

Copyright © 2006 The McGraw-Hill Companies, Inc.

CSCI312 Principles of Programming
Languages!

Semantics

Xu Liu

Copyright © 2006 The McGraw-Hill Companies, Inc.

Contents!

7.1 Motivation
7.2 Expression Semantics
7.3 Program State
7.4 Assignment Semantics
7.5 Control Flow Semantics

Copyright © 2006 The McGraw-Hill Companies, Inc.

7.1 Motivation!

To provide an authoritative definition of the meaning
of all language constructs for:

1.  Programmers

2.  Compiler writers

3.  Standards developers

A programming language is complete only when its
syntax, type system, and semantics are well-
defined.

Copyright © 2006 The McGraw-Hill Companies, Inc.

 !Semantics is a precise definition of the meaning of a
syntactically and type-wise correct program.

Ideas of meaning:

•  The meaning attached by compiling using compiler
C and executing using machine M. Ex: Fortran on
IBM 709.

•  Axiomatize statements -- Chapter 12

•  Statements as state transforming functions

This chapter uses an informal, operational model.

Copyright © 2006 The McGraw-Hill Companies, Inc.

7.2 Expression Semantics!

Copyright © 2006 The McGraw-Hill Companies, Inc.

 !

•  (a + b) - (c * d)!
•  Polish Prefix: - + a b * c d!
•  Polish Postfix: a b + c d * -!
•  Cambridge Polish: (- (+ a b) (* c d))!
Infix uses associativity and precedence to

disambiguate.!

Copyright © 2006 The McGraw-Hill Companies, Inc.

Associativity of Operators

Language + - * / Unary - ** == != < ...
C-like L R L

Ada L non non non
Fortran L R R L

Meaning of: a < b < c

Copyright © 2006 The McGraw-Hill Companies, Inc.

Precedence of Operators

Operators C-like Ada Fortran
Unary - 7 3 3

** 5 5
* / 6 4 4

+ - 5 3 3

== != 4 2 2
< <= ... 3 2 2

not 7 2 2

Copyright © 2006 The McGraw-Hill Companies, Inc.

Short Circuit Evaluation!

a and b evaluated as:

 if a then b else false

a or b evaluated as:

 if a then true else b

Copyright © 2006 The McGraw-Hill Companies, Inc.

Example

Node p = head;

while (p != null && p.info != key)

 p = p.next;

if (p == null) // not in list

 ...

else // found it

 ...

!

Copyright © 2006 The McGraw-Hill Companies, Inc.

Versus!

boolean found = false;

while (p != null && ! found) {

 if (p.info == key)

 found = true;

 else

 p = p.next;

}

!

Copyright © 2006 The McGraw-Hill Companies, Inc.

Side Effect!

A change to any non-local variable or I/O.
What is the value of:

!i = 2; b = 2; c = 5;!
!a = b * i++ + c * i;!

Copyright © 2006 The McGraw-Hill Companies, Inc.

7.3 Program State!

The state of a program is the collection of all active
objects and their current values.

 Maps:

1.  The pairing of active objects with specific
memory locations,

2.  and the pairing of active memory locations with

 their current values.

Copyright © 2006 The McGraw-Hill Companies, Inc.

 !

The current statement (portion of an abstract syntax
tree) to be executed in a program is interpreted
relative to the current state.

The individual steps that occur during a program run
can be viewed as a series of state transformations.

For the purposes of this chapter, use only a map from
a variable to its value; like a debugger watch
window, tied to a particular statement.

Copyright © 2006 The McGraw-Hill Companies, Inc.

 !// compute the factorial of n
1 void main () {
2 int n, i, f;
3 n = 3;
4 i = 1;
5 f = 1;
6 while (i < n) {
7 i = i + 1;
8 f = f * i;
9 }
10 }
!

Copyright © 2006 The McGraw-Hill Companies, Inc.

