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Abstract—The on-line and dynamic estimation algorithm for
Rician fading channels in GSM-R networks is proposed, which
is an expansion of local mean power estimation of Rayleigh
fading channels. The proper length of statistical interval and
required number of averaging samples are determined which
are adaptive to different propagation environments. It takes
advantage of the sampling signals and Rician fading parame-
ters of last estimation to reduce measurement overhead. The
performance of this method was evaluated by measurement
experiment along the Beijing-Shanghai high-speed railway. When
it is NLOS propagation, the required sampling intervals can be
increased from 1.1λ in Lee’s method to 3.7λ of the on-line
and dynamic algorithm. And the sampling interval can be set
up to 12λ although the length of statistical interval decreases
when there is LOS signal, which can reduce the measurement
overhead significantly. The algorithm can be applied in coverage
assessment with lower measurement overhead, and in dynamic
and adaptive allocation of wireless resource.

I. INTRODUCTION

The high-speed railway has experienced rapid development
in recent years, and it is a critical infrastructure transporting
commodities, goods and passengers. The primary considera-
tion of high-speed railway infrastructure is safety, which has
become increasingly dependent on the information and com-
munication system. Since GSM-R networks are deployed for
communications between train and railway regulation control
centers in high-speed railway, it requires realtime measurement
to ensure the reliablity of the system [4]. At the same time,
it is necessary to make dynamic measurement due to the
complexity of the radio propagation environments and the
varied terrains along the high-speed railway route. It is crucial
to lower the estimation overhead so that on-line measurement
can be implemented to ensure the realtime reliability of GSM-
R networks and the high-speed railway system.

The propagation measurement in mobile networks plays an
important role in coverage assessment, dynamic channel allo-
cation, power control and handoff algorithms [3] [9] [17] [18].
Propagation models and measurement methods for wireless
communication channels are summarized in [2] [14], and a
propagation prediction method was presented in [13] which
is for the terrestrial point-to-area services in International
Telecommunication Union (ITU) recommendations. [1] and
[12] proposed two kind of modified Okumura-Hata propaga-
tion prediction models respectively based on the least squares
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Fig. 1. Radio Propagation Environments and terrains of GSM-R Networks

and Levenberg-Marquardet method. Most of the propagation
measurement and prediction methods are focused on path loss
and shadow fading, and multi-path fading is ignored which has
a major impact on networks’ performance. When multi-path
fading is taken into account, it is crucial to get the accurate
estimation of received signal power which indicates the link
quality of wireless communication.

Lee’s method proposed a standard procedure of local aver-
age power estimation, which determined the proper averaging
length and required sampling numbers for estimating the
local average in the case of Rayleigh fading channels [10].
The Generalized Lee method [6] allows estimating the mean
values without the requirement of a priori knowing distribution
function, which is based on a large number of measured field
data samples, but the optimum length of averaging interval
is calculated using all the routes of the database with high
overhead. Velocity adaptive handoff algorithms [3] get the
amount of spatial averaging required for local mean estimation
of Rician fading according to Lee’s standard procedure by
approximation, but it has too high overhead to be applied in
realtime measurement.



Since GSM-R networks are deployed along the high-speed
railway route with varied terrains, the radio propagation en-
vironments are very complex, as is shown in Fig. 1. It is
also obviously in Fig. 1 that the cell radius is normally
designed short and the terrain is generally flat, so the multi-
path fading should be characterized by Rician fading in this
case. There are many Rician channels estimation method such
as Training-based Estimation [5], Maximum Likelihood [15]
method, and the Expectation Maximization (EM) algorithm
[11]. The EM algorithm provides a complete iterative solution
to the Rician parameters estimation in synthetic aperture radar
images, which can also be applied in Rician fading channels’
parameter estimation.

This paper combined Lee’s method and EM algorithm to
estimate the Rician fading channels in GSM-R networks. The
basic procedure is same to the Lee’s method of local mean
power estimation, except that the multi-path fading is Rician
distributed. This method takes advantage of the sampling
signals and Rician fading parameters of last estimation to im-
prove estimation accuracy and reduce measurement overhead.
The determination of proper length of statistical interval and
required number of averaging samples are adaptive to different
propagation environments.

