CSCI312 Principles of Programming Languages

LL Parsing

Xu Liu

Derived from Keith Cooper's COMP 412 at Rice University

Recap

Syntactic Analysis

Phase also known as: parser
Purpose is to recognize source structure
Input: tokens
Output: parse tree or abstract syntax tree
A recursive descent parser is one in which each nonterminal in the grammar is converted to a function which recognizes input derivable from the nonterminal.

Terms

Nullable non-terminals
First set

$T(E B N F)=$ Code: $A \rightarrow W$

1 If w is nonterminal, call it.
2 If w is terminal, match it against given token.
3 If w is $\left\{w^{\prime}\right\}$:
while (token in First(w^{\prime})) $T\left(w^{\prime}\right)$
4 If w is: w 1 | ... | wn,
switch (token) \{ case First(wl): T(wl); break;
case First(wn): T(wn); break;

5 Switch (cont.): If some wi is empty, use: default: break;

Otherwise default: error(token);

6 If $w=\left[w^{\prime}\right]$, rewrite as $\left(\mid w^{\prime}\right)$ and use rule 4.
7 If $w=X 1 \ldots \mathrm{Xn}, \mathrm{T}(\mathrm{w})=$
T(X1); ... T(Xn);

Outline

See more general problems in a top down parser Backtracking - select appropriate productions Left recursion - revise grammars
Predictive parsing - more than recursive descent Table-driven parsing

Parsing Techniques

Top-down parsers (LL(1), recursive descent)

- Start at the root of the parse tree and grow toward leaves
- Pick a production \& try to match the input
- Bad "pick" \Rightarrow may need to backtrack
- Some grammars are backtrack-free

Bottom-up parsers (LR(1), operator precedence)

- Start at the leaves and grow toward root
- As input is consumed, encode possibilities in an internal state
- Start in a state valid for legal first tokens
- Bottom-up parsers handle a large class of grammars

Top-down Parsing

A top-down parser starts with the root of the parse tree
The root node is labeled with the goal symbol of the grammar
Top-down parsing algorithm:
Construct the root node of the parse tree
Repeat until lower fringe of the parse tree matches the input string
1 At a node labeled A, select a production with A on its lhs and, for each symbol on its rhs, construct the appropriate child
2 When a terminal symbol is added to the fringe and it doesn't match the fringe, backtrack
3 Find the next node to be expanded
(label $\in N T$)
The key is picking the right production in step 1

- That choice should be guided by the input string

Remember the expression grammar?

We will call this version "the classic expression grammar"

- from last lecture

0	Goal		Expr	
1	Expr	\rightarrow	Expr + Term	
2		-	Expr - Term	
3		1	Term	
4	Term	\rightarrow	Term * Factor	And the input $\underline{x}-\underline{2}^{*} \underline{y}$
5		1	Term / Factor	
6		1	Factor	
7	Factor	\rightarrow	(Expr)	
8		1	number	
9			id	

Example

Let's try $\underline{x}-\underline{2}^{*} \underline{y}$:

Rule Sentential Form	Input
- Goal	$\uparrow \underline{x}-\underline{2}^{*} \underline{y}$

Example

Let's try $\underline{x}-\underline{2}^{*} \underline{y}$:

Rule	Sentential Form	Input
-	Goal	$\uparrow \underline{x}-\underline{2}^{*} \underline{y}$
0	Expr	$\uparrow \underline{x}-\underline{2}^{*} \underline{y}$
1	Expr + Term	$\uparrow \underline{x}-\underline{2}^{*} \underline{y}$
3	Term + Term	$\uparrow \underline{x}-\underline{2}^{*} \underline{y}$
6	Factor + Term	$\uparrow \underline{x}-\underline{2}^{*} \underline{y}$
9	$\langle i d, \underline{x}\rangle+$ Term	$\uparrow \underline{x}-\underline{2}^{*} \underline{y}$
\rightarrow	$\langle i d, x\rangle+$ Term	$\underline{x} \uparrow-\underline{2}^{*} \underline{y}$

This worked well, except that "-" doesn't match "+"
The parser must backtrack to here

Example
Continuing with $\underline{x}-\underline{2}^{*} \underline{y}$:

\Rightarrow Now, we need to expand Term - the last NT on the fringe

Example

Trying to match the "2" in $\underline{x}-\underline{2}^{*} \underline{y}$:

Rule	Sentential Form	Indut
\rightarrow	$\langle i d, \underline{x}\rangle-$ Term	$\underline{x}-\uparrow \underline{2}^{*} \underline{y}$
6	$\langle i d, \underline{x}\rangle-$ Factor	$\underline{x}-\uparrow \underline{2}^{*} \underline{y}$
8	$\langle i d, \underline{x}\rangle-\langle$ num, $\underline{2}\rangle$	$\underline{x}-\uparrow \underline{2}^{*} \underline{y}$
\rightarrow	$\langle i d, x\rangle-\langle n u m, \underline{2}\rangle$	$\underline{x}-\underline{2} \uparrow^{*} \underline{y}$

Where are we?

- "2" matches "2"

- We have more input, but no NTs left to expand
- The expansion terminated too soon
\Rightarrow Need to backtrack

Example
Trying again with "2" in $\underline{x}-\underline{2}$ * \underline{x} :

The Point:
The parser must make the right choice when it expands a NT. Wrong choices lead to wasted effort.

Another possible parse

Other choices for expansion are possible

Rule	Sentential Form	Input
-	Goal	$\uparrow \underline{x}-\underline{2} * \underline{y}$
0	Expr	\uparrow ¢- ${ }^{*}$ \%
1	Expr +Term	x-2*
1	Expr + Term + Term	
1	Expr + Term + Term + Term	$\underline{x}-\underline{2} \times$
1	And so on	$\underline{x}-2^{*} y$

This expansion doesn't terminate

- Wrong choice of expansion leads to non-termination
- Non-termination is a bad property for a parser to have
- Parser must make the right choice

Left Recursion

Top-down parsers cannot handle left-recursive grammars
Formally,
A grammar is left recursive if $\exists A \in N T$ such that
\exists a derivation $A \Rightarrow^{+} A \alpha$, for some string $\alpha \in(N T \cup T)^{+}$

Our classic expression grammar is left recursive

- This can lead to non-termination in a top-down parser
- In a top-down parser, any recursion must be right recursion
- We would like to convert the left recursion to right recursion

Non-termination is always a bad property in a compiler

Eliminating Left Recursion

To remove left recursion, we can transform the grammar
Consider a grammar fragment of the form
Fee \rightarrow Fee α
| β
where neither α nor β start with Fee

We can rewrite this fragment as

Fee $\rightarrow \beta$ Fie
Fie $\rightarrow \alpha$ Fie

where Fie is a new non-terminal

The new grammar defines the same language as the old grammar, using only right recursion.

Eliminating Left Recursion

The expression grammar contains two cases of left recursion

Expr	\rightarrow Expr + Term	Term	\rightarrow Term * Factor
\mid Expr - Term		I Term * Factor	
\| Term		I Factor	

Applying the transformation yields

Expr	\rightarrow Term Expr'	Term	\rightarrow Factor Term
Expr	$\rightarrow+$ Term Expr'	Term	\rightarrow * Factor Term
	$\mid-$ Term Expr'		$\mid /$ Factor Term
	$\mid \varepsilon$		$\mid \varepsilon$

These fragments use only right recursion
Right recursion often means right associativity. In this case, the grammar does not display any particular associative bias.

Picking the "Right" Production

If it picks the wrong production, a top-down parser may backtrack
Alternative is to look ahead in input \& use context to pick correctly
How much lookahead is needed?

- In general, an arbitrarily large amount

Fortunately,

- Large subclasses of CFGs can be parsed with limited lookahead
- Most programming language constructs fall in those subclasses

Among the interesting subclasses are $\operatorname{LL}(1)$ and $\operatorname{LR}(1)$ grammars

We will focus, for now, on LL(1) grammars \& predictive parsing

Predictive Parsing

Basic idea
Given $A \rightarrow \alpha \mid \beta$, the parser should be able to choose between $\alpha \& \beta$
First sets
For some rhs $\alpha \in G$, define $\operatorname{FIRST}(\alpha)$ as the set of tokens that appear as the first symbol in some string that derives from α That is, $\underline{x} \in \operatorname{FIRST}(\alpha)$ iff $\alpha \Rightarrow^{*} \underline{x} \gamma$, for some γ

