
Copyright © 2006 The McGraw-Hill Companies, Inc.

CSCI312 Principles of Programming
Languages

!
LL Parsing!
!

Xu Liu

Derived from Keith Cooper’s COMP 412 at Rice University

Copyright © 2006 The McGraw-Hill Companies, Inc.

Recap

Copyright © 2006 The McGraw-Hill Companies, Inc.

Syntactic Analysis

Phase also known as: parser
Purpose is to recognize source structure
Input: tokens
Output: parse tree or abstract syntax tree
A recursive descent parser is one in which each

nonterminal in the grammar is converted to a
function which recognizes input derivable from the
nonterminal.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Terms

Nullable non-terminals
First set

Copyright © 2006 The McGraw-Hill Companies, Inc.

T(EBNF) = Code: A → w

1 If w is nonterminal, call it.
2 If w is terminal, match it against given token.
3 If w is { w' }:

while (token in First(w')) T(w')
4 If w is: w1 | ... | wn,

switch (token) {
case First(w1): T(w1); break;
...
case First(wn): T(wn); break;

Copyright © 2006 The McGraw-Hill Companies, Inc.

5 Switch (cont.): If some wi is empty, use:
default: break;

Otherwise
default: error(token);

6 If w = [w'], rewrite as (| w') and use rule 4.

7 If w = X1 ... Xn, T(w) =
T(X1); ... T(Xn);

Copyright © 2006 The McGraw-Hill Companies, Inc.

Outline

See more general problems in a top down parser
 Backtracking — select appropriate productions
 Left recursion — revise grammars
 Predictive parsing — more than recursive descent
 Table-driven parsing

Parsing Techniques

Top-down parsers (LL(1), recursive descent)
• Start at the root of the parse tree and grow toward leaves
• Pick a production & try to match the input
• Bad “pick” ⇒ may need to backtrack
• Some grammars are backtrack-free (predictive parsing)

Bottom-up parsers (LR(1), operator precedence)
• Start at the leaves and grow toward root
• As input is consumed, encode possibilities in an internal state
• Start in a state valid for legal first tokens
• Bottom-up parsers handle a large class of grammars

A top-down parser starts with the root of the parse tree
The root node is labeled with the goal symbol of the grammar

Top-down parsing algorithm:

Construct the root node of the parse tree
Repeat until lower fringe of the parse tree matches the input string
1 At a node labeled A, select a production with A on its lhs and, for

each symbol on its rhs, construct the appropriate child
2 When a terminal symbol is added to the fringe and it doesn’t match

the fringe, backtrack
3 Find the next node to be expanded (label ∈ NT)

The key is picking the right production in step 1
— That choice should be guided by the input string

Top-down Parsing

Remember the expression grammar?

And the input x – 2 * y

We will call this version “the classic expression grammar”
— from last lecture

0 Goal → Expr
1 Expr → Expr + Term
2 | Expr - Term
3 | Term
4 Term → Term * Factor
5 | Term / Factor
6 | Factor
7 Factor → (Expr)
8 | number
9 | id

Let’s try x – 2 * y :

Rule Sentential Form Input
— Goal ↑x - 2 * y

Example

Goal

↑ is the position in the input buffer

Let’s try x – 2 * y :

Rule Sentential Form Input
— Goal ↑x - 2 * y
0 Expr ↑x - 2 * y
1 Expr +Term ↑x - 2 * y
3 Term +Term ↑x - 2 * y
6 Factor +Term ↑x - 2 * y
9 <id,x> +Term ↑x - 2 * y
→ <id,x> +Term x ↑- 2 * y

Example

Goal

Expr

Term+Expr

Term

Fact.

<id,x>

This worked well, except that “–” doesn’t match “+”
The parser must backtrack to here

↑ is the position in the input buffer

Example

Continuing with x – 2 * y :
Goal

Expr

Term–Expr

Term

Fact.

<id,x>

⇒ Now, we need to expand Term - the last NT on the fringe

Rule Sentential Form Input
— Goal ↑x - 2 * y
0 Expr ↑x - 2 * y
2 Expr -Term ↑x - 2 * y
3 Term -Term ↑x - 2 * y
6 Factor -Term ↑x - 2 * y
9 <id,x> - Term ↑x - 2 * y
→ <id,x> -Term x ↑- 2 * y
→ <id,x> -Term x - ↑2 * y

Now, “-” and “-” match Now we can expand Term to match “2”

Where are we?
• “2” matches “2”
• We have more input, but no NTs left to expand
• The expansion terminated too soon
⇒ Need to backtrack

Example

Trying to match the “2” in x – 2 * y :
Goal

Expr

Term-Expr

Term

Fact.