To evaluate the performance of this algorithm, we developed
the Um interface monitoring system for GSM-R networks, and
measurement experiment was carried out along the Beijing-
Shanghai high-speed railway. Firstly, it is illustrated that the
long-term and short-term fading can be differentiated sepa-
rately by the on-line estimating algorithm. Next, it requires
smaller sampling intervals in Lee’s method than that of on-line
method when it is NLOS propagation, which can be increased
from 1.1λ to 3.7λ. Finally, it does not need to make frequent
sampling although the length of statistical interval decreases
when there is LOS signal, which can be set up to 12λ to reduce
the measurement overhead.

The on-line and dynamic estimation algorithm can be used
in coverage assessment with lower measurement overhead
which is implemented in network planning, and it can also be
applied in realtime dynamic channel allocation, power control
and adaptive handoff algorithms. Since Rician fading is the
generalized model of multi-path fading channels, the algorithm
can also be introduced into measurement of other networks.

The rest of this paper is organized as follows. The prop-
agation models and the basic measurement framework are
given in Section II. Section III presents the procedure of on-
line propagation measurement in the case of Rician fading. In
Section IV, the on-line and dynamic estimation algorithm is
evaluated in experiment and its measurement performance is
analyzed in detail. Section V concludes the paper.

II. PROPAGATION MODELS AND MEASUREMENT
PROCEDURES

The received signal strength of Mobile Station (MS) on the
train in GSM-R networks is affected by many aspects, such as
the transmit power of Base Station (BS), distance between MS
and BS, and terrain of the radio propagation environments. In

general, the propagation model can be expressed as follows:

p2
r(x) = s(x)h(x) (1)

Pr(x) = S(x) +H(x) (2)

where x is the distance between MS and BS which can also
be replaced by time t. Since the distance d between railway
track and BS is very short, and then x =

√
d2 + v2

train · t2
can be deemed as x = vtrain · t by approximation. p2

r(x)
is the received signal square envelope which is composed of
the local mean power s(x) and multi-path fading h(x). The
model can also be expressed in logarithmic form as (2) in dB
values, where Pr(x) := 10 log(p2

r(x)), S(x) := 10 log(s(x))
and H(x) := 10 log(h(x)).

A. Shadow Fading

Generally, s(x) can be deemed as shadow fading, which is
commonly modeled as a Gaussian process with mean m(x)
and variance σ2

s .

s(x) ∼ N(m(x), σ2
s) (3)

where m(x) is meanly affected by path loss. In [14], it gives a
recommend model comprehensively considering the transmit
power of BS, the receive sensitivity of MS, the distance
between BS and MS, and the radio propagation environment.
The model can be simplified as (4).

M(x) = K1 +K2 log(x) (4)

where M(x) := 20 log(m(x)) is the logarithmic form of
m(x), K1 denotes the transmit power of BS which both
antenna gains and cable losses are taken into account, and
K2 is the topographic factor which changes with different
terrains [8] [12]. The spatial correlation function of S(x) can
be described by (5) based on measured data in urban and
suburban environments [7].

Rs(x) = σ2
s exp(−∆x/x0) (5)

where σs is the variance of S(x) which is typically between
4 and 12 dB, x0 is the correlation distance which is normally
vary from 10m to 500m in diffident environments [16], and
∆x is the spatial distance which can be expressed as the
velocity of mobile station and the sampling time interval by
∆x = vtrain · ∆t. In the model of shadow fading, the topo-
graphic factor K2, shadow fading’s variance σs and correlation
distance x0 are affected by different terrains, and they are
essential to the section of the hysteresis in handoff algorithms.
The correlation distance x0 and spatial distance ∆x affect the
optimum estimation accuracy of the local average power.

B. Multi-path Fading

The multi-path fading is the instantaneous fluctuation of
received signal due to diffraction and scattering, so the re-
ceived signal strength is a superposition of many contributions
coming from different directions as the receiver moves. Since
the phases are random, the sum can be described as a noise
signal to the local mean power. In GSM-R networks, the cell
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Fig. 2. Basic Procedures of Radio Propagation Measurement

radius is usually designed short and the terrain is generally
flat. Hence, the multi-path fading contains a possible Line Of
Sight (LOS) wave, so that it can be expressed as Rician fading,
which is composed of LOS and None Line Of Sight (NLOS)
components:

h(x) =
1√

1 +K
lim
M→∞

1√
M

M∑
m=1

ame
j( 2π

λ cos(θmx)+φm)

