmost derivation, LL parser, LR parser, LL
grammar, LR grammar, recursive descent parser, FirstSet
computation, left dependence graph, parse tree, abstract syntax
tree

— compiler/interpreter structure, tokenization/lexing

Copyright © 2006 The McGraw-Hill Companies,

3. Semantics (Ch. 7+8)

— Methods for specifying semantics

« State transitions, operational semantics, (axiomatize statements)

— Expression semantics: short circuit evaluation, side effects
— Copy versus reference

— Meanings of various statements

06 The McGraw-Hill Companies, Inc. . SiEii——

4. Name, Scope, Binding (ch. 4)

— Binding of names: static v.s. dynamic
— Scoping: static v.s. dynamic
— Symbol table stack, referencing environment

— L-value, R-value, lifetime, visibility, overloading

Th w-Hill Cofnpahies, Inc. B —

5. Type and Type systems (ch.5+6)

— Type concepts

* type, bigleman-endian, floating-point, type error, static/dynamic
typing, type conversion (narrow, widen; implicit, explicit), type
equivalence (structural, name), subtypes

* polymorphism (3 common ways to realize it: overloading,

inheritance, generics)

— Type systems
« specification (stylized english, boolean functions)

e example

Copyright © 2006 The McGraw-Hill Companies,

6. Functional Languages (ch. 14)

— View at Program: collection of functions

— Properties

 state free, referential transparency, lazy v.s. eager evaluation
— Haskell
* Language

« Special features: polymorphism, function prototype, type
classes

06 The MoGraw-Hil Cofnpaies, nc. NI TUOD T

/. Parallel Programming

Pthread
thread creation, destruction
thread synchronization
locks, condition variables
OpenMP
parallel constructs:
parallel regions
work sharing: loops, sections, tasks
synchronizations:
barriers
locks
critical sections

L CRCLR R (SR TR T B i 1 B DU AR)

8. 00 Language (ch. 13)

— View at Program. collection of objects that interact.

— Foundation

Procedural abstract, data abstract

Class and object model

— Java

OO language key features (encapsulation, virtual methods,
inheritance)

methods (class methods v.s. instance methods), visibility
inheritance (is-a v.s. has-a)

polymorphism, template, interface, abstract class, reflection

Example

Copyright © 2006 The McGraw-Hill Companies, Inc

