

Copyright © 2006 The McGraw-Hill Companies, Inc.

CSCI312 Principles of Programming
Languages!

!
Chapter 3
Regular Expression and Lexer

Xu Liu

Copyright © 2006 The McGraw-Hill Companies, Inc.

Recap!

Copyright © 2006 The McGraw-Hill Companies, Inc.

Clite: Lexical Syntax!

Input: a stream of characters from the ASCII set, keyed
by a programmer.

Output: a stream of tokens or basic symbols, classified
as follows:
–  Identifiers e.g., Stack, x, i, push!
–  Literals e.g., 123, 'x', 3.25, true
–  Keywords bool char else false float if int !
! ! ! !main true while

–  Operators = || && == != < <= > >= + - * / !!
–  Punctuation ; , { } ()

Copyright © 2006 The McGraw-Hill Companies, Inc.

Clite: Concrete Syntax!

Based on a parse of its Tokens
 ; is a statement terminator
 (Algol-60, Pascal use ; as a separator)

Rule for IfStatement is ambiguous:
“The else ambiguity is resolved by connecting

an else with the last encountered else-less if.”

[Stroustrup, 1991]

Copyright © 2006 The McGraw-Hill Companies, Inc.

Abstract Syntax Tree for  
z = x + 2*y;  
Fig. 2.10!

Copyright © 2006 The McGraw-Hill Companies, Inc.

Compilers and Interpreters!

Lexical
Analyzer

Syntactic
Analyzer

Semantic
Analyzer

Code
Optimizer

Code
Generator

Machine
Code

Source
Program

Copyright © 2006 The McGraw-Hill Companies, Inc.

Contents!

!
3.1 Chomsky Hierarchy!
3.2 Lexical Analysis!
3.3 Syntactic Analysis!

Copyright © 2006 The McGraw-Hill Companies, Inc.

3.1 Chomsky Hierarchy!

Regular grammar -- least powerful
Context-free grammar (BNF)
Context-sensitive grammar

Unrestricted grammar

Copyright © 2006 The McGraw-Hill Companies, Inc.

Regular Grammar!

Simplest; least powerful
Equivalent to:

–  Regular expression

–  Finite-state automaton

Right regular grammar: ω ∈ T*, B ∈ N
A → ω B

A → ω

Copyright © 2006 The McGraw-Hill Companies, Inc.

Example!

Integer → 0 Integer | 1 Integer | ... | 9 Integer |

 0 | 1 | ... | 9

Copyright © 2006 The McGraw-Hill Companies, Inc.

Regular Grammars!

Left regular grammar: equivalent
Used in construction of tokenizers
Less powerful than context-free grammars

Not a regular language
{ aⁿ bⁿ | n ≥ 1 }
i.e., cannot balance: (), { }, begin end

 A = a B b
B = a B b | ε

 A = a A b | ε

Copyright © 2006 The McGraw-Hill Companies, Inc.

Context-free Grammars!

BNF a stylized form of CFG
Equivalent to a pushdown automaton
For a wide class of unambiguous CFGs, there are

table-driven, linear time parsers

Copyright © 2006 The McGraw-Hill Companies, Inc.

Context-Sensitive Grammars!

Production:
 α → β |α| ≤ |β|
 α, β ∈ (N ∪ T)*

i.e., lefthand side can be composed of strings of
terminals and nonterminals

Copyright © 2006 The McGraw-Hill Companies, Inc.

Undecidable Properties of CSGs!

Given a string ω and grammar G: ω ∈ L(G)
L(G) is non-empty
Defn: Undecidable means that you cannot write a

computer program that is guaranteed to halt to
decide the question for all ω ∈ L(G).

Copyright © 2006 The McGraw-Hill Companies, Inc.

Unrestricted Grammar!

Equivalent to:
–  Turing machine
–  von Neumann machine

–  C++, Java

That is, can compute any computable function.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Review: Compilers and Interpreters!

Lexical
Analyzer

Syntactic
Analyzer

Semantic
Analyzer

Code
Optimizer

Code
Generator

Machine
Code

Source
Program

Copyright © 2006 The McGraw-Hill Companies, Inc.

Lexical Analysis!

Purpose: transform program representation
Input: printable ASCII characters
Output: tokens

Discard: whitespace, comments

Defn: A token is a logically cohesive sequence of

characters representing a single symbol.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Example Tokens!

Identifiers
Literals: 123, 5.67, 'x', true
Keywords: bool char ...

