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Abstract The dynamic estimation algorithm for Rician

fading channels in GSM-R networks is proposed, which is

an expansion of local mean power estimation of Rayleigh

fading channels. The proper length of statistical interval

and required number of averaging samples are determined

which are adaptive to different propagation environments.

It takes advantage of signal samples and Rician fading

parameters of last estimation to reduce measurement

overhead. The performance of this method was evaluated

by measurement experiments along Beijing–Shanghai

high-speed railway. When it is NLOS propagation, the

required sampling intervals can be increased from 1:1k in

Lee’s method to 3:7k of the dynamic algorithm. The

sampling intervals can be set up to 12k although the length

of statistical intervals decrease when there is LOS signal,

which can reduce the measurement overhead significantly.

The algorithm can be applied in coverage assessment with

lower measurement overhead, and in dynamic and adaptive

allocation of wireless resource.

Keywords GSM-R � Rician fading channel �
Local power estimation � Propagation measurement

1 Introduction

The high-speed railway has experienced rapid development

in recent years, and it is a critical infrastructure transport-

ing passengers, commodities, and goods. The primary

consideration of high-speed railway infrastructure is safety,

which has become increasingly dependent on the infor-

mation and communication system. Since GSM-R net-

works are deployed for communications between train and

railway regulation control centers in high-speed railway, it

requires real-time measurement to ensure the reliability of

the system [6, 9]. At the same time, it is necessary to make

dynamic measurement due to the complexity of the radio

propagation environments and the varied terrains along the

high-speed railway route. It is crucial to lower the esti-

mation overhead so that on-line measurement can be

implemented to ensure the real-time reliability of GSM-R

networks and the high-speed railway system.

The propagation measurement in mobile networks plays

an important role in coverage assessment, dynamic channel

allocation, power control and handoff algorithms [4, 14, 27, 28].

Propagation models and measurement methods for wire-

less communication channels were summarized in [3, 22],

and a propagation prediction method was presented in [19]

which is for the terrestrial point-to-area services in Interna-

tional Telecommunication Union (ITU) recommendations.
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These propagation models are widely used in wireless

communication systems [21, 26], and specially in wireless

systems of railway [23]. The authors in [2] and [17] proposed

two kind of modified Okumura-Hata propagation prediction

models respectively based on the least squares and Leven-

berg–Marquardt method. Most of the propagation measure-

ment and prediction methods are focused on path loss and

shadow fading [11, 20, 7], and multi-path fading is ignored

which has a major impact on networks’ performance. When

multi-path fading is taken into account, it is crucial to get the

accurate estimation of received signal power which indicates

the link quality of wireless communication [10, 25]. For GSM-

R networks, there are some specific requirements to ensure the

real-time reliability and safety of high-speed railway systems:

(a) It is crucial to reduce the estimation overhead so that

the on-line monitoring can be implemented and

ensure the real-time reliability;

(b) It is necessary to make dynamic measurement due to

the feature of propagation environments along the

high-speed railway routes.

Lee’s method proposed a standard procedure of local

average power estimation, which determined the proper

length and required sampling numbers for estimating the

local average in the case of Rayleigh fading channels [15].

The Generalized Lee method [8] allows to estimate the

local mean power without priori knowledge of the distri-

bution function of fading channels, which is based on the

measured samples of field data, but the optimum length of

averaging interval is calculated using all the routes of the

database with high overhead. Velocity adaptive handoff

algorithms [4] get the amount of spatial averaging required

for local mean estimation of Rician fading according to

Lee’s standard procedure by approximation, but it has too

high overhead to be applied in real-time measurement.

Since GSM-R networks are deployed along the high-

speed railway routes with varied terrains, the radio prop-

agation environments are very complex, as is shown in

Fig. 1. It is also obvious in Fig. 1 that the cell radius is

normally designed short and the terrains are generally flat,

so the multi-path fading should be characterized by Rician

but not Rayleigh fading in this case. There are many Rician

channels estimation methods such as Training-based Esti-

mation [6], Maximum Likelihood [24] estimation, Expec-

tation Maximization (EM) algorithm [16], and many other

methods [1, 18]. The EM algorithm provides a complete

iterative solution to the Rician parameters estimation in

synthetic aperture radar images, which can also be applied

in parameter estimation of Rician fading channels. There-

fore, the high-speed mobility and Rician fading channels

aggravate the real-time estimation of local mean power.