︸ ︷︷ ︸
NLOS Components

+

√
K

1 +K
ej(

2π
λ cos(θ0x+φ0))︸ ︷︷ ︸

LOS Component

(6)

where M is the number of independent scatterers, and λ
is the wavelength. θm(m = 0, 1, ...M) denote the angles
between the plane waves and mobile station antenna, and
φm(m = 0, 1, ...M) is the phases of each wave component.
In Racian fading, the power of LOS and NLOS signals can be
described by ν2 and 2σ2. K is the ratio between the power
in the direct path and the power in the other scattered paths,
that is K = ν2/2σ2. The received signal amplitude is then
Rician distributed with parameters ν2 and σ2, and the resulting
probability distribution function is:

f(y;σ, ν) =
y

σ2
e−

y2+ν2

2σ2 I0(
yν

σ2
) (7)

where I0(·) is the zero-order modified Bessel function of the
first kind. It can be deemed as Rayleigh fading when there
is NLOS signal where K = 0. In this case, h(x) and the
probability distribution function of received signal amplitude
can be expressed as:

h(x) = lim
M→∞

1√
M

M∑
m=1

ame
j( 2π

λ cos(θmx)+φm) (8)

f(y;σ) =
y

σ2
e−

y2

2σ2 (9)

The procedures of propagation measurement in GSM-R
networks is typically composed of the local mean power
estimation, propagation prediction and model correction, as
is demonstrated in Fig. 2. The received signal firstly passes
through a linear or log-linear amplifier to get pr(x) or Pr(x),
and then is filtered by an averaging filter to get the local mean
estimation s(x) or S(x). The estimation results can be used
for coverage assessment, channel allocation, power control and
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Fig. 3. On-line and Dynamic Estimation of Rician Fading Channels

handoff algorithms, which can achieve higher performance
combined with dynamic measurement and propagation predic-
tion of m(x) or M(x). The estimation accuracy is not only
influenced by train’s velocity but also by shadow fading and
multi-path fading, and it can be improved by the correction
of K1 and K2. In GSM-R networks, these steps should be
implemented realtime to ensure the system’s reliability.

III. ON-LINE AND DYNAMIC ESTIMATION OF RICIAN
FADING CHANNELS

The proper selection of sampling interval is critical in
local power estimation. If the sampling interval is set too
short, the fast fading part will still be present in the long-
term signal, but if the interval is chosen too long, the long-
term fading will also be filtered out. Since GSM-R networks
provide communications for high-speed railway, it is crucial
to make on-line propagation measurement with high accuracy
and low overhead. The on-line estimation algorithm in this
paper adopts the Lee’s standard procedure in the case of Rician
fading. Fig. 3 shows the basic estimation steps which mainly
consist of the determination of proper length of statistical
interval and required number of averaging samples.

A. Length of Statistical Intervals

For the propagation models presented in Section II, the
estimation of s(x) can be calculated by the integral spatial
average of h(x) as (10), and the variance of ŝ can be calculated
by (11).

ŝ =
1

2L

y+L∫
y−L

p2
r(x)dx =

s

2L

y+L∫
y−L

h(x)dx (10)

σ2
ŝ =

1

L

2L∫
0

(1− τ

2L
)Rp2r (τ)dτ (11)

where Rp2r (τ) = E[p2
r(x)p2

r(x+τ)]−E[p2
r(x)]E[p2

r(x+τ)] is
the autocovariance function of the squared envelope of pr(x),
and it can be derived from (6) and (7) by approximation [3]
as follows:

Rp2r (τ) = 4σ2[J2
0 (

2π

λ
τ) + 2KJ0(

2π

λ
τ) cos(

2π

λ
ητ)] (12)
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Fig. 4. Proper Length of Statistical Intervals

where J0(·) is the zero-order Bessel function, and η = cos θ0.
Then σ2

ŝ can be calculated by substituting (12) into (11).

σ2
ŝ =

4σ2

L

2L∫
0

(1− τ

2L
)[J2

0 (
2π

λ
τ) + 2KJ0(

2π

λ
τ) cos(

2π

λ
ητ)]dτ

ρ, τ
λ=
s2(2L− λ)λ

2(1 +K)2L2

2L
λ∫

0

[J2
0 (2πρ) + 2KJ0(2πρ) cos(2πη)]ρdρ

(13)

where σ2
ŝ → 0 as 2L/λ→∞. ŝ can be considered as Gaussian

distributed when 2L is large enough, and then the estimation
error can be defined as P e := 10 log10((ŝ+ σŝ)/(ŝ− σŝ)).

