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Syntactic Analysis

Phase also known as: parser 
Purpose is to recognize source structure 
Input: tokens 
Output: parse tree or abstract syntax tree 
A recursive descent parser is one in which each 

nonterminal in the grammar is converted to a 
function which recognizes input derivable from the 
nonterminal.
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Terms

Nullable non-terminals 
First set
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T(EBNF) = Code: A → w

1 If w is nonterminal, call it. 
2 If w is terminal, match it against given token. 
3 If w is { w' }:   

while (token in First(w'))  T(w') 
4 If w is: w1 | ... | wn,  

switch (token) { 
case First(w1):  T(w1); break; 
... 
case First(wn):  T(wn); break;
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5 Switch (cont.): If some wi is empty, use: 
default: break; 

Otherwise 
default: error(token); 

6  If w = [ w' ], rewrite as ( | w' ) and use rule 4. 

7  If w = X1 ... Xn, T(w) = 
T(X1); ... T(Xn);
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Outline

See more general problems in a top down parser 
 Backtracking — select appropriate productions 
 Left recursion — revise grammars 
 Predictive parsing — more than recursive descent 
 Table-driven parsing 
  
 



Parsing Techniques

Top-down parsers     (LL(1), recursive descent) 
• Start at the root of the parse tree and grow toward leaves 
• Pick a production & try to match the input 
• Bad “pick” ⇒ may need to backtrack 
• Some grammars are backtrack-free           (predictive parsing) 

Bottom-up parsers     (LR(1), operator precedence) 
• Start at the leaves and grow toward root 
• As input is consumed, encode possibilities in an internal state 
• Start in a state valid for legal first tokens 
• Bottom-up parsers handle a large class of grammars



A top-down parser starts with the root of the parse tree 
The root node is labeled with the goal symbol of the grammar 

Top-down parsing algorithm: 

Construct the root node of the parse tree  
Repeat until lower fringe of the parse tree matches the input string 
1 At a node labeled A, select a production with A on its lhs and, for 

each symbol on its rhs, construct the appropriate child 
2 When a terminal symbol is added to the fringe and it doesn’t match 

the fringe, backtrack 
3 Find the next node to be expanded                              (label ∈ NT) 

The key is picking the right production in step 1 
— That choice should be guided by the input string

Top-down Parsing



Remember the expression grammar?

And the input x – 2 * y 

We will call this version “the classic expression grammar” 
— from last lecture  

0 Goal → Expr
1 Expr → Expr + Term
2 | Expr - Term
3 | Term
4 Term → Term * Factor
5 | Term / Factor
6 | Factor
7 Factor → ( Expr )
8 | number
9 | id



Let’s try x – 2 * y :

Rule Sentential Form Input
— Goal ↑x - 2 * y

Example

Goal

↑ is the position in the input buffer



Let’s try x – 2 * y :

Rule Sentential Form Input
— Goal ↑x - 2 * y
0 Expr ↑x - 2 * y
1 Expr +Term ↑x - 2 * y
3 Term +Term ↑x - 2 * y
6 Factor +Term ↑x - 2 * y
9 <id,x> +Term ↑x - 2 * y
→ <id,x> +Term x ↑- 2 * y

Example

Goal

Expr

Term+Expr

Term

Fact.

<id,x>

This worked well, except that “–” doesn’t match “+” 
The parser must backtrack to here

↑ is the position in the input buffer



Example

Continuing with x – 2 * y :
Goal

Expr

Term–Expr

Term

Fact.

<id,x>

⇒  Now, we need to expand Term - the last NT on the fringe

Rule Sentential Form Input
— Goal ↑x - 2 * y
0 Expr ↑x - 2 * y
2 Expr -Term ↑x - 2 * y
3 Term -Term ↑x - 2 * y
6 Factor -Term ↑x - 2 * y
9 <id,x> - Term ↑x - 2 * y
→ <id,x> -Term x ↑- 2 * y
→ <id,x> -Term x - ↑2 * y

Now, “-” and “-” match Now we can expand Term to match “2”



Where are we? 
• “2” matches “2” 
• We have more input, but no NTs left to expand 
• The expansion terminated too soon 
⇒ Need to backtrack 

Example

Trying to match the “2” in  x – 2 * y :
Goal

Expr

Term-Expr

Term

Fact.

<id,x>

Fact.

<num,2>

Rule Sentential Form Input
→ <id,x> - Term x - ↑2 * y
6 <id,x> - Factor x - ↑2 * y
8 <id,x> - <num,2> x - ↑2 * y
→ <id,x> - <num,2> x - 2 ↑* y



Example

Trying again with “2” in x – 2 * y :
Goal

Expr

Term–Expr

Term

Fact.

