

Copyright © 2006 The McGraw-Hill Companies, Inc.

CSCI312 Principles of Programming
Languages!

Chapter 2
Syntax

Xu Liu

Copyright © 2006 The McGraw-Hill Companies, Inc.

Project: derive!

Work in pairs: follow the rule

Terminal string length: number of terminals in the
derivation:

 e.g., (id) has length 3

 (id + id) has length 5

Copyright © 2006 The McGraw-Hill Companies, Inc.

Recap!

Copyright © 2006 The McGraw-Hill Companies, Inc.

BNF Grammar!

Set of productions: P

 terminal symbols: T
 nonterminal symbols: N
 start symbol:

A production has the form

where and

€

S ∈ N

€

A ∈ N

€

ω ∈ (N∪T) *

€

A→ω

Copyright © 2006 The McGraw-Hill Companies, Inc.

Derivation of 352 from a BNF Grammar!

Integer → Digit | Integer Digit
Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

Integer ⇒ Integer Digit

 ⇒ Integer Digit Digit
 ⇒ Digit Digit Digit
 ⇒ 3 Digit Digit
 ⇒ 3 5 Digit
 ⇒ 3 5 2

Copyright © 2006 The McGraw-Hill Companies, Inc.

Parse Tree for 352
as an Integer
Figure 2.1

Copyright © 2006 The McGraw-Hill Companies, Inc.

Ambiguity!

With which ‘if’ does the following ‘else’ associate
 !

!
!if (x < 0)!
! !if (y < 0) y = y - 1;!
! !else y = 0;!

!
Answer: either one! !

Copyright © 2006 The McGraw-Hill Companies, Inc.

The Dangling Else Ambiguity
Figure 2.5

Copyright © 2006 The McGraw-Hill Companies, Inc.

Extended BNF (EBNF)!

BNF:
–  recursion for iteration
–  nonterminals for grouping

EBNF: additional metacharacters
–  { } for a series of zero or more
–  () for a list, must pick one

–  [] for an optional list; pick none or one

Copyright © 2006 The McGraw-Hill Companies, Inc.

Contents!
2.1 Grammars!

!2.1.1 Backus-Naur Form!
!2.1.2 Derivations!
!2.1.3 Parse Trees!
 2.1.4 Associativity and Precedence!
!2.1.5 Ambiguous Grammars!

2.2 Extended BNF!
2.3 Syntax of a Small Language: Clite!

!2.3.1 Lexical Syntax!
!2.3.2 Concrete Syntax!

2.4 Compilers and Interpreters!
2.5 Linking Syntax and Semantics!

!2.5.1 Abstract Syntax!
!2.5.2 Abstract Syntax Trees!
!2.5.3 Abstract Syntax of Clite!

Copyright © 2006 The McGraw-Hill Companies, Inc.

2.3 Syntax of a Small Language: Clite!

Motivation for using a subset of C:

 Grammar
Language (pages) Reference
Pascal 5 Jensen & Wirth
C 6 Kernighan & Richie
C++ 22 Stroustrup
Java 14 Gosling, et. al.

The Clite grammar fits on one page (next 3 slides),
so it’s a far better tool for studying language design.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Fig. 2.7 Clite Grammar: Statements!

 Program → int main () { Declarations Statements }

 Declarations → { Declaration }

 Declaration → Type Identifier [[Integer]] { , Identifier [[Integer]] }
 Type → int | bool | float | char!

 Statements → { Statement }
 Statement → ; | Block | Assignment | IfStatement | WhileStatement
 Block → { Statements }

 Assignment → Identifier [[Expression]] = Expression ;!

 IfStatement → if (Expression) Statement [else Statement]
WhileStatement → while (Expression) Statement!
!

Copyright © 2006 The McGraw-Hill Companies, Inc.

Fig. 2.7 Clite Grammar: Expressions!
 Expression → Conjunction { || Conjunction }
Conjunction → Equality { && Equality }!
 Equality → Relation [EquOp Relation]
 EquOp → == | != !
 Relation → Addition [RelOp Addition]
 RelOp → < | <= | > | >=
 Addition → Term { AddOp Term }
 AddOp → + | -
 Term → Factor { MulOp Factor }!
 MulOp → * | / | %
 Factor → [UnaryOp] Primary
 UnaryOp → - | !
 Primary → Identifier [[Expression]] | Literal | (Expression) |

 Type (Expression)!