The above approach is also illustrated in [3], and the
statistical interval 2L is determined by the estimation of K. To
reduce the estimation overhead, EM algorithm [11] is utilized
to estimate the noise variance and the signal simultaneously.
The Rician fading parameters ν2 and σ2 are determined by the
signal samples and estimation results of last time as follows:

νk+1 =
1

N

N∑
i=1

I1(νkzi
σ2
k

)

I0(νkzi
σ2
k

)
(14)

σ2
k+1 =

1

2N

N∑
i=1

z2
i −

ν2
k

2
(15)

where I1(·) is is the first-order modified Bessel function of the
first kind, N is the number of averaging samples, νk and σk
are the estimation results of last recursion. The proper length
of statistics interval can be obtained in terms with ν2 and σ2

through P e = 1dB, as is shown in Fig. 4.

B. Number of Averaging Samples

Since it needs samples of received signal to sufficiently
mitigate the effects of fading, the required number of averaging
samples should be determined. The received power can be

calculated by r2 = 2σ2 + ν2 ≈ 1
N

∑N
i=1 z

2
i through (14)

and (15), and then the expectation and variance of r2 can
be calculated:

r̄2 = E[r2] =
1

N
E[

N∑
i=1

z2
i ] (16)

σr̄2 = D[r2] =
1

N2
D[

N∑
i=1

z2
i ] (17)

According to the characteristics of Rician distribution, it can
be expressed that z2

i = x2
i + y2

i where xi ∼ N(ν cos η, σ2)
and yi ∼ N(ν sin η, σ2) are statistically independent normal
random variables and η is any real number. Let x0i = xi/σ,
then x0i ∼ N(ν sin η, 1) and its sum subject to the non-
central χ2 distribution, that is

∑N
i=1 x

2
0i ∼ χ2

N (ν2 cos2 η). For
E[χ2

n(λ)] = n + λ and D[χ2
n(λ)] = 2n + 4λ, the mean and

variance of
∑N
i=1 x

2
i can be calculated by:

E[

N∑
i=1

x2
i ] = σ2E[

N∑
i=1

x2
0i]

= σ2E[χ2
N (ν2 cos2 η)]

= σ2(N + ν2 cos2 η)

(18)

D[

N∑
i=1

x2
i ] = σ4D[

N∑
i=1

x2
0i]

= σ4D[χ2
N (ν2 cos2 η)]

= σ4(2N + 4ν2 cos2 η)

(19)

and E[
∑N
i=1 y

2
i ] = σ2(N + ν2 sin2 η), D[

∑N
i=1 y

2
i ] =

σ4(2N + 4ν2 sin2 η) can also be calculated in the same way.
Then the expectation of r2 and its variance can be calculated
by:

r̄2 = E[
1

N

N∑
i=1

z2
i ] =

1

N
E[

N∑
i=1

(x2
i + y2

i )]

=
σ2

N
(N + ν2 cos2 η +N + ν2 sin2 η)

=
σ2

N
(2N + ν2)

(20)

σ2
r̄2

= D[
1

N

N∑
i=1

z2
i ] =

1

N2
D[

N∑
i=1

(x2
i + y2

i )]

=
σ4

N2
(2N + 4ν2 cos2 η + 2N + 4ν2 sin2 η)

=
σ4

N2
(4N + 4ν2)

(21)

The estimation error can be defined according to the stan-
dard Lee method that Q e = 10 log10((r̄2 + σr̄2)/r̄2), and
Fig. 5 gives the relationship between the required number of
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averaging samples and Rician fading parameter ν.

Q e = 10 log10(
r̄2 + σr̄2

r̄2
)

= 10 log10(
σ2

N (2N + ν2) + 2σ2

N

√
N + ν2

σ2

N (2N + ν2)
)

= 10 log10(
2N + ν2 + 2

√
N + ν2

2N + ν2
)

(22)

The required sampling intervals ∆d can be easily calculated
through 2L/N , which determined the sampling frequency
of on-line measurement. The sampling intervals ∆d has a
significant impact on the measurement accuracy and overhead.
Note that ∆d is the ratio of length of statistical interval 2L
and number of averaging samples N , it does not necessarily
mean frequent sampling when 2L gets short, for N may be
very small at the same time.