The difficulties and challenges for dynamic estimation of

local mean power in GSM-R networks are:

(a) Speed is 250–300 km/h for China high-speed railway;

(b) Terrains include mountains, viaducts, plains, etc.;

(c) Wireless interface is sensitive to propagation changes;

(d) Services should not be aggravated by measurement.

This paper combines Lee’s method and EM algorithm to

estimate the Rician fading channels in GSM-R networks.

The basic procedure is same to the Lee’s method of local

mean power estimation, except that the multi-path fading is

Rician distributed. This method takes advantage of the

sampling signals and Rician fading parameters of last esti-

mation to improve estimation accuracy and reduce mea-

surement overhead. The determination of statistical interval

length and averaging samples number are adaptive to dif-

ferent propagation environments, which strike a suitable

balance between measurement accuracy and overhead.

To evaluate the performance of this algorithm, we

developed the Um interface monitoring system for GSM-R

networks, and measurement experiments were carried out

along the Beijing–Shanghai high-speed railway. First, it is

illustrated that the long-term and short-term fadings can be

differentiated separately by the dynamic estimating algo-

rithm. Next, it requires smaller sampling intervals in Lee’s

method than that of proposed method when it is None Line

Of Sight (NLOS) propagation, which can be increased

from 1.1 to 3.7k. Finally, it does not need to make frequent

sampling although the length of statistical interval

decreases when there is Line Of Sight (LOS) signal, which

can be set up to 12k to reduce the measurement overhead.

The dynamic estimation algorithm can be used in cov-

erage assessment with lower measurement overhead, and it

can also be applied in real-time operating such as channel

allocation, power control and adaptive handoff algorithms.

Since Rician fading is the generalized model of multi-path

fading channels, it can also be introduced into measure-

ment of other wireless networks.

The rest of this paper is organized as follows. The propa-

gation models including shadow fading and multi-path fading

are given in Sect. 2. In Sect. 3, the measurement framework and

basic procedures are presented. Section 4 demonstrates the

dynamic propagation measurement of Rician fading channels.

The algorithm design and implementation are illustrated in

Sect. 5. In Sect. 6, the measurement experiments and perfor-

mance evaluation are analyzed. Section 7 concludes the paper.

2 Propagation models

The received signal strength of Mobile Station (MS) is

affected by many aspects, such as the transmit power of

Base Station (BS), distance between MS and BS, and ter-

rain of the radio propagation environments. In general, the

propagation model can be expressed by:
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p2
r ðxÞ ¼ sðxÞhðxÞ; ð1Þ

where x is the distance between MS and BS which can also be

replaced by time t. Since the distance d between railway track

and BS is very short, which is usually\10 m as is shown in

Fig. 2. Then Dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ v2
train � Dt2

p

can be deemed as Dx ¼
vtrain � Dt by approximation. pr

2(x) is the received signal

square envelope which is composed of the local mean power

s(x) and multi-path fading h(x). The model can also be

expressed in logarithmic form in dB values:

PrðxÞ ¼ SðxÞ þ HðxÞ; ð2Þ

where Pr(x) = 10log(pr
2(x)), S(x) = 10log(s(x)) and H(x) =

10log(h(x)).

2.1 Shadow fading

Generally, s(x) is can be modeled as a Gaussian process

with mean m(x) and variance rs
2

sðxÞ�N mðxÞ; r2
s

� �

; ð3Þ

where m(x) is mainly affected by path loss. In [22], it gives

a recommend model comprehensively considering the

transmit power of BS, the receive sensitivity of MS, the

distance between BS and MS, and the radio propagation

environments, which can be simplified by:

MðxÞ ¼ K1 þ K2 logðxÞ; ð4Þ

where M(x): = 20log(m(x)) is the logarithmic form of

m(x), K1 denotes the transmit power of BS in which both

antenna gains and cable losses are taken into account, and

K2 is the topographic factor which changes with different

terrains [13, 17]. The spatial correlation function of S(x)

can be described by (5) based on the measured data of

received signal strength in urban and suburban

environments [12] as follows:

RsðxÞ ¼ r2
s exp �Dx

x0

� �

; ð5Þ

where rs is the variance of S(x) which is typically between

4 and 12 dB, x0 is the correlation distance which is nor-

mally vary from 10 to 500 m in different propagation

environments [25], and Dx is the spatial distance which can

be expressed as the velocity of MS and sampling interval

by Dx ¼ vtrain � Dt. In the model of shadow fading, the

topographic factor K2, shadow fading’s variance rs and

correlation distance x0 are affected by different terrains,

and they are essential to the section of hysteresis of handoff

algorithms. The correlation distance x0 and spatial distance

Dx will affect the optimum accuracy of local mean power

estimation.

(a) (b)

(c) (d)

Fig. 1 Wireless propagation environments and terrains along GSM-R networks. a Viaduct. b Tunnel. c Shanghai Hongqiao Station. d Qinghai–

Tibet Railway
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2.2 Multi-path fading

The multi-path fading is the instantaneous fluctuation of

received signal due to diffraction and scattering, so the

received signal strength is a superposition of many con-

tributions coming from different directions as the receiver

moves. Since the phases are random, the sum can be

described as a noise signal to the local mean power. In

GSM-R networks, the cell radius is short and the terrains

are generally flat. Hence, the multi-path fading contains

LOS wave combined with NLOS components, which can

be expressed by Rician fading:

hðxÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffi

1þ K
p lim

M!1

1
ffiffiffiffiffi

M
p

X

M

m¼1

amej 2p
k cosðhmxÞþ/mð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

NLOSComponents

ð6Þ

where M is the number of independent scatterers, and k is the

wavelength. hmðm ¼ 0; 1; . . .MÞ denote the angles between

plane waves and mobile station antenna, and /mðm ¼ 0;

1; . . .MÞ is the phase of each wave component. In Rician

fading, the power of LOS and NLOS signals can be described

by m2 and 2r2. K is the ratio between the power in the direct

path and the power in the other scattered paths, that is

K = m2/2r2. The received signal amplitude is then Rician

distributed with parameters m2 and r2, and the resulting

Probability Distribution Function (PDF) is:

f ðy; r; mÞ ¼ y

r2
e�

y2þm2

2r2 I0

ym
r2

� 	

; ð7Þ

where I0ð�Þ is the zero-order modified Bessel function of

the first kind. It can be deemed as Rayleigh fading when

there is no LOS signal, i.e., K = 0. In this case, h(x) and

the PDF of received signal amplitude can be expressed as:

hðxÞ ¼ lim
M!1

1
ffiffiffiffiffi

M
p

X

M

m¼1

amej 2p
k cosðhmxÞþ/mð Þ; ð8Þ

f ðy; rÞ ¼ y

r2
e�

y2

2r2 : ð9Þ

3 Measurement procedures

The procedures of propagation measurement in GSM-R

networks is typically composed of the local mean power

estimation, propagation prediction and model correction, as

is demonstrated in Fig. 3. The received signal firstly passes

through a linear or log-linear amplifier to get pr(x) or Pr(x),

and then is filtered by an averaging filter to get the local

mean estimation s(x) or S(x). The estimation results can be

used for coverage assessment, channel allocation, power

control and handoff algorithms, which can achieve higher

performance combined with dynamic measurement and

propagation prediction of m(x) or M(x). The estimation

accuracy is not only influenced by train’s velocity but also

by shadow fading and multi-path fading, and it can be

improved by the correction of K1 and K2. In GSM-R net-

works, these steps should be implemented real-time to

ensure the system’s reliability.