Copyright © 2006 The McGraw-Hill Companies, Inc.

Fig. 2.7 Clite grammar: lexical level!

 Identifier → Letter { Letter | Digit }
 Letter → a | b | … | z | A | B | … | Z
 Digit → 0 | 1 | … | 9
 Literal → Integer | Boolean | Float | Char
 Integer → Digit { Digit }!
 Boolean → true | false!
 Float → Integer . Integer
 Char → ‘ ASCII Char ‘

Copyright © 2006 The McGraw-Hill Companies, Inc.

Issues Not Addressed by this Grammar!

•  Comments
•  Whitespace
•  Distinguishing one token <= from two tokens < =!
•  Distinguishing identifiers from keywords like if

These issues are addressed by identifying two levels:

–  lexical level

–  syntactic level

Copyright © 2006 The McGraw-Hill Companies, Inc.

2.3.1 Lexical Syntax!

Input: a stream of characters from the ASCII set, keyed
by a programmer.

Output: a stream of tokens or basic symbols, classified
as follows:
–  Identifiers e.g., Stack, x, i, push!
–  Literals e.g., 123, 'x', 3.25, true
–  Keywords bool char else false float if int !
! ! ! !main true while

–  Operators = || && == != < <= > >= + - * / !!
–  Punctuation ; , { } ()

Copyright © 2006 The McGraw-Hill Companies, Inc.

Whitespace!

Whitespace is any space, tab, end-of-line character (or
characters), or character sequence inside a comment

No token may contain embedded whitespace
 (unless it is a character or string literal)

Example:
>= one token

> = two tokens

Copyright © 2006 The McGraw-Hill Companies, Inc.

Whitespace Examples in Pascal!

while a < b do legal - spacing between tokens
while a<b do spacing not needed for <
!
whilea<bdo illegal - can’t tell boundaries

whilea < bdo between tokens

Copyright © 2006 The McGraw-Hill Companies, Inc.

Comments!

Not defined in grammar
Clite uses // comment style of C++

Copyright © 2006 The McGraw-Hill Companies, Inc.

Identifier!

Sequence of letters and digits, starting with a letter
!if is both an identifier and a keyword

 Most languages require identifiers to be distinct from
keywords

In some languages, identifiers are merely predefined

(and thus can be redefined by the programmer)

Copyright © 2006 The McGraw-Hill Companies, Inc.

program confusing;"
const true = false;"
begin"
 if (a<b) = true then"

"f(a)"
 else …

Redefining Identifiers can be dangerous!

Copyright © 2006 The McGraw-Hill Companies, Inc.

Should Identifiers be case-sensitive?!

Older languages: no
–  Pascal: no
–  Modula: yes

–  C, C++: yes

–  Java: yes
–  PHP: partly yes, partly no

Copyright © 2006 The McGraw-Hill Companies, Inc.

2.3.2 Concrete Syntax!

Based on a parse of its Tokens
 ; is a statement terminator
 (Algol-60, Pascal use ; as a separator)

Rule for IfStatement is ambiguous:
“The else ambiguity is resolved by connecting

an else with the last encountered else-less if.”

[Stroustrup, 1991]

Copyright © 2006 The McGraw-Hill Companies, Inc.

Expressions in Clite!

13 grammar rules
Use of meta braces – operators are left associative
C++ expressions require 4 pages of grammar rules

[Stroustrup]

C uses an ambiguous expression grammar
[Kernighan and Ritchie]

Copyright © 2006 The McGraw-Hill Companies, Inc.

Associativity and Precedence!

Clite Operator Associativity
Unary - ! none
* / left
+ - left
< <= > >= none
== != ! none
&& left
|| ! left

Copyright © 2006 The McGraw-Hill Companies, Inc.

Clite Equality, Relational Operators!

… are non-associative.
 (an idea borrowed from Ada)

Why is this important?
In C++, the expression:

 if (a < x < b)!
is not equivalent to

 if (a < x && x < b)
But it is error-free!
So, what does it mean?

Copyright © 2006 The McGraw-Hill Companies, Inc.