IV. MEASUREMENT EXPERIMENT AND PERFORMANCE
EVALUATION

This section presents the experiment and evaluation of on-
line and dynamic estimation algorithm proposed previously.
Received signal strength measurements, which is implemented
by GSM-R network monitoring system, were carried out along
the Beijing-Shanghai high-speed railway, and the accuracy and
overhead of the algorithm is evaluated in the following.

The measurement experiment is carried out by the Um
interface monitoring system of GSM-R networks, as is shown
in Fig. 6a. The system’s cpu module is RTD’s CME137686LX-
W including a 333MHz AMD Geode LX processor with
128kB L1 cache and 128kB L2 cache, and the communi-
cation module is COM16155RER-1 using Triorail’s GSM-R
engine TRM:3a. The system’s power supply, processor and
comunication module are connected through PC/104 bus, and
other peripherals through its specific interface. The software
is independently developed by our research group, which uses
Microsoft .NET Compact Framework in C#, and it can run on
various operating systems including Windows XP, Windows
Mobile, and Windows CE.

The received signal strength was collected along the
Beijing-Shanghai high-speed railway, as is shown in Fig. 6b.
Since the velocity of train is up to 300km/h and the sampling
interval is 500ms limited by the length of measurement multi-
frame, it requires repeated data collection to evaluate the
estimation algorithm.

(a) Um Interface Monitoring System (b) Experiment on High-Speed Railway

Fig. 6. Experiment along the Beijing-Shanghai High-Speed Railway
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Fig. 7. Measurement Results

The measurement results is demonstrated in Fig. 7a, and
the long-term and short-term fading are separated after on-
line propagation estimation. As is shown in Fig. 7b, the long-
term and short-term fading are differentiated so that they can
be analyzed separately. The long-term parts can be used to
make propagation prediction by Maximum Likelihood (ML)
or Minimum Mean Square Error (MMSE) estimator. On the
other hand, the short-term variations are essential to the section
of the hysteresis in handoff algorithms.

The estimation results is summarized in Table I, which
gives the statistical intervals and sampling numbers according
to different propagation environments. The type of different
terrain is distinguished by Rician fading factor K. It is
intensive area without LOS components when K = 0, and
the terrain becomes more flat gradually with the increase of
K. The results are compared to Lee’s method in the case
of K = 0 which means it is Rayleigh fading channels, and
it requires smaller sampling intervals in Lee’s method. The
power in the direct path increase as the terrain becomes flat,
and the number of averaging samples is less than 5 when ν
becomes larger than 10, which means it does not need frequent
sampling although the length of statistical interval decreases.



TABLE I
SUMMARY OF EXPERIMENT RESULTS

Terrain KKK(dB) ννν σσσ 2L(λ)2L(λ)2L(λ) NNN ∆d(λ)d(λ)d(λ) ∆ddd(m)
vtrainvtrainvtrain(km/h)

200 250 300
∆ttt(ms)

NLOS* 0 - - 40 36 1.1 0.367 2.20 1.76 1.47

Intensive areas 0 0 1 55 15 3.7 1.222 7.33 5.86 4.89
2 4 2 18 12 1.5 0.500 3.00 2.40 2.00
4 5.6 2 9 9 1.0 0.333 2.00 1.60 1.33
6 6 3 20 7 2.9 0.967 5.80 4.64 3.87
8 12 3 8 1 8.0 2.667 16.00 12.80 10.67

Open areas 10 18 4 12 1 12.0 4.000 24.00 19.20 16.00
* Caculated by Lee’s method of local mean power estimation in the case of Rayleigh fading

V. CONCLUSION

This paper proposed the on-line and dynamic estimation
algorithm of Rician fading channels in GSM-R networks,
which is crucial for realtime reliability. The paper gives the
basic procedure of this algorithm which is similar to the
Lee’s standard procedure except that the multi-path fading
channel is Rician distributed. Then we discussed the proper
length of statistical intervals and required number of averaging
samples, in which EM method is employed to reduce the
estimating overhead and make the measurement adaptive to
different environments. To evaluate the performance of the
algorithm, measurement experiments were implemented along
the Beijing-Shanghai high-speed railway. It is illustrated that
the long-term and short-term fading can be differentiated sep-
arately. It requires smaller sampling intervals in Lee’s method
than that of on-line method when it is NLOS propagation,
which can be increased from 1.1λ to 3.7λ. It does not need
to make frequent sampling although the length of statistical
interval decreases when there is LOS signal, it can be set up
to 12λ to reduce the measurement overhead. The on-line and
dynamic estimation algorithm can be not only used in coverage
assessment in network planning with lower overhead, but also
applied in realtime dynamic channel allocation, power control
and adaptive handoff. Since Rician fading is the generalized
model of multi-path fading channels, the algorithm can also
be introduced into measurement of other networks.

