

Copyright © 2006 The McGraw-Hill Companies, Inc.

Review

Introduction
 What is a PL?
 Why to learn it?
 Four principled properties of a PL

 Syntax: on grammar correctness
 Names: for variables, functions, types, etc.
 Types: collection of values and operations on them
 Semantics: on meaning of a program

 Four main paradigms of PL
 Imperative: program is a seq of commands
 OO: a collection of objects that interact
 Functional: a collection of mathematical functions
 Logic: what to solve 24

Copyright © 2006 The McGraw-Hill Companies, Inc.

 What makes a successful PL
 Simplicity and readability
 Clarity about binding
 Reliability
 Support
 Abstraction
 Orthogonality
 Efficient implementation

Copyright © 2006 The McGraw-Hill Companies, Inc.

Compiler and Interpreter

Lexical
Analyzer

Syntactic
Analyzer

Semantic
Analyzer

Code
Optimizer

Code
Generator

To
ke

ns

A
bs

tr
ac

t S
yn

ta
x

Machine
Code

In
te

rm
ed

ia
te

 C
od

e (
IC

)

Source
Program In

te
rm

ed
ia

te
 C

od
e (

IC
)

syntactic
grammar
in regular
grammar

concrete
grammar
in context-free
grammar

syntax types names semantics4 PL principle
components:

Copyright © 2006 The McGraw-Hill Companies, Inc.

Regular Grammar

Simplest; least powerful in Chomsky Hierarchy
Equivalent to:
– Regular expression

– Finite-state automaton

Right regular grammar: ω ∈ T*, B ∈ N
A → ω B

A → ω

Copyright © 2006 The McGraw-Hill Companies, Inc.

Regular Expressions

RegExpr Meaning

x a character x

\x an escaped character, e.g., \n

{ name } a reference to a name

M | N M or N

M N M followed by N

M* zero or more occurrences of M

Copyright © 2006 The McGraw-Hill Companies, Inc.

RegExpr Meaning

M+ One or more occurrences of M
M? Zero or one occurrence of M

[aeiou] the set of vowels

[0-9] the set of digits
. Any single character

Set of productions: P
 terminal symbols: T
 nonterminal symbols: N
 start symbol:

Associativity and Precedence
Ambiguous Grammars

Copyright © 2006 The McGraw-Hill Companies, Inc.

BNF Grammar

�

S ∈ N�

A ∈ N

�

ω ∈ (N∪T) *

�

A→ω

Copyright © 2006 The McGraw-Hill Companies, Inc.

Extended BNF (EBNF)

EBNF: additional metacharacters
– { } for a series of zero or more

– () for a list, must pick one

– [] for an optional list; pick none or one

Copyright © 2006 The McGraw-Hill Companies, Inc.

Parse Trees

A parse tree is a graphical representation of a
derivation.
Each internal node of the tree corresponds to a step in the

derivation.

The children of a node represents a right-hand side of a
production.

Each leaf node represents a symbol of the derived string,
reading from left to right.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Parse Tree for 352
as an Integer
Figure 2.1

Copyright © 2006 The McGraw-Hill Companies, Inc.

Abstract Syntax Tree

Output: parse tree is inefficient
 One nonterminal per precedence level

Shape of parse tree that is important

Copyright © 2006 The McGraw-Hill Companies, Inc.

Abstract Syntax Tree for
z = x + 2*y;
Fig. 2.10

Copyright © 2006 The McGraw-Hill Companies, Inc.

Syntactic Analysis (Parser)
– LL & LR Grammar and Parser

• A-> A w ?
– Recursive Descent Parser

• Each non-terminal has a corresponding function
• FirstSet and its calculation

– algorithm for computing the nullable sets

Copyright © 2006 The McGraw-Hill Companies, Inc.

Computer FirstSet

For w = X1 ... Xn V ...
First(w) = First(X1) ∪ ... ∪ First(Xn) ∪ First(V)

where X1, ..., Xn are nullable

and V is not nullable

A is nullable if it derives the empty string.

Nullable algorithm.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Recursive Descent Parser

– Grammar rewriting for convenience of parser
development

– Apply FirstSet
– Parser development with an example

• Basic coding
• Output abstract syntax tree

Predictive Parsing

Basic idea
Given A → α | β, the parser should be able to choose between α & β*

FIRST sets
For some rhs α∈G, define FIRST(α) as the set of tokens that

appear as the first symbol in some string that derives from α

That is, x ∈ FIRST(α) iff α ⇒* x γ, for some γ

The LL(1) Property
If A → α and A → β both appear in the grammar, we would like

FIRST(α) ∩ FIRST(β) = ∅*
This would allow the parser to make a correct choice with a lookahead

of exactly one symbol ! This is almost correct
See the next slide

34

LL and LR Parsers