<id,x>

Fact.

<num,2>

Rule Sentential Form Input
→ <id,x> - Term x - ↑2 * y
6 <id,x> - Factor x - ↑2 * y
8 <id,x> - <num,2> x - ↑2 * y
→ <id,x> - <num,2> x - 2 ↑* y

Example

Trying again with “2” in x – 2 * y :
Goal

Expr

Term–Expr

Term

Fact.

<id,x>

Fact.

<id,y>

Term

Fact.

<num,2>

*

This time, we matched & consumed all the input
⇒Success!

Rule Sentential Form Input
→ <id,x> - Term x - ↑2 * y
4 <id,x> - Term * Factor x - ↑2 * y
6 <id,x> - Factor * Factor x - ↑2 * y
8 <id,x> - <num,2> * Factor x - ↑2 * y
→ <id,x> - <num,2> * Factor x - 2 ↑* y
→ <id,x> - <num,2> * Factor x - 2 * ↑y
9 <id,x> - <num,2> * <id,y> x - 2 * ↑y
→ <id,x> - <num,2> * <id,y> x - 2 * y↑

The Point:

The parser must make the right choice when it expands a NT.
Wrong choices lead to wasted effort.

Other choices for expansion are possible

!

!
This expansion doesn’t terminate

• Wrong choice of expansion leads to non-termination
• Non-termination is a bad property for a parser to have
• Parser must make the right choice

Another possible parse

Rule Sentential Form Input
— Goal ↑x - 2 * y
0 Expr ↑x - 2 * y
1 Expr +Term ↑x - 2 * y
1 Expr + Term +Term ↑x - 2 * y
1 Expr + Term +Term + Term ↑x - 2 * y
1 And so on …. ↑x - 2 * y

Consumes no input!

Left Recursion
!

Top-down parsers cannot handle left-recursive grammars

Formally,
A grammar is left recursive if ∃ A ∈ NT such that
∃ a derivation A ⇒+ Aα, for some string α ∈ (NT ∪ T)+

Our classic expression grammar is left recursive

• This can lead to non-termination in a top-down parser
• In a top-down parser, any recursion must be right recursion
• We would like to convert the left recursion to right recursion

Non-termination is always a bad property in a compiler

Eliminating Left Recursion

To remove left recursion, we can transform the grammar

Consider a grammar fragment of the form
Fee → Fee α
 | β

where neither α nor β start with Fee

We can rewrite this fragment as
Fee → β Fie

Fie → α Fie

 | ε

where Fie is a new non-terminal

The new grammar defines
the same language as the
old grammar, using only
right recursion.

Added a reference to
the empty string

Comp 412, Fall 2010 13

Eliminating Left Recursion

Expr → Expr + Term

| Expr - Term

| Term

Term → Term * Factor

| Term * Factor

| Factor

Expr → Term Expr’

Expr’ → + Term Expr’

| - Term Expr’
| ε

Term → Factor Term’

Term’ → * Factor Term’

| / Factor Term’
| ε

The expression grammar contains two cases of left recursion

Applying the transformation yields

These fragments use only right recursion
Right recursion often means right associativity. In this case, the

grammar does not display any particular associative bias.

Picking the “Right” Production
! If it picks the wrong production, a top-down parser may backtrack

Alternative is to look ahead in input & use context to pick correctly

How much lookahead is needed?
• In general, an arbitrarily large amount

Fortunately,
• Large subclasses of CFGs can be parsed with limited lookahead
• Most programming language constructs fall in those subclasses

Among the interesting subclasses are LL(1) and LR(1) grammars

We will focus, for now, on LL(1) grammars & predictive parsing

Predictive Parsing

Basic idea
Given A → α | β, the parser should be able to choose between α & β	

FIRST sets
For some rhs α∈G, define FIRST(α) as the set of tokens that

appear as the first symbol in some string that derives from α

That is, x ∈ FIRST(α) iff α ⇒* x γ, for some γ

Predictive Parsing

Basic idea
Given A → α | β, the parser should be able to choose between α & β	

FIRST sets
For some rhs α∈G, define FIRST(α) as the set of tokens that

appear as the first symbol in some string that derives from α

That is, x ∈ FIRST(α) iff α ⇒* x γ, for some γ

The LL(1) Property
If A → α and A → β both appear in the grammar, we would like

FIRST(α) ∩ FIRST(β) = ∅	

This would allow the parser to make a correct choice with a lookahead

of exactly one symbol ! This is almost correct
See the next slide

Predictive Parsing
What about ε-productions?
⇒ They complicate the definition of LL(1)