Operators: + - * / ...

Punctuation: ; , () { }

Copyright © 2006 The McGraw-Hill Companies, Inc.

Other Sequences!

Whitespace: space tab
Comments

// any-char* end-of-line

End-of-line

End-of-file

Copyright © 2006 The McGraw-Hill Companies, Inc.

Why a Separate Phase?!

Simpler, faster machine model than parser
75% of time spent in lexer for non-optimizing

compiler
Differences in character sets

End of line convention differs

Copyright © 2006 The McGraw-Hill Companies, Inc.

Regular Expressions!

RegExpr Meaning
x a character x

\x an escaped character, e.g., \n
{ name } a reference to a name

M | N M or N

M N M followed by N
M* zero or more occurrences of M

Copyright © 2006 The McGraw-Hill Companies, Inc.

 !

RegExpr Meaning
M+ One or more occurrences of M

M? Zero or one occurrence of M
[aeiou] the set of vowels

[0-9] the set of digits

. Any single character

Copyright © 2006 The McGraw-Hill Companies, Inc.

Clite Lexical Syntax!

Category Definition
anyChar [-~]

Letter [a-zA-Z]
Digit [0-9]

Whitespace [\t]

Eol \n
Eof \004

Copyright © 2006 The McGraw-Hill Companies, Inc.

 !Category Definition
Keyword bool | char | else | false | float |

 if | int | main | true | while
Identifier {Letter}({Letter} | {Digit})*

integerLit {Digit}+

floatLit {Digit}+\.{Digit}+
charLit ‘{anyChar}’

Copyright © 2006 The McGraw-Hill Companies, Inc.

 !

Category Definition
Operator = | || | && | == | != | < | <= | > |

 >= | + | - | * | / |! | [|]
Separator : | . | { | } | (|)!

Comment // ({anyChar} | {Whitespace})*

 {eol}!

Copyright © 2006 The McGraw-Hill Companies, Inc.

Generators!

Input: usually regular expression
Output: table (slow), code
C/C++: Lex, Flex

Java: JLex

Copyright © 2006 The McGraw-Hill Companies, Inc.

Finite State Automata!

Set of states: representation – graph nodes
Input alphabet + unique end symbol
State transition function

Labelled (using alphabet) arcs in graph

Unique start state
One or more final states

Copyright © 2006 The McGraw-Hill Companies, Inc.

Deterministic FSA!

Defn: A finite state automaton is deterministic if for
each state and each input symbol, there is at most
one outgoing arc from the state labeled with the
input symbol.

Copyright © 2006 The McGraw-Hill Companies, Inc.

 !A Finite State Automaton for Identifiers

What is a non-deterministic FSA?

Copyright © 2006 The McGraw-Hill Companies, Inc.

Definitions!

A configuration on an fsa consists of a state and the
remaining input.

A move consists of traversing the arc exiting the state
that corresponds to the leftmost input symbol,
thereby consuming it. If no such arc, then:
–  If no input and state is final, then accept.

–  Otherwise, error.

Copyright © 2006 The McGraw-Hill Companies, Inc.

 !

An input is accepted if, starting with the start state,
the automaton consumes all the input and halts in
a final state.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Example!

(S, a2i$) ├ (I, 2i$)
 ├ (I, i$)
 ├ (I, $)

 ├ (F,)

Thus: (S, a2i$) ├* (F,)

Copyright © 2006 The McGraw-Hill Companies, Inc.

Chomsky Hierarchy!

Regular grammar – least powerful
Context-free grammar (BNF)
Context-sensitive grammar
Unrestricted grammar

Copyright © 2006 The McGraw-Hill Companies, Inc.

Contents!

!
3.1 Chomsky Hierarchy!
3.2 Lexical Analysis!
3.3 Syntactic Analysis!

Copyright © 2006 The McGraw-Hill Companies, Inc.

Review: Compilers and Interpreters!

Lexical
Analyzer

Syntactic
Analyzer

Semantic
Analyzer

Code
Optimizer

Code
Generator

Machine
Code

Source
Program

Copyright © 2006 The McGraw-Hill Companies, Inc.

Syntactic Analysis!

Phase also known as: parser
Purpose is to recognize source structure
Input: tokens

Output: parse tree or abstract syntax tree

A recursive descent parser is one in which each
nonterminal in the grammar is converted to a
function which recognizes input derivable from
the nonterminal.