The basic consideration in local power estimation is the

sampling frequency which is determined by the length of

statistical intervals and number of averaging samples. The

received signal strength of wireless propagation is influ-

enced by the environments, so the local mean power esti-

mation should be dynamic to the networks status,

especially for GSM-R networks. Figure 4 demonstrates the

time varying and location difference characteristics of

received signal strength Pr(x) in mobile wireless networks,

which indicates the facts that: certain received signal

Fig. 2 The distance between

MS and BS can be represented

by vtrain � t by approximation

Fig. 3 Basic procedures of wireless propagation measurement
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strength carve contains both long-term and short-term

fluctuation in Fig. 4a; the overall received signal strength

shows different characteristics for different routes in

Fig. 4b. Since the received signal strength Pr(x) is chang-

ing in both large and small time scale, the local mean

power estimation should also be adaptive to this

fluctuation.

A more detailed illustration is given in Fig. 5, which

shows the estimation results with different sampling inter-

vals. If the length of averaging interval is set too short, the

rapid variations of signal strength will remain in estimation

results. This will lead to unstable fluctuation of up-layer

decisions, for instance the phenomenon of ping–pong

handover when the received signal strength Pr(x) is fluctu-

ating around the threshold. On the other hand, it will lost

some crucial information if the statistical interval length is

chosen to be too long. As is shown in Fig. 5, the result

overestimates the received signal strength when Dt ¼
100 ms, especially when there is a sudden decline for

received signal strength Pr(x). This overestimation will lead

to the decrease of quality of service that the system can

provide according to current status.

Lee’s method proposed a standard procedure of local

average power estimation, which determined the proper

length and required sampling numbers for estimating the

local average. But Lee’s method is conducted in the case of

Rayleigh fading channels, which can not be adaptive

to environmental changes. The Generalized Lee method

allows estimating the mean values without the requirement

of a priori knowing the distribution function, which is

based on measured field data samples. However, the opti-

mum length of averaging interval is calculated using all the

routes of the database with high overhead. To make the

local mean power estimation adaptive to dynamic proro-

gation environments with low measurement overhead, the

on-line estimation algorithm is proposed which is analyzed

in Rician fading channels. The basic process and analysis is

presented in detail in the following section.

4 Dynamic estimation of local mean power

The proper selection of sampling interval is critical in local

power estimation. If the sampling interval is set too short,

the fast fading part will still be present in the long-term

signal. But if the interval is chosen too long, the long-term

fading will also be filtered out. Since GSM-R networks

provide wireless communications for high-speed railway, it

is crucial to make on-line propagation measurement with

high accuracy and low overhead. The on-line estimation

algorithm in this paper adopts the Lee’s standard procedure

in the case of Rician fading. It is mainly consist of the

determination of proper length of statistical interval and

required number of averaging samples.

4.1 Length of statistical intervals

The local mean power is estimated by the integrate averaging

of sampled signal envelope pr(x) over a suitable length

2L. The proper selection of 2L should be determined so that

the long- and short-term signals can be separated accurately.

(a) (b)Fig. 4 a Time varying and

b location difference

characteristics of received

signal strength in mobile

wireless networks, composed of

both of LOS and NLOS

scenarios

Fig. 5 Estimating with update periods of 50/100 ms will overesti-

mate 20 % of received signal strength when there is a sudden decline
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For the propagation models presented in Sect. 2, the

estimation of s(x) can be calculated by the integral spatial

average of h(x) as (10)

ŝ ¼ 1

2L

Z

yþL

y�L

p2
r ðxÞdx ¼ s

2L

Z

yþL

y�L

hðxÞdx; ð10Þ

where 2L is the length of statistical intervals. When 2L is

properly chosen, the estimated mean ŝ will approach the

true value s, i.e., ŝ! s. At the same time, the averaging of

the short-term fading will be

1

2L

Z

yþL

y�L

hðxÞdx! 1: ð11Þ

To evaluate the measurement accuracy, the normalized

error can be defined as follows:

Definition 1 The normalized estimation error of (10) can

be calculated as follows:

Pe :¼ 10 log10

ŝþ rŝ

ŝ� rŝ

� �

; ð12Þ

where rŝ is the variance of ŝ.

For Rician fading channels, we can get the following

theorem about normalized estimation error Pe.

