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Review 



Introduction
 What is a PL? 
 Why to learn it?
 Four principled properties of a PL

 Syntax: on grammar correctness 
 Names: for variables, functions, types, etc.
 Types: collection of values and operations on them
 Semantics: on meaning of a program

 Four main paradigms of PL
 Imperative: program is a seq of commands
 OO: a collection of objects that interact
 Functional: a collection of mathematical functions
 Logic: what to solve 24
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 What makes a successful PL
 Simplicity and readability
 Clarity about binding
 Reliability
 Support
 Abstraction
 Orthogonality
 Efficient implementation
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Regular Grammar

Simplest; least powerful in Chomsky Hierarchy 
Equivalent to:
– Regular expression

– Finite-state automaton

Right regular grammar: ω ∈ T*, B ∈ N
A → ω B

A → ω 
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Regular Expressions

RegExpr  Meaning

x     a character x 

\x     an escaped character, e.g., \n

{ name }  a reference to a name

M | N   M or N

M N   M followed by N

M*   zero or more occurrences of M
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RegExpr  Meaning

M+   One or more occurrences of M
M?   Zero or one occurrence of M

[aeiou]  the set of vowels

[0-9]   the set of digits
.     Any single character



Set of productions: P
  terminal symbols: T
  nonterminal symbols: N
  start symbol:  

Associativity and Precedence 
Ambiguous Grammars
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BNF Grammar

� 

S ∈ N� 

A ∈ N

� 

ω ∈ (N∪T) *

� 

A→ω
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Extended BNF (EBNF)

EBNF: additional metacharacters
– {  }  for a series of zero or more

– (  )  for a list, must pick one

– [  ]  for an optional list; pick none or one
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Parse Trees

A parse tree is a graphical representation of  a 
derivation.
Each internal node of the tree corresponds to a step in the 

derivation.

The children of a node represents a right-hand side of a 
production.

Each leaf node represents a symbol of the derived string, 
reading from left to right.
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Parse Tree for 352 
as an Integer
Figure 2.1
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Abstract Syntax Tree

Output: parse tree is inefficient
 One nonterminal per precedence level

Shape of parse tree that is important
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Abstract Syntax Tree for 
z = x + 2*y;
Fig. 2.10
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Syntactic Analysis (Parser)
– LL & LR Grammar and Parser

• A-> A w ?  
– Recursive Descent Parser

• Each non-terminal has a corresponding function
• FirstSet and its calculation

– algorithm for computing the nullable sets
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Computer FirstSet

For w = X1 ... Xn V ...
First(w) = First(X1) ∪ ... ∪ First(Xn) ∪ First(V)

where X1, ..., Xn are nullable

and V is not nullable

A is nullable if it derives the empty string.

Nullable algorithm.
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Recursive Descent Parser 

– Grammar rewriting for convenience of parser 
development

– Apply FirstSet
– Parser development with an example

• Basic coding
• Output abstract syntax tree



Predictive Parsing

Basic idea 
Given A → α | β, the parser should be able to choose between α & β*

FIRST sets 
For some rhs α∈G, define FIRST(α) as the set of tokens that 

appear as the first symbol in some string that derives from α  

That is, x ∈ FIRST(α) iff  α ⇒* x γ,  for some γ  

The LL(1)  Property   
If A → α and A → β both appear in the grammar, we would like  

FIRST(α) ∩ FIRST(β) = ∅*
This would allow the parser to make a correct choice with a lookahead 

of exactly one symbol ! This is almost correct 
See the next slide
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LL and LR Parsers