ACKNOWLEDGMENT

The research was supported in part by NSFC (No.
61172064, 61104091), Key Project of Ministry of Railway
(2010X020), Specialized Research Fund for Doctoral Program
of Higher Education (No. 20100073120061), SJTU Science
and Technology Innovation Funding (No. AE0300006) and
Program for New Century Excellent Talents in University (No.
NCET-11-0326).

REFERENCES

[1] L. Akhoondzadeh-Asl and N. Noori. Modification and tuning of the
universal okumura-hata model for radio wave propagation predictions.
In Asia-Pacific Microwave Conference, 2007., pages 1 –4, Dec. 2007.

[2] J.B. Andersen, T.S. Rappaport, and S. Yoshida. Propagation measure-
ments and models for wireless communications channels. Communica-
tions Magazine, IEEE, 33(1):42–49, 1995.

[3] M.D. Austin and G.L. Stuber. Velocity adaptive handoff algorithms
for microcellular systems. IEEE Transactions on Vehicular Technology,
43(3):549–561, 1994.

[4] G. Baldini, I. Nai Fovino, M. Masera, M. Luise, V. Pellegrini, E. Bagagli,
G. Rubino, R. Malangone, M. Stefano, and F. Senesi. An early warning
system for detecting gsm-r wireless interference in the high-speed
railway infrastructure. International Journal of Critical Infrastructure
Protection, 2010.

[5] E. Bjornson and B. Ottersten. A framework for training-based estimation
in arbitrarily correlated rician mimo channels with rician disturbance.
IEEE Transactions on Signal Processing, 58(3):1807 –1820, March
2010.

[6] D. de la Vega, S. Lopez, J.M. Matias, U. Gil, I. Pena, M.M. Velez,
J.L. Ordiales, and P. Angueira. Generalization of the lee method for
the analysis of the signal variability. IEEE Transactions on Vehicular
Technology, 58(2):506 –516, Feb. 2009.

[7] M. Gudmundson. Correlation model for shadow fading in mobile radio
systems. Electronics letters, 27(23):2145–2146, 1991.

[8] M. Hata. Empirical formula for propagation loss in land mobile radio
services. IEEE Transactions on Vehicular Technology, 29(3):317–325,
1980.

[9] K.I. Itoh, S. Watanabe, J.S. Shih, and T. Sato. Performance of handoff
algorithm based on distance and rssi measurements. IEEE Transactions
on Vehicular Technology, 51(6):1460–1468, 2002.

[10] W.C.Y. Lee. Estimate of local average power of a mobile radio signal.
IEEE Transactions on Vehicular Technology, 34(1):22–27, 1985.

[11] T.L. Marzetta. Em algorithm for estimating the parameters of a
multivariate complex rician density for polarimetric sar. In Interna-
tional Conference on Acoustics, Speech, and Signal Processing, 1995.,
volume 5, pages 3651–3654. IEEE, 1995.

[12] A. Medeisis and A. Kajackas. On the use of the universal okumura-
hata propagation prediction model in rural areas. In IEEE 51st Vehicular
Technology Conference Proceedings, 2000., volume 3, pages 1815–1818.
IEEE, 2000.

[13] E. Ostlin, H. Suzuki, and H.-J. Zepernick. Evaluation of the propaga-
tion model recommendation itu-r p.1546 for mobile services in rural
australia. IEEE Transactions on Vehicular Technology, 57(1):38 –51,
Jan. 2008.

[14] T.K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Palma. A survey
of various propagation models for mobile communication. Antennas and
Propagation Magazine, IEEE, 45(3):51–82, 2003.

[15] J. Sijbers, A.J. Den Dekker, P. Scheunders, and D. Van Dyck. Maximum-
likelihood estimation of rician distribution parameters. IEEE Transac-
tions on Medical Imaging, 17(3):357–361, 1998.
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