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7.1  Motivation!

To provide an authoritative definition of the meaning 
of all language constructs for: 

1.  Programmers 

2.  Compiler writers 

3.  Standards developers 

A programming language is complete only when its 
syntax, type system, and semantics are well-
defined. 
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 !Semantics is a precise definition of the meaning of a 
syntactically and type-wise correct program. 

Ideas of meaning: 

•  The meaning attached by compiling using compiler 
C and executing using machine M.  Ex: Fortran on 
IBM 709. 

•  Axiomatize statements -- Chapter 12 

•  Statements as state transforming functions 

This chapter uses an informal, operational model. 
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7.2  Expression Semantics!
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 !

•  (a + b) - (c * d)!
•  Polish Prefix: - + a b * c d!
•  Polish Postfix: a b + c d * -!
•  Cambridge Polish: (- (+ a b) (* c d))!
Infix uses associativity and precedence to 

disambiguate.!
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Associativity of Operators 

Language  + - * /  Unary -  **  == != < ... 
C-like   L    R      L 

Ada    L    non   non  non 
Fortran   L    R    R   L 

 

Meaning of: a < b < c 
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Precedence of Operators 

Operators  C-like  Ada   Fortran 
Unary -   7    3    3 

**        5    5 
* /     6    4    4 

+ -     5    3    3 

== !=   4    2    2 
< <= ...   3    2    2 

not    7    2    2 
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Short Circuit Evaluation!

a and b evaluated as:  

 if a then b else false 

a or b evaluated as:  

 if a then true else b 
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Example 

Node p = head; 

while (p != null && p.info != key) 

        p = p.next; 

if (p == null) // not in list 

        ... 

else // found it 

        ... 

!
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Versus!

boolean found = false; 

while (p != null && ! found) { 

        if (p.info == key) 

                found = true; 

        else 

                p = p.next; 

} 

!
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Side Effect!

A change to any non-local variable or I/O. 
What is the value of: 

!i = 2; b = 2; c = 5;!
!a = b * i++ + c * i;!
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7.3 Program State!

The state of a program is the collection of all active 
objects and their current values. 

 Maps:  

1.  The pairing of active objects with specific 
memory locations,  

2.  and the pairing of active memory locations with  

  their current values. 
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 !

The current statement (portion of an abstract syntax 
tree) to be executed in a program is interpreted 
relative to the current state.   

The individual steps that occur during a program run 
can be viewed as a series of state transformations. 

For the purposes of this chapter, use only a map from 
a variable to its value; like a debugger watch 
window, tied to a particular statement. 
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 !// compute the factorial of n 
1   void main ( ) { 
2    int n, i, f; 
3     n = 3; 
4     i = 1; 
5     f = 1; 
6     while (i < n) { 
7         i = i + 1; 
8         f = f * i; 
9     } 
10   } 
!
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// compute the factorial of n 
1   void main ( ) { 
2    int n, i, f; 
3     n = 3; 
4     i = 1; 
5     f = 1; 
6     while (i < n) { 
7         i = i + 1; 
8         f = f * i; 
9     } 
10   } 
 

n   i   f 
 
 
undef  undef  undef 
3   undef   undef 
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// compute the factorial of n 
1   void main ( ) { 
2    int n, i, f; 
3     n = 3; 
4     i = 1; 
5     f = 1; 
6     while (i < n) { 
7         i = i + 1; 
8         f = f * i; 
9     } 
10   } 
 

n   i   f 
 
 
 
3   undef   undef 
3     1    undef 
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// compute the factorial of n 
1   void main ( ) { 
2    int n, i, f; 
3     n = 3; 
4     i = 1; 
5     f = 1; 
6     while (i < n) { 
7         i = i + 1; 
8         f = f * i; 
9     } 
10   } 
 

n   i   f 
 
 

   
  

3   1   undef 
3   1   1 
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// compute the factorial of n 
1   void main ( ) { 
2    int n, i, f; 
3     n = 3; 
4     i = 1; 
5     f = 1; 
6     while (i < n) { 
7         i = i + 1; 
8         f = f * i; 
9     } 
10   } 
 

n   i   f 
 
 

   
  
     

3   1   1 
3   1   1 
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// compute the factorial of n 
1   void main ( ) { 
2    int n, i, f; 
3     n = 3; 
4     i = 1; 
5     f = 1; 
6     while (i < n) { 
7         i = i + 1; 
8         f = f * i; 
9     } 
10   } 
 

n   i   f 
 
 