If A → α and A → β and ε ∈ FIRST(α), then we need to ensure that
FIRST(β) is disjoint from FOLLOW(A), too, where

FOLLOW(A) = the set of terminal symbols that can immediately
follow A in a sentential form

Define FIRST+(A→α) as
• FIRST(α) ∪ FOLLOW(A), if ε ∈ FIRST(α)
• FIRST(α), otherwise

Then, a grammar is LL(1) iff A → α and A → β implies

 FIRST+(A→α) ∩ FIRST+(A→β) = ∅

Recursive Descent Parsing

Recall the expression grammar, after transformation

This produces a parser with six
mutually recursive routines:
• Goal
• Expr
• EPrime
• Term
• TPrime
• Factor
Each recognizes one NT or T

The term descent refers to the
direction in which the parse tree
is built.

0 Goal → Expr
1 Expr → Term Expr’
2 Expr’ → + Term Expr’
3 | - Term Expr’
4 | ε

5 Term → Factor Term’
6 Term’ → * Factor Term’
7 | / Factor Term’
8 | ε

9 Factor → (Expr)
10 | number
11 | id

What If My Grammar Is Not LL(1) ?
Can we transform a non-LL(1) grammar into an LL(1) grammar?
• In general, the answer is no
• In some cases, however, the answer is yes

Assume a grammar G with productions A → α β1 and A → α β2

• If α derives anything other than ε, then

FIRST+(A → α β1) ∩ FIRST+(A → α β2) ≠ ∅	

• And the grammar is not LL(1)

If we pull the common prefix, α, into a separate production, we may make
the grammar LL(1).

A → α A’, A’ → β1 and A’ → β2

Now, if FIRST+(A’ → β1) ∩ FIRST+(A’ → β2) = ∅, G may be LL(1)

What If My Grammar Is Not LL(1) ?

Left Factoring
!
!
!
!
!
!
!
!
This transformation makes some grammars into LL(1) grammars
There are languages for which no LL(1) grammar exists

For each nonterminal A
 find the longest prefix α common to 2 or more alternatives for A
 if α ≠ ε then
 replace all of the productions
 A → α β1 | α β2 | α β3 | … | α βn | γ

 with
 A → α A’ | γ
 A’ → β1 | β2 | β3 | … | βn

Repeat until no nonterminal has alternative rhs’ with a common prefix

Left Factoring Example

Consider a simple right-recursive expression grammar

0 Goal → Expr
1 Expr → Term + Expr
2 | Term - Expr
3 | Term
4 Term → Factor * Term
5 | Factor / Term
6 | Factor
7 Factor → number
8 | id

Left Factoring Example

After Left Factoring, we have

0 Goal → Expr
1 Expr → Term Expr’
2 Expr’ → + Expr
3 | - Expr
4 | ε

5 Term → Factor Term’
6 Term’ → * Term
7 | / Term
8 | ε

9 Factor → number
10 | id

This transformation makes some
grammars into LL(1) grammars.
There are languages for which no LL(1)
grammar exists.

FIRST and FOLLOW Sets

FIRST(α)
For some α ∈ (T ∪ NT)*, define FIRST(α) as the set of

tokens that appear as the first symbol in some string that
derives from α

That is, x ∈ FIRST(α) iff α ⇒* x γ, for some γ

FOLLOW(A)
For some A ∈ NT, define FOLLOW(A) as the set of symbols

that can occur immediately after A in a valid sentential
form

FOLLOW(S) = {EOF}, where S is the start symbol

To build FOLLOW sets, we need FIRST sets …

Computing FIRST Sets

Already studied in previous lectures

Computing FOLLOW Sets

for each A ∈ NT, FOLLOW(A) ← Ø

FOLLOW(S) ← {EOF }

while (FOLLOW sets are still changing)
 for each p ∈ P, of the form A→B1B2 … Bk

 TRAILER ← FOLLOW(A)
 for i ← k down to 1
 if Bi ∈ NT then // domain check
 FOLLOW(Bi) ← FOLLOW(Bi) ∪ TRAILER
 if ε ∈ FIRST(Bi) // add right context
 then TRAILER ← TRAILER ∪ (FIRST(Bi) – { ε })
 else TRAILER ← FIRST(Bi) // no ε => no right context
 else TRAILER ← {Bi } // Bi ∈ T => only 1 symbol