// compute the factorial of n
1 void main () {
2 int n, i, f;
3 n = 3;
4 i = 1;
5 f = 1;
6 while (i < n) {
7 i = i + 1;
8 f = f * i;
9 }
10 }

n i f

undef undef undef
3 undef undef

Copyright © 2006 The McGraw-Hill Companies, Inc.

// compute the factorial of n
1 void main () {
2 int n, i, f;
3 n = 3;
4 i = 1;
5 f = 1;
6 while (i < n) {
7 i = i + 1;
8 f = f * i;
9 }
10 }

n i f

3 undef undef
3 1 undef

Copyright © 2006 The McGraw-Hill Companies, Inc.

// compute the factorial of n
1 void main () {
2 int n, i, f;
3 n = 3;
4 i = 1;
5 f = 1;
6 while (i < n) {
7 i = i + 1;
8 f = f * i;
9 }
10 }

n i f

3 1 undef
3 1 1

Copyright © 2006 The McGraw-Hill Companies, Inc.

// compute the factorial of n
1 void main () {
2 int n, i, f;
3 n = 3;
4 i = 1;
5 f = 1;
6 while (i < n) {
7 i = i + 1;
8 f = f * i;
9 }
10 }

n i f

3 1 1
3 1 1

Copyright © 2006 The McGraw-Hill Companies, Inc.

// compute the factorial of n
1 void main () {
2 int n, i, f;
3 n = 3;
4 i = 1;
5 f = 1;
6 while (i < n) {
7 i = i + 1;
8 f = f * i;
9 }
10 }

n i f

3 1 1
3 2 1

Copyright © 2006 The McGraw-Hill Companies, Inc.

// compute the factorial of n
1 void main () {
2 int n, i, f;
3 n = 3;
4 i = 1;
5 f = 1;
6 while (i < n) {
7 i = i + 1;
8 f = f * i;
9 }
10 }

n i f

3 2 2

3 2 1

Copyright © 2006 The McGraw-Hill Companies, Inc.

// compute the factorial of n
1 void main () {
2 int n, i, f;
3 n = 3;
4 i = 1;
5 f = 1;
6 while (i < n) {
7 i = i + 1;
8 f = f * i;
9 }
10 }

n i f

3 2 2
3 2 2
3 3 2
3 3 6

Copyright © 2006 The McGraw-Hill Companies, Inc.

// compute the factorial of n
1 void main () {
2 int n, i, f;
3 n = 3;
4 i = 1;
5 f = 1;
6 while (i < n) {
7 i = i + 1;
8 f = f * i;
9 }
10 }

n i f

3 3 6

3 3 6

Copyright © 2006 The McGraw-Hill Companies, Inc.

7.4 Assignment Semantics!

Issues

•  Multiple assignment

•  Assignment statement vs. expression

•  Copy vs. reference semantics

Copyright © 2006 The McGraw-Hill Companies, Inc.

Multiple Assignment!

Example:

!a = b = c = 0;!
Sets all 3 variables to zero.

Problems???

Copyright © 2006 The McGraw-Hill Companies, Inc.

Assignment Statement vs. Expression!

•  In most languages, assignment is a statement;
cannot appear in an expression.

•  In C-like languages, assignment is an expression.
–  Example: if (a = 0) ... // an error!
–  while (*p++ = *q++) ; // strcpy!
–  while (ch = getc(fp)) ... // ???!
–  while (p = p->next) ... // ???

Copyright © 2006 The McGraw-Hill Companies, Inc.

Copy vs. Reference Semantics!

•  Copy: a = b;
–  a, b have same value.

–  Changes to either have no effect on other.

–  Used in imperative languages.

•  Reference
–  a, b point to the same object.

–  A change in object state affects both

–  Used by many object-oriented languages.

Copyright © 2006 The McGraw-Hill Companies, Inc.

 !public void add (Object word, Object number) {
 Vector set = (Vector) dict.get(word);

 if (set == null) { // not in Concordance
 set = new Vector();

 dict.put(word, set);

 }
 if (allowDupl || !set.contains(number))

 set.addElement(number);

}
!

Copyright © 2006 The McGraw-Hill Companies, Inc.