<id,x>

Fact.

<id,y>

Term

Fact.

<num,2>

*

This time, we matched & consumed all the input 
⇒Success! 

Rule Sentential Form Input
→ <id,x> - Term x - ↑2 * y
4 <id,x> - Term * Factor x - ↑2 * y
6 <id,x> - Factor * Factor x - ↑2 * y
8 <id,x> - <num,2> * Factor x - ↑2 * y
→ <id,x> - <num,2> * Factor x - 2 ↑* y
→ <id,x> - <num,2> * Factor x - 2 * ↑y
9 <id,x> - <num,2> * <id,y> x - 2 * ↑y
→ <id,x> - <num,2> * <id,y> x - 2 * y↑

The Point: 

The parser must make the right choice when it expands a NT.  
Wrong choices lead to wasted effort.



Other choices for expansion are possible 

!

!
This expansion doesn’t terminate                             

• Wrong choice of expansion leads to non-termination 
• Non-termination is a bad property for a parser to have 
• Parser must make the right choice

Another possible parse

Rule Sentential Form Input
— Goal ↑x - 2 * y
0 Expr ↑x - 2 * y
1 Expr +Term ↑x - 2 * y
1 Expr + Term +Term ↑x - 2 * y
1 Expr + Term +Term + Term ↑x - 2 * y
1 And so on ….   ↑x - 2 * y

Consumes no input!



Left Recursion
!

Top-down parsers cannot handle left-recursive grammars 

Formally, 
A grammar is left recursive if ∃ A ∈ NT such that   
∃ a derivation A ⇒+ Aα, for some string α ∈ (NT ∪ T )+ 

Our classic expression grammar is left recursive 

• This can lead to non-termination in a top-down parser 
• In a top-down parser, any recursion must be right recursion 
• We would like to convert the left recursion to right recursion 

Non-termination is always a bad property in a compiler



Eliminating Left Recursion

To remove left recursion, we can transform the grammar 

Consider a grammar fragment of the form 
Fee → Fee  α     
         |   β 

where neither α nor β start with Fee 

We can rewrite this fragment as  
Fee → β Fie 

Fie  → α Fie 

         |  ε 

where Fie is a new non-terminal

The new grammar defines 
the same language as the 
old grammar, using only 
right recursion.

Added a reference to 
the empty string
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Eliminating Left Recursion

Expr → Expr + Term

| Expr - Term

| Term

Term → Term * Factor

| Term * Factor

| Factor

Expr → Term Expr’

Expr’ → + Term Expr’

| - Term Expr’
| ε

Term → Factor Term’

Term’ → * Factor Term’

| / Factor Term’
| ε

The expression grammar contains two cases of left recursion 

Applying the transformation yields 

These fragments use only right recursion  
Right recursion often means right associativity.  In this case, the 

grammar does not display any particular associative bias.



Picking the “Right” Production
! If it picks the wrong production, a top-down parser may backtrack  

Alternative is to look ahead in input & use context to pick correctly 

How much lookahead is needed? 
• In general, an arbitrarily large amount 

Fortunately, 
• Large subclasses of CFGs can be parsed with limited lookahead 
• Most programming language constructs fall in those subclasses 

Among the interesting subclasses are LL(1)  and LR(1)  grammars 

We will focus, for now, on LL(1) grammars & predictive parsing



Predictive Parsing

Basic idea 
Given A → α | β, the parser should be able to choose between α & β	



FIRST sets 
For some rhs α∈G, define FIRST(α) as the set of tokens that 

appear as the first symbol in some string that derives from α  

That is, x ∈ FIRST(α) iff  α ⇒* x γ,  for some γ  



Predictive Parsing

Basic idea 
Given A → α | β, the parser should be able to choose between α & β	



FIRST sets 
For some rhs α∈G, define FIRST(α) as the set of tokens that 

appear as the first symbol in some string that derives from α  

That is, x ∈ FIRST(α) iff  α ⇒* x γ,  for some γ  

The LL(1)  Property   
If A → α and A → β both appear in the grammar, we would like  

FIRST(α) ∩ FIRST(β) = ∅	


This would allow the parser to make a correct choice with a lookahead 

of exactly one symbol ! This is almost correct 
See the next slide



Predictive Parsing
What about ε-productions? 
⇒ They complicate the definition of LL(1) 

If A → α and A → β and ε ∈ FIRST(α), then we need to ensure that 
FIRST(β) is disjoint from FOLLOW(A), too, where 

FOLLOW(A) = the set of terminal symbols that can immediately 
follow A in a sentential form 

Define FIRST+(A→α) as 
• FIRST(α) ∪ FOLLOW(A),  if ε ∈ FIRST(α) 
• FIRST(α), otherwise 

Then, a grammar is LL(1) iff A → α and A → β implies    

 FIRST+(A→α) ∩ FIRST+(A→β) = ∅



Recursive Descent Parsing

Recall the expression grammar, after transformation

This produces a parser with six 
mutually recursive routines: 
• Goal 
• Expr 
• EPrime 
• Term 
• TPrime 
• Factor 
Each recognizes one NT or T 

The term descent refers to the 
direction in which the parse tree 
is built.