2.4 Compilers  
and Interpreters!

Lexical
Analyzer

Syntactic
Analyzer

Semantic
Analyzer

Code
Optimizer

Code
Generator

Machine
Code

Source
Program

Copyright © 2006 The McGraw-Hill Companies, Inc.

Lexer!

•  Input: characters
•  Output: tokens
•  Separate:

–  Speed: 75% of time for non-optimizing compilers

–  Simpler design
–  Character sets

–  End of line conventions

Copyright © 2006 The McGraw-Hill Companies, Inc.

Parser!

•  Based on BNF/EBNF grammar
•  Input: tokens
•  Output: abstract syntax tree (parse tree)

•  Abstract syntax: parse tree with punctuation,
many nonterminals discarded

Copyright © 2006 The McGraw-Hill Companies, Inc.

Semantic Analysis!

•  Check that all identifiers are declared
•  Perform type checking
•  Insert implied conversion operators

 (i.e., make them explicit)

Copyright © 2006 The McGraw-Hill Companies, Inc.

Code Optimization!

•  Evaluate constant expressions at compile-time
•  Reorder code to improve cache performance
•  Eliminate common subexpressions

•  Eliminate unnecessary code

Copyright © 2006 The McGraw-Hill Companies, Inc.

Code Generation!

•  Output: machine code
•  Instruction selection
•  Register management

•  Peephole optimization

Copyright © 2006 The McGraw-Hill Companies, Inc.

Interpreter!

Replaces last 2 phases of a compiler
Input:

–  Mixed: intermediate code

–  Pure: stream of ASCII characters

Mixed interpreters
–  Java, Perl, Python, Haskell, Scheme

Pure interpreters:
–  most Basics, shell commands

Copyright © 2006 The McGraw-Hill Companies, Inc.

2.5 Linking Syntax and Semantics!

Output: parse tree is inefficient
Example: Fig. 2.9

Copyright © 2006 The McGraw-Hill Companies, Inc.

Parse Tree for  
z = x + 2*y;  
Fig. 2.9!

Copyright © 2006 The McGraw-Hill Companies, Inc.

Finding a More Efficient Tree!

The shape of the parse tree reveals the meaning of the
program.

So we want a tree that removes its inefficiency and
keeps its shape.
–  Remove separator/punctuation terminal symbols

–  Remove all trivial root nonterminals
–  Replace remaining nonterminals with leaf terminals

Example: Fig. 2.10

Copyright © 2006 The McGraw-Hill Companies, Inc.

Abstract Syntax Tree for  
z = x + 2*y;  
Fig. 2.10!

Copyright © 2006 The McGraw-Hill Companies, Inc.

Abstract Syntax!

Pascal

while i < n do begin!
i := i + 1;!

end;!

C/C++

while (i < n) {!
i = i + 1;!

}

Removes “syntactic sugar” and keeps essential elements of a
language. E.g., consider the following two equivalent loops:

The only essential information in each of these is 1) that it is
a loop, 2) that its terminating condition is i < n, and 3) that
its body increments the current value of i.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Abstract Syntax of Clite Assignments
Assignment = Variable target; Expression source
Expression = VariableRef | Value | Binary | Unary
VariableRef = Variable | ArrayRef
Variable = String id!
ArrayRef = String id; Expression index
Value = IntValue | BoolValue | FloatValue | CharValue
Binary = Operator op; Expression term1, term2
Unary = UnaryOp op; Expression term
Operator = ArithmeticOp | RelationalOp | BooleanOp!
IntValue = Integer intValue!
… !

Copyright © 2006 The McGraw-Hill Companies, Inc.

Abstract Syntax as Java Classes
abstract class Expression { } !
abstract class VariableRef extends Expression { }!
class Variable extends VariableRef { String id; }!
class Value extends Expression { … }!
class Binary extends Expression {!

!Operator op;!
!Expression term1, term2;!

}!
class Unary extends Expression {!

!UnaryOp op;!
!Expression term;!

}!

Copyright © 2006 The McGraw-Hill Companies, Inc.

Example Abstract Syntax Tree!
op term1 term2

Binary node

Abstract Syntax Tree
for x+2*y (Fig 2.13)

Binary

Binary Operator

Operator

Variable

Variable Value

+

2 y *

x

Copyright © 2006 The McGraw-Hill Companies, Inc.

Remaining Abstract Syntax of Clite
(Declarations and Statements) 
Fig 2.14!