7.5 Control Flow Semantics!

To be complete, an imperative language needs:

•  Statement sequencing

•  Conditional statement

•  Looping statement

Copyright © 2006 The McGraw-Hill Companies, Inc.

Sequence!

s1 s2!
Semantics: in the absence of a branch:

•  First execute s1
•  Then execute s2

•  Output state of s1 is the input state of s2!

Copyright © 2006 The McGraw-Hill Companies, Inc.

Conditional!

IfStatement → if (Expresion) Statement

 [else Statement]

Example:

if (a > b)!
!z = a;!

else!
!z = b;

Copyright © 2006 The McGraw-Hill Companies, Inc.

 !

If the test expression is true,

then the output state of the conditional is the output
state of the then branch,

else the output state of the conditional is the output
state of the else branch.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Loops!

WhileStatement → while (Expression) Statement

The expression is evaluated.

If it is true, first the statement is executed,
and then the loop is executed again.

Otherwise the loop terminates.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Semantic Interpretation

8.1 State Transformations and Partial
Functions

8.2 Semantics of Clite
8.3 Semantics with Dynamic Typing
8.4! A Formal Treatment of Semantics

Copyright © 2006 The McGraw-Hill Companies, Inc.

Program State

The state of a program is the collection of all active
objects and their current values.

Two maps in principle:

1. active objects memory locations,

2. active memory locations current values.
 Only one map for our class:

 variables current values

Copyright © 2006 The McGraw-Hill Companies, Inc.

The current statement (portion of an abstract syntax
tree) to be executed in a program is interpreted
relative to the current state.

The individual steps that occur during a program run
can be viewed as a series of state transformations.

Relations with program execution

Copyright © 2006 The McGraw-Hill Companies, Inc.

Example (two maps):

Environment
– i, j at memory locations 154, 155

{ <i, 154>, <j, 155> }

State
– i has value 13, j has value -1

{ ..., <154, 13>, <155, -1>, ...}

Simplified to one
map:

{ <i, 13>, <j, -1> }

Copyright © 2006 The McGraw-Hill Companies, Inc.

8.1 State Transformations

Defn: The denotational semantics of a language
defines the meanings of abstract language elements
as a collection of state-transforming functions.

Defn: A semantic domain is a set of values whose
properties and operations are independently well-
understood and upon which the rules that define
the semantics of a language can be based.

Copyright © 2006 The McGraw-Hill Companies, Inc.

 // compute the factorial of n
1 void main () {
2 int n, i, f;
3 n = 3;
4 i = 1;
5 f = 1;
6 while (i < n) {
7 i = i + 1;
8 f = f * i;
9 }
10 }

Example showing state transition

Copyright © 2006 The McGraw-Hill Companies, Inc.

// compute the factorial of n
1 void main () {
2 int n, i, f;
3 n = 3;
4 i = 1;
5 f = 1;
6 while (i < n) {
7 i = i + 1;
8 f = f * i;
9 }
10 }

{<n, undef> <i, undef> <f, undef>}
{<n, 3> <i, undef> <f, undef>}

Copyright © 2006 The McGraw-Hill Companies, Inc.

// compute the factorial of n
1 void main () {
2 int n, i, f;
3 n = 3;
4 i = 1;
5 f = 1;
6 while (i < n) {
7 i = i + 1;
8 f = f * i;
9 }
10 }

{<n, 3> <i, undef> <f, undef>}
{<n, 3> <i, 1> <f, undef>}

Copyright © 2006 The McGraw-Hill Companies, Inc.

// compute the factorial of n
1 void main () {
2 int n, i, f;
3 n = 3;
4 i = 1;
5 f = 1;
6 while (i < n) {
7 i = i + 1;
8 f = f * i;
9 }
10 }

{<n, 3> <i, 1> <f, undef>}
{<n, 3> <i, 1> <f, 1>}

Copyright © 2006 The McGraw-Hill Companies, Inc.