Theorem 1(Length of Statistical Intervals)

Pe :¼ 10 log10

2r2þm2

2r2 nþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ nÞ
R n

0
g m2

2r2 ; q
� �

dq
q

2r2þm2

2r2 n�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ nÞ
R n

0
g m2

2r2 ; q
� �

dq
q

0

B

@

1

C

A

:

ð13Þ

The detailed proof of Theorem 1 is listed in ‘‘Appendix’’

Sect. 8.1. Theorem 1 shows that the increase of Pe has

logarithmical relationship with the ratio of m2 to r2. The

proper length of statistics interval can be obtained in terms

with m2 and r2 through Pe = 1 dB, i.e., 2L = f2L(k; m, r)

or 2L/k = f2L/k(m, r), as is shown in Fig. 6.

4.2 Number of averaging samples

Since it needs samples of received signal to sufficiently

mitigate the effects of fading, the required number of aver-

aging samples should be determined. The received power

can be calculated by r2 ¼ 2r2 þ m2 � 1
N

PN
i¼1 z2

i through

(18) and (19), which will be presented in the following. The

expectation and variance of r2 can be calculated:

�r2 ¼ E r2

 �

¼ 1

N
E
X

N

i¼1

z2
i

" #

; ð14Þ

r �r2 ¼ D r2

 �

¼ 1

N2
D
X

N

i¼1

z2
i

" #

: ð15Þ

Similar to the normalized error of ŝ, we can have the

following definition:

Definition 2 The normalized estimation error of �r2 can be

defined according to the standard Lee method that

Qe ¼ 10 log10

�r2 þ r �r2

�r2

� �

: ð16Þ

According to the properties of Rician distribution, we

can get the following theorem about the number of

averaging samples, which can be proven by non-central

v2 distribution as shown in ‘‘Appendix’’ Sect. 8.2.

Theorem 2 (Number of Averaging Samples)

Qe ¼ 10 log10

2N þ m2 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N þ m2
p

2N þ m2

 !

: ð17Þ

Theorem 2 indicates that the number of averaging

samples is only related to m2, but has no relationship with

r2. Figure 7 gives the relationship between the required

number of averaging samples and Rician fading parameter

m, i.e., N = fN(m).

4.3 Dynamic estimation of Rician factors

The required sampling intervals Dd can be calculated by

the ratio of 2L to N, i.e., Dd ¼ f2Lðk; m; rÞ=fNðmÞ ¼
fDdðk; m; rÞ, which can determine the sampling frequency of

on-line measurement. Since Dd is closely related to the

Rician fading parameters m and r, the Rician factor esti-

mation has a significant influence on the overall measure-

ment efficiency.

To reduce the estimation overhead, EM algorithm [16]

is utilized to estimate the noise variance and the signal

simultaneously. The Rician fading parameters m2 and r2

are determined by the signal samples and estimation results

of last time as follows:

mkþ1 ¼
1

N

X

N

i¼1

I1
mkzi

r2
k

� 	

I0
mkzi

r2
k

� 	 zi; ð18Þ

r2
kþ1 ¼ max

1

2N

X

N

i¼1

z2
i �

m2
k

2
; 0

" #

; ð19Þ

where I1ð�Þ is is the first-order modified Bessel function of

the first kind, N is the number of averaging samples, mk and

rk are the estimation results of last recursion. The initial

values are
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m0 ¼ 2
1

N

X

N

i¼1

z2
i

 !2

� 1

N

X

N

i¼1

z4
i

0

@

1

A

1=4

; ð20Þ

r2
0 ¼

1

2

1

N

X

N

i¼1

z2
i � m0

 !

: ð21Þ

Based on the estimated Rician channel parameters, the

sampling frequency can be determined, which is in terms with

k, m and r. The procedure of dynamic estimation is shown in

Fig. 8, in which the determination of 2L and N is the main

component. Then the local mean power can be achieved by at

least N signal strength samples, which is separated by distance

Dd within a averaging window length of 2L.

The sampling intervals Dd has an significant impact on

the measurement accuracy and overhead. Note that Dd is

the ratio of length of statistical interval 2L and number of

averaging samples N, it does not necessarily mean frequent

sampling when 2L gets short, for N may be very small at

the same time as shown in Theorem 1 and 2.