   
  
     
     

3   1   1 
3   2   1 
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// compute the factorial of n 
1   void main ( ) { 
2    int n, i, f; 
3     n = 3; 
4     i = 1; 
5     f = 1; 
6     while (i < n) { 
7         i = i + 1; 
8         f = f * i; 
9     } 
10   } 
 

n   i   f 
 
 

   
  
     

3   2   2      
     

3   2   1 
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// compute the factorial of n 
1   void main ( ) { 
2    int n, i, f; 
3     n = 3; 
4     i = 1; 
5     f = 1; 
6     while (i < n) { 
7         i = i + 1; 
8         f = f * i; 
9     } 
10   } 
 

n   i   f 
 
 

   
  
     

3   2   2      
3   2   2      
3   3   2 
3   3   6 
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// compute the factorial of n 
1   void main ( ) { 
2    int n, i, f; 
3     n = 3; 
4     i = 1; 
5     f = 1; 
6     while (i < n) { 
7         i = i + 1; 
8         f = f * i; 
9     } 
10   } 
 

n   i   f 
 
 

   
  
     

3   3   6      
         
     
     

3   3   6 
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7.4 Assignment Semantics!

Issues 

•  Multiple assignment 

•  Assignment statement vs. expression 

•  Copy vs. reference semantics 
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Multiple Assignment!

Example: 

!a = b = c = 0;!
Sets all 3 variables to zero. 

Problems??? 
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Assignment Statement vs. Expression!

•  In most languages, assignment is a statement; 
cannot appear in an expression. 

•  In C-like languages, assignment is an expression. 
–  Example: if (a = 0) ... // an error!
–  while (*p++ = *q++) ; // strcpy!
–  while (ch = getc(fp)) ...  // ???!
–  while (p = p->next) ...  // ??? 
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Copy vs. Reference Semantics!

•  Copy: a = b; 
–  a, b have same value. 

–  Changes to either have no effect on other. 

–  Used in imperative languages. 

•  Reference 
–  a, b point to the same object. 

–  A change in object state affects both 

–  Used by many object-oriented languages. 
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 !public void add (Object word, Object number) { 
    Vector set = (Vector) dict.get(word); 

    if (set == null) {  // not in Concordance 
        set = new Vector( ); 

        dict.put(word, set); 

    }  
    if (allowDupl || !set.contains(number))  

        set.addElement(number); 

} 
!
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7.5 Control Flow Semantics!

To be complete, an imperative language needs: 

•  Statement sequencing 

•  Conditional statement 

•  Looping statement 
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Sequence!

s1  s2!
Semantics: in the absence of a branch: 

•  First execute s1  
•  Then execute s2 

•  Output state of s1 is the input state of s2!
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Conditional!

IfStatement  → if ( Expresion ) Statement  

     [ else Statement ] 

Example: 

if (a > b)!
!z = a;!

else!
!z = b; 
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 !

If the test expression is true, 

then the output state of the conditional is the output 
state of the then branch, 

else the output state of the conditional is the output 
state of the else branch. 
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Loops!

WhileStatement → while ( Expression ) Statement 

The expression is evaluated. 

If it is true, first the statement is executed, 
and then the loop is executed again. 

 

Otherwise the loop terminates. 
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Semantic Interpretation

8.1  State Transformations and Partial 
Functions

8.2  Semantics of Clite
8.3  Semantics with Dynamic Typing
8.4! A Formal Treatment of Semantics
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Program State

The state of a program is the collection of all active 
objects and their current values.

Two maps in principle: 

1. active objects         memory locations, 

2. active memory locations           current values.
  Only one map for our class:

        variables            current values
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The current statement (portion of an abstract syntax 
tree) to be executed in a program is interpreted 
relative to the current state.  

The individual steps that occur during a program run 
can be viewed as a series of state transformations.

Relations with program execution
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Example (two maps): 

Environment
– i, j at memory locations 154, 155

{ <i, 154>, <j, 155> }

State
– i has value 13, j has value -1

{ ..., <154, 13>, <155, -1>, ...}

Simplified to one 
map:

{ <i, 13>, <j, -1> }
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8.1 State Transformations

Defn: The denotational semantics of a language 
defines the meanings of abstract language elements 
as a collection of state-transforming functions.