// compute the factorial of n
1 void main () {
2 int n, i, f;
3 n = 3;
4 i = 1;
5 f = 1;
6 while (i < n) {
7 i = i + 1;
8 f = f * i;
9 }
10 }

{<n, 3> <i, 1> <f, 1>}
{<n, 3> <i, 1> <f, 1>}

Copyright © 2006 The McGraw-Hill Companies, Inc.

// compute the factorial of n
1 void main () {
2 int n, i, f;
3 n = 3;
4 i = 1;
5 f = 1;
6 while (i < n) {
7 i = i + 1;
8 f = f * i;
9 }
10 }

{<n, 3> <i, 1> <f, 1>}
{<n, 3> <i, 2> <f, 1>}

Copyright © 2006 The McGraw-Hill Companies, Inc.

// compute the factorial of n
1 void main () {
2 int n, i, f;
3 n = 3;
4 i = 1;
5 f = 1;
6 while (i < n) {
7 i = i + 1;
8 f = f * i;
9 }
10 }

{<n, 3> <i, 2> <f, 1>}
{<n, 3> <i, 2> <f, 2>}

Copyright © 2006 The McGraw-Hill Companies, Inc.

// compute the factorial of n
1 void main () {
2 int n, i, f;
3 n = 3;
4 i = 1;
5 f = 1;
6 while (i < n) {
7 i = i + 1;
8 f = f * i;
9 }
10 }

{<n, 3> <i, 2> <f, 2>}
{<n, 3> <i, 2> <f, 2>}

Copyright © 2006 The McGraw-Hill Companies, Inc.

// compute the factorial of n
1 void main () {
2 int n, i, f;
3 n = 3;
4 i = 1;
5 f = 1;
6 while (i < n) {
7 i = i + 1;
8 f = f * i;
9 }
10 } {<n, 3> <i, 3> <f, 6>}

Copyright © 2006 The McGraw-Hill Companies, Inc.

8.2 C++Lite Semantics
State – represent the set of all program states
A meaning function M is a mapping:

M: Program → State

M: Statement x State → State

M: Expression x State → Value

Copyright © 2006 The McGraw-Hill Companies, Inc.

Meaning Rule 8.1
The meaning of a Program is defined to be the meaning

of the body when given an initial state consisting of
the variables of the decpart initialized to the undef
value corresponding to the variable's type.

decpart: the declaration part of the program.

Copyright © 2006 The McGraw-Hill Companies, Inc.

State M (Program p) {

 // Program = Declarations decpart; Statement body

 return M(p.body, initialState(p.decpart));

}

public class State extends HashMap { ... }

Copyright © 2006 The McGraw-Hill Companies, Inc.

State initialState (Declarations d) {

 State state = new State();

 for (Declaration decl : d)

 state.put(decl.v, Value.mkValue(decl.t));

 }

 return state;

}

Copyright © 2006 The McGraw-Hill Companies, Inc.

Statements
M: Statement x State → State

Abstract Syntax
Statement = Skip | Block | Assignment | Loop |

 Conditional

Copyright © 2006 The McGraw-Hill Companies, Inc.

State M(Statement s, State state) {

 if (s instanceof Skip) return M((Skip)s, state);

 if (s instanceof Assignment) return M((Assignment)s, state);

 if (s instanceof Block) return M((Block)s, state);

 if (s instanceof Loop) return M((Loop)s, state);

 if (s instanceof Conditional) return M((Conditional)s, state);

 throw new IllegalArgumentException();

}

Copyright © 2006 The McGraw-Hill Companies, Inc.

Meaning Rule 8.2
The meaning of a Skip is an identity function
on the state; that is, the state is unchanged.

Copyright © 2006 The McGraw-Hill Companies, Inc.

State M(Skip s, State state) {
 return state;

}

Copyright © 2006 The McGraw-Hill Companies, Inc.

public class Skip extends Statement {
...
public State meaning(State state) {
 return state;

}

Copyright © 2006 The McGraw-Hill Companies, Inc.

public abstract class Statement {
...
public abstract State meaning(State state) ;
...
}