0 Goal → Expr
1 Expr → Term Expr’
2 Expr’ → + Term Expr’
3 | - Term Expr’
4 | ε

5 Term → Factor Term’
6 Term’ → * Factor Term’
7 | / Factor Term’
8 | ε

9 Factor → ( Expr )
10 | number
11 | id



What If My Grammar Is Not LL(1) ?
Can we transform a non-LL(1) grammar into an LL(1) grammar? 
• In general, the answer is no 
• In some cases, however, the answer is yes 

Assume a grammar G with productions A → α β1 and A → α β2 

• If α derives anything other than ε, then 

FIRST+(A → α β1) ∩ FIRST+(A → α β2) ≠ ∅	



• And the grammar is not LL(1) 

If we pull the common prefix, α, into a separate production, we may make 
the grammar LL(1). 

A → α A’, A’ → β1 and A’ → β2 

Now, if FIRST+(A’ → β1) ∩ FIRST+(A’ → β2) = ∅,  G may be LL(1)



What If My Grammar Is Not LL(1) ?

Left Factoring 
!
!
!
!
!
!
!
!
This transformation makes some grammars into LL(1) grammars  
There are languages for which no LL(1) grammar exists

For each nonterminal A 
 find the longest prefix α common to 2 or more alternatives for A 
 if α ≠ ε then 
  replace all of the productions 
   A → α β1 | α β2 | α β3 | … | α βn | γ  

   with 
   A → α A’ | γ 
   A’ → β1 | β2 | β3 | … | βn  

Repeat until no nonterminal has alternative rhs’ with a common prefix



Left Factoring Example

Consider a simple right-recursive expression grammar

0 Goal → Expr
1 Expr → Term + Expr
2 | Term - Expr
3 | Term
4 Term → Factor * Term
5 | Factor / Term
6 | Factor
7 Factor → number
8 | id



Left Factoring Example

After Left Factoring, we have

0 Goal → Expr
1 Expr → Term Expr’
2 Expr’ → + Expr
3 | - Expr
4 | ε

5 Term → Factor Term’
6 Term’ → * Term
7 | /  Term
8 | ε

9 Factor → number
10 | id

This transformation makes some 
grammars into LL(1) grammars. 
There are languages for which no LL(1) 
grammar exists.



FIRST and FOLLOW Sets

FIRST(α) 
For some α ∈ (T ∪ NT )*, define FIRST(α) as the set of 

tokens that appear as the first symbol in some string that 
derives from α  

That is, x ∈ FIRST(α) iff  α ⇒* x γ,  for some γ  

FOLLOW(A) 
For some A ∈ NT, define FOLLOW(A) as the set of symbols 

that can occur immediately after A in a valid sentential 
form 

FOLLOW(S) = {EOF}, where S is the start symbol 

To build FOLLOW sets, we need FIRST sets …



Computing FIRST Sets

Already studied in previous lectures



Computing FOLLOW Sets

for each A ∈ NT, FOLLOW(A) ← Ø 

FOLLOW(S) ← {EOF } 

while (FOLLOW sets are still changing) 
 for each p ∈ P, of the form A→B1B2 … Bk 

  TRAILER ← FOLLOW(A) 
  for i ← k down to 1 
   if Bi ∈ NT then                             // domain check 
    FOLLOW(Bi) ← FOLLOW(Bi) ∪ TRAILER 
    if ε ∈ FIRST(Bi )                    // add right context  
       then TRAILER ← TRAILER ∪ ( FIRST(Bi) –  { ε } ) 
       else TRAILER ← FIRST(Bi)  // no ε => no right context 
   else TRAILER ← {Bi }                    // Bi ∈ T => only 1 symbol
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Classic Expression Grammar