Predictive Parsing

Basic idea
Given $A \rightarrow \alpha \mid \beta$, the parser should be able to choose between $\alpha \& \beta$
FIRST sets
For some rhs $\alpha \in G$, define $\operatorname{FIRST}(\alpha)$ as the set of tokens that appear as the first symbol in some string that derives from α
That is, $\underline{x} \in \operatorname{FIRST}(\alpha)$ iff $\alpha{ }^{*} \underline{x} \gamma$, for some γ
The LL(1) Property
If $A \rightarrow \alpha$ and $A \rightarrow \beta$ both appear in the grammar, we would like

$$
\operatorname{FIRST}(\alpha) \cap \operatorname{FIRST}(\beta)=\varnothing
$$

This would allow the parser to make a correct choice with a lookahead of exactly one symbol!

This is almost correct
 See the next slide

Predictive Parsing

What about ε-productions?
\Rightarrow They complicate the definition of $\operatorname{LL}(1)$
If $A \rightarrow \alpha$ and $A \rightarrow \beta$ and $\varepsilon \in \operatorname{FIRST}(\alpha)$, then we need to ensure that FIRST(β) is disjoint from FOLLOW(A), too, where

Follow (A) = the set of terminal symbols that can immediately follow A in a sentential form

Define FIRST ${ }^{+}(A \rightarrow \alpha)$ as

- FIRst $(\alpha) \cup$ Follow (A), if $\varepsilon \in \operatorname{FIRST}(\alpha)$
- First(α), otherwise

Then, a grammar is $L L(1)$ iff $A \rightarrow \alpha$ and $A \rightarrow \beta$ implies

$$
\operatorname{FIRST}^{+}(A \rightarrow \alpha) \cap \operatorname{FIRST}^{+}(A \rightarrow \beta)=\varnothing
$$

Recursive Descent Parsing

Recall the expression grammar, after transformation

0	Goal	\rightarrow	Expr
1	Expr	\rightarrow	Term Expr'
2	Expr	\rightarrow	+ Term Expr'
3		\mid	- Term Expr'
4		\mid	ε
5	Term	\rightarrow	Factor Term'
6	Term'	\rightarrow	* Factor Term
7		\mid	$/$ Factor Term
8		\mid	ε
9	Factor	\rightarrow	(Expr)
10		\mid	number
11		\mid	id

This produces a parser with six mutually recursive routines:

- Goal
- Expr
- EPrime
- Term
- TPrime
- Factor

Each recognizes one NT or T
The term descent refers to the direction in which the parse tree is built.

What If My Grammar Is Not LL(1)?

Can we transform a non-LL(1) grammar into an LL(1) grammar?

- In general, the answer is no
- In some cases, however, the answer is yes

Assume a grammar G with productions $A \rightarrow \alpha \beta_{1}$ and $A \rightarrow \alpha \beta_{2}$

- If α derives anything other than ε, then

$$
\operatorname{FIRST}^{+}\left(A \rightarrow \alpha \beta_{1}\right) \cap \operatorname{FIRST}^{+}\left(A \rightarrow \alpha \beta_{2}\right) \neq \varnothing
$$

- And the grammar is not $\operatorname{LL}(1)$

If we pull the common prefix, α, into a separate production, we may make the grammar LL(1).

$$
A \rightarrow \alpha A^{\prime}, A^{\prime} \rightarrow \beta_{1} \text { and } A^{\prime} \rightarrow \beta_{2}
$$

Now, if $\operatorname{FIRST}^{+}\left(A^{\prime} \rightarrow \beta_{1}\right) \cap \operatorname{FIRST}^{+}\left(A^{\prime} \rightarrow \beta_{2}\right)=\varnothing, G$ may be $L L(1)$

What If My Grammar Is Not LL(1)?

Left Factoring
For each nonterminal A
find the longest prefix a common to 2 or more alternatives for A if $\alpha \neq \varepsilon$ then
replace all of the productions

$$
\begin{aligned}
& A \rightarrow \alpha \beta_{1}\left|\alpha \beta_{2}\right| \alpha \beta_{3}|\ldots| \alpha \beta_{n} \mid \gamma \\
& \text { with } \\
& A \rightarrow \alpha A^{\prime} \mid \gamma \\
& A^{\prime} \rightarrow \beta_{1}\left|\beta_{2}\right| \beta_{3}|\ldots| \beta_{n}
\end{aligned}
$$