Defn: A semantic domain is a set of values whose 
properties and operations are independently well-
understood and upon which the rules that define 
the semantics of a language can be based.
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 // compute the factorial of n
1  void main ( ) {
2   int n, i, f;
3    n = 3;
4    i = 1;
5    f = 1;
6    while (i < n) {
7        i = i + 1;
8        f = f * i;
9    }
10  }

Example showing state transition
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// compute the factorial of n
1  void main ( ) {
2   int n, i, f;
3    n = 3;
4    i = 1;
5    f = 1;
6    while (i < n) {
7        i = i + 1;
8        f = f * i;
9    }
10  }

{<n, undef> <i, undef> <f, undef>}
{<n, 3>        <i, undef> <f, undef>}
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// compute the factorial of n
1  void main ( ) {
2   int n, i, f;
3    n = 3;
4    i = 1;
5    f = 1;
6    while (i < n) {
7        i = i + 1;
8        f = f * i;
9    }
10  }

{<n, 3>  <i, undef> <f, undef>}
{<n, 3>  <i, 1>        <f, undef>}
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// compute the factorial of n
1  void main ( ) {
2   int n, i, f;
3    n = 3;
4    i = 1;
5    f = 1;
6    while (i < n) {
7        i = i + 1;
8        f = f * i;
9    }
10  }

{<n, 3>  <i, 1>       <f, undef>}
{<n, 3>  <i, 1>        <f, 1>}
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// compute the factorial of n
1  void main ( ) {
2   int n, i, f;
3    n = 3;
4    i = 1;
5    f = 1;
6    while (i < n) {
7        i = i + 1;
8        f = f * i;
9    }
10  }

{<n, 3>  <i, 1> <f, 1>}
{<n, 3>  <i, 1>    <f, 1>}
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// compute the factorial of n
1  void main ( ) {
2   int n, i, f;
3    n = 3;
4    i = 1;
5    f = 1;
6    while (i < n) {
7        i = i + 1;
8        f = f * i;
9    }
10  }

{<n, 3>  <i, 1> <f, 1>}
{<n, 3>  <i, 2>    <f, 1>}
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// compute the factorial of n
1  void main ( ) {
2   int n, i, f;
3    n = 3;
4    i = 1;
5    f = 1;
6    while (i < n) {
7        i = i + 1;
8        f = f * i;
9    }
10  }

{<n, 3>  <i, 2> <f, 1>}
{<n, 3>  <i, 2>    <f, 2>}
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// compute the factorial of n
1  void main ( ) {
2   int n, i, f;
3    n = 3;
4    i = 1;
5    f = 1;
6    while (i < n) {
7        i = i + 1;
8        f = f * i;
9    }
10  }

{<n, 3>  <i, 2> <f, 2>}
{<n, 3>  <i, 2>    <f, 2>}
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// compute the factorial of n
1  void main ( ) {
2   int n, i, f;
3    n = 3;
4    i = 1;
5    f = 1;
6    while (i < n) {
7        i = i + 1;
8        f = f * i;
9    }
10  } {<n, 3>  <i, 3>    <f, 6>}
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8.2  C++Lite Semantics
State – represent the set of all program states
A meaning function M is a mapping:

M: Program → State

M: Statement x State → State

M: Expression x State → Value
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Meaning Rule 8.1
The meaning of a Program is defined to be the meaning 

of the body when given an initial state consisting of 
the variables of the decpart initialized to the undef 
value corresponding to the variable's type.

decpart: the declaration part of the program.
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State M (Program p) {

 // Program = Declarations decpart; Statement body

 return M(p.body, initialState(p.decpart));

}

public class State extends HashMap { ... }
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State initialState (Declarations d) {

 State state = new State( );

 for (Declaration decl : d) 

  state.put(decl.v,  Value.mkValue(decl.t));

 }

 return state;

}
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Statements
M: Statement x State → State

Abstract Syntax
Statement = Skip | Block | Assignment | Loop |

                     Conditional
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State M(Statement s, State state) {

 if (s instanceof Skip) return M((Skip)s, state);

 if (s instanceof Assignment) return M((Assignment)s, state);

 if (s instanceof Block) return M((Block)s, state);

 if (s instanceof Loop) return M((Loop)s, state);

 if (s instanceof Conditional) return M((Conditional)s, state);

 throw new IllegalArgumentException( );

}
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Meaning Rule 8.2
The meaning of a Skip is an identity function
on the state; that is, the state is unchanged.
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State M(Skip s, State state) {
 return state;

}
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public class Skip extends Statement {
...
public State meaning(State state) {
 return state;

}
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public abstract class Statement {
...
public abstract State meaning(State state) ;
...
}