14

Symbol FIRST FOLLOW
num num Ø
id id Ø
+ + Ø
- - Ø
* * Ø
/ / Ø
( ( Ø
) ) Ø

eof eof Ø
ε ε Ø

Goal (,id,num eof
Expr (,id,num ), eof
Expr’ +, -, ε ), eof
Term (,id,num +, -, ), eof
Term’ *, /, ε +,-, ), eof
Factor (,id,num +,-,*,/,),eof

FIRST+(A→β ) is identical to 
FIRST(β ) except for productiond 4 
and 8 

FIRST+(Expr’→ ε) is {ε,), eof} 

FIRST+(Term’→ ε) is {ε,+,-, ), eof}

0 Goal → Expr
1 Expr → Term Expr’
2 Expr’ → + Term Expr’
3 | - Term Expr’
4 | ε

5 Term → Factor Term’
6 Term’ → * Factor 
7 | / Factor 
8 | ε

9 Factor → number
10 | id
11 | ( Expr )



Classic Expression Grammar

Prod’n FIRST+
0 (,id,num
1 (,id,num
2 +
3 -
4 ε,), eof
5 (,id,num
6 *
7 /
8 ε,+,-, ), eof
9 number
10 id
11 (

0 Goal → Expr
1 Expr → Term Expr’
2 Expr’ → + Term Expr’
3 | - Term Expr’
4 | ε

5 Term → Factor Term’
6 Term’ → * Factor 
7 | / Factor 
8 | ε

9 Factor → number
10 | id
11 | ( Expr )



Building Top-down Parsers for LL(1) Grammars

Given an LL(1) grammar, and its FIRST & FOLLOW sets … 
• Emit a routine for each non-terminal 

— Nest of if-then-else statements to check alternate rhs’s 
— Each returns true on success and throws an error on false 
— Simple, working (perhaps ugly) code 

• This automatically constructs a recursive-descent parser 

Improving matters 
• Nest of if-then-else statements may be slow 

— Good case statement implementation would be better 

• What about a table to encode the options? 
— Interpret the table with a skeleton, as we did in scanning

I don’t know of a 
system that does this 
…



Strategy 
• Encode knowledge in a table 
• Use a standard “skeleton” parser to  
     interpret the table 

Example 
• The non-terminal Factor has 3 expansions 

— ( Expr )  or  Identifier  or  Number 

• Table might look like:

Building Top-down Parsers
0 Goal → Expr

1 Expr → Term Expr’

2 Expr’ → + Term Expr’

3 | - Term Expr’
4 | ε

5 Term → Factor Term’

6 Term’ → * Factor Term’

7 | / Factor Term’

8 | ε

9 Factor → number

10 | id

11 | ( Expr )

+ - * / Id. Num. ( ) EOF

Factor — — — — 10 9 11 — —

Terminal Symbols

Non- 
terminal 
Symbols

Expand Factor by rule 9 
with input “number”Cannot expand Factor into an 

operator ⇒ error 



Building Top-down Parsers

Building the complete table 
• Need a row for every NT & a column for every T



LL(1) Expression Parsing Table

+ – * / Id Num ( ) EOF

Goal — — — — 0 0 0 — —

Expr — — — — 1 1 1 — —

Expr’ 2 3 — — — — — 4 4

Term — — — — 5 5 5 — —

Term’ 8 8 6 7 — — — 8 8

Factor — — — — 10 9 11 — —
Row we built 
earlier



Building Top-down Parsers

Building the complete table 
• Need a row for every NT & a column for every T 
• Need an interpreter for the table (skeleton parser)



LL(1) Skeleton Parser
word ← NextWord()             // Initial conditions, including  
push EOF onto Stack             // a stack to track local goals 
push the start symbol, S, onto Stack 
TOS ← top of Stack 
loop forever 
   if TOS = EOF and word = EOF then 
       break & report success   // exit on success 
    else if TOS is a terminal then 
       if TOS matches word then 
           pop Stack        // recognized TOS 
           word ← NextWord() 
       else report error looking for TOS  // error exit 
    else            // TOS is a non-terminal 
       if TABLE[TOS,word] is A→ B1B2…Bk then 
           pop Stack                  // get rid of A 
           push Bk, Bk-1, …, B1      // in that order 
       else break & report error expanding TOS 
   TOS ← top of Stack



Building Top-down Parsers

Building the complete table 
• Need a row for every NT & a column for every T 
• Need a table-driven interpreter for the table 
• Need an algorithm to build the table 

Filling in TABLE[X,y], X ∈ NT, y ∈ T 

1. entry is the rule X→ β, if y ∈ FIRST+(X→ β) 
— entry is error if rule 1 does not define 

If any entry has more than one rule, G is not LL(1) 
!
We call this algorithm the LL(1) table construction algorithm