5 Implementation

The algorithm design and implementation is presented in

this section, which first gives a brief description of on-line

measurement procedure and then demonstrates the soft-

ware framework and development.

(a) (b)

(c) (d)

Fig. 6 Proper length of statistical intervals. a r = 1. b r = 3. c r = 5. d r = 7

Fig. 7 Required number of averaging samples
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The dynamic estimation algorithm is given in Algorithm 1,

which is based on the derivation and calculation introduced in

the previous section. First, the initialization is conducted to

calculate the initial value of Rician fading factors m0 and r0. It

is calculated by EM algorithm with the statistical interval

length 2L = 40k and averaging sample numbers N = 36.

Then mk and rk are estimated in every k-th compute cycles

based on the estimation results of the last round. At the same

time, the averaging factors 2L and N of next cycle are calcu-

lated based on the measurement samples and Rician fading

factors. Finally, the sampling interval is determined by

Dd ¼ 2L=N, which can be converted into the time scale

through the current velocity of train vtrain. The process of

received signal strength sampling and fading channels factors

estimation are conducted in each compute cycle.

To get the received data and evaluate the measurement

performance, we developed the Um interface monitoring

system for GSM-R networks. As is illustrated in Fig. 9, the

dynamic estimation algorithm is implemented on this plat-

form and provides basic information to up-layer applica-

tions. The raw data of RSS is collected by GSM-R device,

which is composed of the information of current cell and 6

neighbour cells. Then it is processed by the dynamic esti-

mation algorithm to provide current network status and

conduct next signal sampling. The system also provides RSS

prediction based on the weighted averaging of signal sam-

ples, and gives warning information when the communica-

tion performance is lower than certain threshold. Since the

system records the RSS of current and neighbour cells, the

data can be used to make handover analysis and network

optimization. Except the physical layer information, the

system can also give quality of service of the link layer,

including data traffic and voice service.

The hardware and software architecture of Um interface

monitoring system is shown in Fig. 10. The system’s CPU

module is RTD’s CME137686LX-W including a 333 MHz

AMD Geode LX processor with 128 kB L1 cache and

128 kB L2 cache, and the GSM-R module is COM161

Fig. 8 On-line and dynamic

estimation of Rician fading

channels
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55RER-1 using Triorail’s engine TRM:3a. The system’s

power supply, CPU and GSM-R modules are connected

through PC/104 bus, and other peripherals through its

specific interface. The hardware components are demon-

strated in Fig. 10a. The software is independently devel-

oped by our research group, which uses Microsoft .NET

Compact Framework written in C#, and it can run on

various operating systems including Windows XP/Mobile/

CE. The software interface is shown in Fig. 10b.

6 Evaluation

This section presents the measurement experiments and

performance evaluation of on-line and dynamic estimation

algorithm proposed previously. The received signal

strength measurements, which is implemented by the Um

monitoring system, were carried out along the Beijing–

Shanghai high-speed railway, and the accuracy and over-

head of the proposed algorithm is evaluated.

The measurement experiment is carried out by the Um

interface monitoring system of GSM-R networks, as is

shown in Fig. 10. The received signal strength was col-

lected along the Beijing–Shanghai high-speed railway.

Since the velocity of train is up to 300 km/h and the

sampling interval is 500 ms limited by the length of

Fig. 9 Software framework and algorithm implementation

(a) (b)

Fig. 10 Um interface monitoring system of GSM-R networks. a Hardware design. b Software development

(a)

(b)

Fig. 11 Estimation results of local mean power. a Received signal

strength and long-term fading. b Short-term fading
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measurement multi-frame, it requires repeated data col-

lection to evaluate the estimation algorithm. Part of mea-

surement results is demonstrated in Fig. 12, and the long-

term and short-term fading are separated after on-line

propagation estimation. As is shown in Fig. 11, the long-

term and short-term fading are differentiated so that they

can be analyzed separately. The long-term parts can be

used to make propagation prediction by Maximum Like-

lihood (ML) or Minimum Mean Square Error (MMSE)

estimator. On the other hand, the short-term variations are

essential to the section of the hysteresis in handoff

algorithms.