Repeat until no nonterminal has alternative rhs' with a common prefix
This transformation makes some grammars into LL(1) grammars There are languages for which no LL(1) grammar exists

Left Factoring Example

Consider a simple right-recursive expression grammar

0	Goal	\rightarrow	Expr
1	Expr	\rightarrow	Term + Expr
2		1	Term-Expr
3		1	Term
4	Term	\rightarrow	Factor * Term
5		1	Factor / Term
6		1	Factor
7	Factor	\rightarrow	number
8			

To choose between 1, 2, \& 3, an $L L(1)$ parser mus \dagger look pas \dagger the number or id to see the operator.

$$
\begin{gathered}
\operatorname{FIRST}^{+}(1)=\operatorname{FIRST}^{+}(2)=\operatorname{FIRST}^{+}(3) \\
\text { and } \\
\operatorname{FIRST}^{+}(4)=\operatorname{FIRST}^{+}(5)=\operatorname{FIRST}^{+}(6) \\
\text { Let's left factor this grammar. }
\end{gathered}
$$

Left Factoring Example

After Left Factoring, we have

0	Goal	\rightarrow	Expr
1	Expr	\rightarrow	Term Expr'
2	Expr'	\rightarrow	+ Expr
3		\mid	- Expr
4		\mid	ε
5	Term	\rightarrow	Factor Term'
6	Term'	\rightarrow	*erm
7		\mid	$/$ Term
8		\mid	ε
9	Factor	\rightarrow	$\underline{\text { number }}$
10		\mid	$\underline{\text { id }}$

Clearly,

$$
\operatorname{FIRST}^{+}(2), \operatorname{FIRST}^{+}(3), \& \operatorname{FIRST}^{+}(4)
$$

are disjoint, as are
FIRST+(6), FIRST ${ }^{+}$(7), \& FIRST ${ }^{+}$(8)
The grammar now has the $\operatorname{LL}(1)$ property

This transformation makes some grammars into LL(1) grammars.
There are languages for which no LL(1) grammar exists.

First and Follow Sets

FIRst(α)
For some $\alpha \in(T \cup N T)^{*}$, define $\operatorname{FIRST}(\alpha)$ as the set of tokens that appear as the first symbol in some string that derives from α
That is, $\underline{x} \in \operatorname{FIRST}(\alpha)$ iff $\alpha \Rightarrow^{*} \underline{x} \gamma$, for some γ
Follow(A)
For some $A \in N T$, define Follow (A) as the set of symbols that can occur immediately after A in a valid sentential form
FOLLOW(S) $=\{E O F\}$, where S is the start symbol
To build Follow sets, we need FIRst sets ...

Computing FIRST Sets

Already studied in previous lectures

Computing FOLLOW Sets

for each $A \in N T, \operatorname{FOLLOW}(A) \leftarrow \varnothing$
FOLLOW $(S) \leftarrow\{E O F\}$
while (FOLLOW sets are still changing)
for each $p \in P$, of the form $A \rightarrow B_{1} B_{2} \ldots B_{k}$
TRAILER $\leftarrow \operatorname{FOLLOW}(A)$
for $\mathrm{i} \leftarrow \mathrm{k}$ down to 1
if $B_{i} \in N T$ then // domain check
$\operatorname{FOLLOW}\left(B_{i}\right) \leftarrow \operatorname{FOLLOW}\left(B_{i}\right) \cup$ TRAILER
if $\varepsilon \in \operatorname{FIRST}\left(B_{i}\right) \quad / /$ add right context then TRAILER \leftarrow TRAILER $\cup\left(\operatorname{FIRST}\left(B_{i}\right)-\{\varepsilon\}\right)$ else TRAILER $\leftarrow \operatorname{FIRST}\left(B_{i}\right) / /$ no $\varepsilon=>$ no right contex \dagger else TRAILER $\leftarrow\left\{B_{i}\right\} \quad / / B_{i} \in T$ => only 1 symbol