Comp 412, Fall 2010

Classic Expression Grammar

14

Symbol FIRST FOLLOW
num num Ø
id id Ø
+ + Ø
- - Ø
* * Ø
/ / Ø
((Ø
)) Ø

eof eof Ø
ε ε Ø

Goal (,id,num eof
Expr (,id,num), eof
Expr’ +, -, ε), eof
Term (,id,num +, -,), eof
Term’ *, /, ε +,-,), eof
Factor (,id,num +,-,*,/,),eof

FIRST+(A→β) is identical to
FIRST(β) except for productiond 4
and 8

FIRST+(Expr’→ ε) is {ε,), eof}

FIRST+(Term’→ ε) is {ε,+,-,), eof}

0 Goal → Expr
1 Expr → Term Expr’
2 Expr’ → + Term Expr’
3 | - Term Expr’
4 | ε

5 Term → Factor Term’
6 Term’ → * Factor
7 | / Factor
8 | ε

9 Factor → number
10 | id
11 | (Expr)

Classic Expression Grammar

Prod’n FIRST+
0 (,id,num
1 (,id,num
2 +
3 -
4 ε,), eof
5 (,id,num
6 *
7 /
8 ε,+,-,), eof
9 number
10 id
11 (

0 Goal → Expr
1 Expr → Term Expr’
2 Expr’ → + Term Expr’
3 | - Term Expr’
4 | ε

5 Term → Factor Term’
6 Term’ → * Factor
7 | / Factor
8 | ε

9 Factor → number
10 | id
11 | (Expr)

Building Top-down Parsers for LL(1) Grammars

Given an LL(1) grammar, and its FIRST & FOLLOW sets …
• Emit a routine for each non-terminal

— Nest of if-then-else statements to check alternate rhs’s
— Each returns true on success and throws an error on false
— Simple, working (perhaps ugly) code

• This automatically constructs a recursive-descent parser

Improving matters
• Nest of if-then-else statements may be slow

— Good case statement implementation would be better

• What about a table to encode the options?
— Interpret the table with a skeleton, as we did in scanning

I don’t know of a
system that does this
…

Strategy
• Encode knowledge in a table
• Use a standard “skeleton” parser to
 interpret the table

Example
• The non-terminal Factor has 3 expansions

— (Expr) or Identifier or Number

• Table might look like:

Building Top-down Parsers
0 Goal → Expr

1 Expr → Term Expr’

2 Expr’ → + Term Expr’

3 | - Term Expr’
4 | ε

5 Term → Factor Term’

6 Term’ → * Factor Term’

7 | / Factor Term’

8 | ε

9 Factor → number

10 | id

11 | (Expr)

+ - * / Id. Num. () EOF

Factor — — — — 10 9 11 — —

Terminal Symbols

Non-
terminal
Symbols

Expand Factor by rule 9
with input “number”Cannot expand Factor into an

operator ⇒ error

Building Top-down Parsers

Building the complete table
• Need a row for every NT & a column for every T

LL(1) Expression Parsing Table

+ – * / Id Num () EOF

Goal — — — — 0 0 0 — —

Expr — — — — 1 1 1 — —

Expr’ 2 3 — — — — — 4 4

Term — — — — 5 5 5 — —

Term’ 8 8 6 7 — — — 8 8

Factor — — — — 10 9 11 — —
Row we built
earlier

Building Top-down Parsers

Building the complete table
• Need a row for every NT & a column for every T
• Need an interpreter for the table (skeleton parser)

LL(1) Skeleton Parser
word ← NextWord() // Initial conditions, including
push EOF onto Stack // a stack to track local goals
push the start symbol, S, onto Stack
TOS ← top of Stack
loop forever
 if TOS = EOF and word = EOF then
 break & report success // exit on success
 else if TOS is a terminal then
 if TOS matches word then
 pop Stack // recognized TOS
 word ← NextWord()
 else report error looking for TOS // error exit
 else // TOS is a non-terminal
 if TABLE[TOS,word] is A→ B1B2…Bk then
 pop Stack // get rid of A
 push Bk, Bk-1, …, B1 // in that order
 else break & report error expanding TOS
 TOS ← top of Stack

Building Top-down Parsers

Building the complete table
• Need a row for every NT & a column for every T
• Need a table-driven interpreter for the table
• Need an algorithm to build the table

Filling in TABLE[X,y], X ∈ NT, y ∈ T

1. entry is the rule X→ β, if y ∈ FIRST+(X→ β)
— entry is error if rule 1 does not define

If any entry has more than one rule, G is not LL(1)
!
We call this algorithm the LL(1) table construction algorithm