The estimation results is summarized in Table 1 in detail,

and it gives the length of statistical interval and number of

averaging samples according to different propagation

environments. The types of different terrains are distin-

guished by Rician fading factor K, i.e., it is intensive area

without LOS components when K = 0, and the propagation

environment becomes more flat gradually along with the

increase of K. The on-line estimation results are compared to

Lee’s method in the case of K = 0 which means the fading

channels is Rayleigh distributed. It requires smaller sam-

pling intervals in Lee’s method compared to dynamic esti-

mation, which can be increased from 1.1 to 3.7k. The mean

power in the direct path increase as the terrain becomes flat,

so that the number of averaging samples is less than 5 when

m becomes larger than 10. So it does not need to make fre-

quent sampling although the length of statistical interval

decreases, which can be set up to 12k to reduce the mea-

surement overhead.

7 Conclusion

This paper proposed the on-line and dynamic estimation

algorithm of Rician fading channels in GSM-R networks,

Fig. 12 Measurement results of wireless propagation along Beijing–

Shanghai high-speed railway. Columns D–K represent the measured

data of current cell, including channel NO. (chann), RSS (dBm),

Network Color Code (NCC), Base station Color Code (BCC), Cell

Selection & Reselection criteria (C1 & C2), etc. The other columns

are the parameters of neighbour cells

Table 1 Summary of experiment results

Terrain K (dB) m r 2LðkÞ N DdðkÞ Dd(m) vtrain(km/h)

200 250 300

Dt (ms)

NLOS* 0 – – 40 36 1.1 0.367 2.20 1.76 1.47

Intensive 0 0 1 55 15 3.7 1.222 7.33 5.86 4.89

2 4 2 18 12 1.5 0.500 3.00 2.40 2.00

4 5.6 2 9 9 1.0 0.333 2.00 1.60 1.33

6 6 3 20 7 2.9 0.967 5.80 4.64 3.87

8 12 3 8 1 8.0 2.667 16.00 12.80 10.67

Open 10 18 4 12 1 12.0 4.000 24.00 19.20 16.00

* Calculated by Lee’s method of local mean power estimation in the case of Rayleigh fading
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which is influential for the real-time reliability of high-speed

railway systems. We gave the basic procedures of the dynamic

estimation algorithm which is similar to the Lee’s standard

procedure except that the multi-path fading channel is Rician

distributed, for the cell radius is designed short and the terrain

is generally flat in GSM-R networks. Then we discussed the

determination of proper length of statistical intervals and

required number of averaging samples, in which EM method

is employed to reduce the estimating overhead and make the

measurement adaptive to different propagation environments.

To evaluate the performance of the dynamic algorithm,

the Um interface monitoring system is developed and

extensive experiments were implemented along the Bei-

jing–Shanghai high-speed railway. It is demonstrated that

the long-term and short-term fading signals can be differ-

entiated separately by the proposed estimation algorithm.

In the end, the experimental results were summarized and

compared to Lee’s local power estimating method. It

requires smaller sampling intervals in Lee’s method than

that of dynamic method when it is NLOS propagation,

which can be increased from 1.1 to 3.7k. Furthermore, it

does not need to make frequent sampling although the

length of statistical interval decreases when there is LOS

signal, which can be set up to 12k to reduce the mea-

surement overhead.

The dynamic estimation algorithm can be not only used in

coverage assessment with lower measurement overhead

which is implemented in network planning stage, but also

applied in real-time operating such as dynamic channel allo-

cation, power control and adaptive handoff algorithms. Since

Rician fading is the generalized model of multi-path fading

channels, the dynamic algorithm can also be introduced into

measurement of other wireless networks.
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Appendix Proof of Theorem 1 and 2

Proof of Theorem 1

The normlving the integral formualized estimation error Pe

can be determined by ŝ and rŝ according to Definition 1,

and rŝ can be calculated by

r2
ŝ ¼

1

L

Z

2L

0

1� s
2L

� 	

Rp2
r
ðsÞds; ð22Þ

where Rp_r
2 (s) = E[pr

2(x)pr
2(x ? s)] - E[pr

2(x)]E[pr
2(x ? s)] is

the autocovariance function of the squared envelope of pr(x).