Classic Expression Grammar

0	Goal		Expr	Symbol	FIRST	FOLLOW
1	Expr	\rightarrow	Term Expr'	num	num	\varnothing
2	Expr'	\rightarrow	+ Term Expr'	id	id	\varnothing
3			- Term Expr'	+	+	\varnothing
4			ε	-	-	\varnothing
5	Term	\rightarrow	Factor Term'	*	*	\varnothing
6	Term'	\rightarrow	* Factor	((\varnothing
7			/ Factor))	\varnothing
8			ε	eof	eof	\varnothing
9	Factor	\rightarrow	number	ε	ε	\varnothing
10			id	Goal	(id.num	eof
11			(Expr)	Expr	(id.num). eof
$\operatorname{FIRST}^{+}(A \rightarrow \beta)$ is identical to				Exbr'	+. -). eof
FIRST(β) except for productiond 4				Term	(id.num	+. -.). eof
and 8				Term'	*./. ε	+.-.). eof
				Factor	(,id, num	+,-, *, /,), eof

Classic Expression Grammar

0	Goal		Expr
1	Expr	\rightarrow	Term Expr'
2	Expr'	\rightarrow	+ Term Expr
3		\|	- Term Expr'
4		1	ε
5	Term	\rightarrow	Factor Term
6	Term'	\rightarrow	* Factor
7		\|	/ Factor
8		1	ε
9	Factor		number
10			id
11			(Expr)

Prod'n	FIRST +
0	(.id.num
1	(.id.num
2	+
3	-
4	ع.). eof
5	(.id.num
6	\star
7	$/$
8	$\varepsilon .+.).$. eof
9	number
10	id
11	(

Building Top-down Parsers for LL(1) Grammars

Given an LL(1) grammar, and its FIRST \& Follow sets ...

- Emit a routine for each non-terminal
- Nest of if-then-else statements to check alternate rhs's
- Each returns true on success and throws an error on false
- Simple, working (perhaps ugly) code
- This automatically constructs a recursive-descent parser

Improving matters

- Nest of if-then-else statements may be slow
- Good case statement implementation would be better
- What about a table to encode the options?
- Interpret the table with a skeleton, as we did in scanning

I don't know of a system that does this

Building Top-down Parsers

Strategy

- Encode knowledge in a table
- Use a standard "skeleton" parser to interpret the table

Example

- The non-terminal Factor has 3 expansions
- (Expr) or Identifier or Number
- Table might look like: Terminal Symbols

Building Top-down Parsers

Building the complete table

- Need a row for every NT \& a column for every T

LL(1) Expression Parsing Table

	+	-	$*$	$/$	Id	Num	$($	$)$	EOF
Goal	-	-	-	-	0	0	0	-	-
Expr	-	-	-	-	1	1	1	-	-
Expr'	2	3	-	-	-	-	-	4	4
Term	-	-	-	-	5	5	5	-	-
Term' $^{\prime}$	8	8	6	7	-	-	-	8	8
Fuilt									
Factor	-	-	-	-	10	9	11	-	-

Building Top-down Parsers

Building the complete table

- Need a row for every NT \& a column for every T
- Need an interpreter for the table (skeleton parser)

LL(1) Skeleton Parser

```
word \leftarrowNextWord() // Initial conditions, including
push EOF onto Stack // a stack to track local goals
push the start symbol, S, onto Stack
TOS }\leftarrow\mathrm{ top of Stack
loop forever
    if TOS = EOF and word = EOF then
        break & report success // exit on success
    else if TOS is a terminal then
        if TOS matches word then
            pop Stack // recognized TOS
            word }\leftarrow\mathrm{ NextWord()
        else report error looking for TOS // error exit
    else
                            // TOS is a non-terminal
        if TABLE[TOS,word] is A->\mp@subsup{B}{1}{}\mp@subsup{B}{2}{}\ldots..\mp@subsup{B}{k}{}}\mathrm{ then
            pop Stack // get rid of A
            push }\mp@subsup{B}{k}{},\mp@subsup{B}{k-1}{},\ldots,\mp@subsup{B}{1}{}\quad// in that order
        else break & report error expanding TOS
    TOS }\leftarrow\mathrm{ top of Stack
```


Building Top-down Parsers

Building the complete table

- Need a row for every NT \& a column for every T
- Need a table-driven interpreter for the table
- Need an algorithm to build the table

Filling in TABLE $[X, y], X \in N T, y \in T$

1. entry is the rule $X \rightarrow \beta$, if $y \in \operatorname{FIRST}^{+}(X \rightarrow \beta)$

- entry is error if rule 1 does not define

If any entry has more than one rule, G is not $\operatorname{LL}(1)$

We call this algorithm the $L L(1)$ table construction algorithm

