
Copyright © 2006 The McGraw-Hill Companies, Inc.

CSCI312 Principles of Programming
Languages

!
LL Parsing!
!

Xu Liu

Derived from Keith Cooper’s COMP 412 at Rice University

Copyright © 2006 The McGraw-Hill Companies, Inc.

Are these two grammars can be parsed by LL(1) parser?
(1) A->aB | bC | C
 B->b
 C-> a
!
(2) A->aAb | Ab | b

Quiz

Copyright © 2006 The McGraw-Hill Companies, Inc.

Outline

See more general problems in a top down parser
 Backtracking — select appropriate productions
 Left recursion — revise grammars
 Predictive parsing — more than recursive descent
 Table-driven parsing

Remember the expression grammar?

And the input x – 2 * y

We will call this version “the classic expression grammar”
— from previous lecture

0 Goal → Expr
1 Expr → Expr + Term
2 | Expr - Term
3 | Term
4 Term → Term * Factor
5 | Term / Factor
6 | Factor
7 Factor → (Expr)
8 | number
9 | id

Let’s try x – 2 * y :

Rule Sentential Form Input
— Goal ↑x - 2 * y

Example

Goal

↑ is the position in the input buffer

Let’s try x – 2 * y :

Rule Sentential Form Input
— Goal ↑x - 2 * y
0 Expr ↑x - 2 * y
1 Expr +Term ↑x - 2 * y
3 Term +Term ↑x - 2 * y
6 Factor +Term ↑x - 2 * y
9 <id,x> +Term ↑x - 2 * y
→ <id,x> +Term x ↑- 2 * y

Example

Goal

Expr

Term+Expr

Term

Fact.

<id,x>

This worked well, except that “–” doesn’t match “+”
The parser must backtrack to here

↑ is the position in the input buffer

7

Why this parser incurs backtracking?

» Select a wrong production
» multiple choices
» no hint to select the correct one

0 Goal → Expr
1 Expr → Expr + Term
2 | Expr - Term
3 | Term
4 Term → Term * Factor
5 | Term / Factor
6 | Factor
7 Factor → (Expr)
8 | number
9 | id

Other choices for expansion are possible

!

!
This expansion doesn’t terminate

• Wrong choice of expansion leads to non-termination
• Non-termination is a bad property for a parser to have
• Parser must make the right choice

Left recursion

Rule Sentential Form Input
— Goal ↑x - 2 * y
0 Expr ↑x - 2 * y
1 Expr +Term ↑x - 2 * y
1 Expr + Term +Term ↑x - 2 * y
1 Expr + Term +Term + Term ↑x - 2 * y
1 And so on …. ↑x - 2 * y

Consumes no input!

9

Why right recursion works fine?

1. E->T+E | T
2. T->a
!
Derive: a+a
!
E->T+E->a+E->a+T+E->a+a+E

Predictive Parsing

Basic idea
Given A → α | β, the parser should be able to choose between α & β	

FIRST sets
For some rhs α∈G, define FIRST(α) as the set of tokens that

appear as the first symbol in some string that derives from α

That is, x ∈ FIRST(α) iff α ⇒* x γ, for some γ

The LL(1) Property
If A → α and A → β both appear in the grammar, we would like

FIRST(α) ∩ FIRST(β) = ∅	

This would allow the parser to make a correct choice with a lookahead

of exactly one symbol ! This is almost correct

Building Top-down Parsers for LL(1) Grammars

Given an LL(1) grammar, and its FIRST & FOLLOW sets …
• Emit a routine for each non-terminal

— Nest of if-then-else statements to check alternate rhs’s
— Each returns true on success and throws an error on false
— Simple, working (perhaps ugly) code

• This automatically constructs a recursive-descent parser

Improving matters
• Nest of if-then-else statements may be slow

— Good case statement implementation would be better

• What about a table to encode the options?
— Interpret the table with a skeleton, as we did in scanning

I don’t know of a
system that does this
…

Strategy
• Encode knowledge in a table
• Use a standard “skeleton” parser to
 interpret the table

Example
• The non-terminal Factor has 3 expansions

— (Expr) or Identifier or Number

• Table might look like:

Building Top-down Parsers
0 Goal → Expr

1 Expr → Term Expr’

2 Expr’ → + Term Expr’

3 | - Term Expr’
4 | ε

5 Term → Factor Term’

6 Term’ → * Factor Term’

7 | / Factor Term’

8 | ε

9 Factor → number

10 | id

11 | (Expr)

+ - * / Id. Num. () EOF

Factor — — — — 10 9 11 — —

Terminal Symbols

Non-
terminal
Symbols

Expand Factor by rule 9
with input “number”Cannot expand Factor into an

operator ⇒ error

Building Top-down Parsers

Building the complete table
• Need a row for every NT & a column for every T

LL(1) Expression Parsing Table

+ – * / Id Num () EOF

Goal — — — — 0 0 0 — —

Expr — — — — 1 1 1 — —

Expr’ 2 3 — — — — — 4 4

Term — — — — 5 5 5 — —

Term’ 8 8 6 7 — — — 8 8

Factor — — — — 10 9 11 — —
Row we built
earlier

Building Top-down Parsers

Building the complete table
• Need a row for every NT & a column for every T
• Need an interpreter for the table (skeleton parser)

LL(1) Skeleton Parser
word ← NextWord() // Initial conditions, including
push EOF onto Stack // a stack to track local goals
push the start symbol, S, onto Stack
TOS ← top of Stack
loop forever
 if TOS = EOF and word = EOF then
 break & report success // exit on success
 else if TOS is a terminal then
 if TOS matches word then
 pop Stack // recognized TOS
 word ← NextWord()
 else report error looking for TOS // error exit
 else // TOS is a non-terminal
 if TABLE[TOS,word] is A→ B1B2…Bk then
 pop Stack // get rid of A
 push Bk, Bk-1, …, B1 // in that order
 else break & report error expanding TOS
 TOS ← top of Stack

Building Top-down Parsers

Building the complete table
• Need a row for every NT & a column for every T
• Need a table-driven interpreter for the table
• Need an algorithm to build the table

Filling in TABLE[X,y], X ∈ NT, y ∈ T

1. entry is the rule X→ β, if y ∈ FIRST+(X→ β)
— entry is error if rule 1 does not define

If any entry has more than one rule, G is not LL(1)
!
We call this algorithm the LL(1) table construction algorithm

18

LL and LR Parsers