Rp_r
2 (s) can be derived from Rician distribution (Eqs. 6, 7 in

Sect. 2) by approximation [4] as follows:

Rp2
r
ðsÞ ¼ 4r2 J2

0

2p
k

s

� �

þ 2KJ0

2p
k

s

� �

cos
2p
k

gs

� �� 

;

ð23Þ

where J0ð�Þ is the zero-order Bessel function, and g ¼
cos h0 is the intermediate valuable. Then r2

ŝ can be

calculated by substituting (23) into (22), i.e.,

r2
ŝ ¼

4r2

L

Z

2L

0

2L� s
2L

½J2
0ð

2p
k

sÞ þ 2KJ0ð
2p
k

sÞ cosð2p
k

gsÞ�ds

¼ ŝ2ð2L� kÞk
2ð1þ KÞ2L2

Z

2L
k

0

½J2
0ð2pqÞ þ 2KJ0ð2pqÞ cosð2pgÞ�qdq;

ð24Þ

where q = s/k is the intermediate valuable and r2
ŝ ! 0 as

2L=k!1. ŝ can be considered as Gaussian distributed

when 2L is large enough. Then r2
ŝ can be represented by

the simple form as follows:

r2
ŝ ¼

2ðn� 1Þ
n2ð1þ KÞ2

Z

n

0

gðK; qÞdq; ð25Þ

where n: = 2L/k represents the relationship between sta-

tistical intervals 2L and wireless prorogation wavelength

k; gðK; qÞ :¼ ½J2
0ð2pqÞ þ 2KJ0ð2pqÞ cosð2pgÞ�q is the

intermediate function.

Given the definition of normalized estimation error Pe in

(12), it can be calculated by substituting (25) into (12) and

solving the integral formula. Then Pe can be determined by

Pe :¼ 10 log10

ŝþ rŝ

ŝ� rŝ

� �

¼ 10 log10

nð1þ KÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ nÞ
R n

0
gðK; qÞdq

q
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ nÞ
R n

0
gðK; qÞdq

q

0

B

@

1

C

A

¼ 10 log10
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2r2 nþ
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R n
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2r2 ; q
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dq
q
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R n
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dq
q

0
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ð26Þ
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Proof of Theorem 2

According to the characteristics of Rician distribution, it can

be expressed that zi
2 = xi

2 ? yi
2 where xi�Nðm cos g; r2Þ and

yi�Nðm sin g; r2Þ are statistically independent normal ran-

dom variables and g is any real number. Let x0i = xi/r, then

x0i�Nðm sin g; 1Þ and its sum subject to the non-central

v2 distribution, that is
PN

i¼1 x2
0i� v2

Nðm2 cos2 gÞ. For

E[vn
2(k)] = n ? k and D[vn

2(k)] = 2n ? 4k, the mean value

and variance of
PN

i¼1 x2
i can be calculated by:

E
X

N

i¼1

x2
i

" #

¼ r2E
X

N

i¼1

x2
0i

" #

¼ r2E v2
Nðm2 cos2 gÞ


 �

¼ r2 N þ m2 cos2 g
� �

;

ð27Þ
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X

N

i¼1

x2
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" #

¼ r4D v2
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 �

¼ r4 2N þ 4m2 cos2 g
� �

;

ð28Þ

and E
PN

i¼1 y2
i


 �

¼ r2ðN þ m2 sin2 gÞ;D
PN

i¼1 y2
i


 �

¼
r4ð2N þ 4m2 sin2 gÞ can also be calculated in the same

way. Then the expectation of r2 and its variance can be

calculated by:

�r2 ¼ E
1

N

X

N

i¼1

z2
i

" #
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N
E
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Then the estimation error can be calculated according to

(29) and (30) as follows:

Qe ¼ 10 log10

�r2 þ r �r2

�r2

� �

¼ 10 log10

r2

N 2N þ m2ð Þ þ 2r2

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N þ m2
p

r2

N ð2N þ m2Þ

 !

¼ 10 log10

2N þ m2 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N þ m2
p

2N þ m2

 !

:

ð31Þ
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