Using Data Fusion and Web Mining to Support Feature Location in Software

Meghan Revelle, Bogdan Dit, Denys Poshyvanyk

18th IEEE International Conference on Program Comprehension (ICPC’10)
Feature: a requirement that user can invoke and that has an observable behavior.
Textual Feature Location

- **Information Retrieval (IR)**
 - Searching for documents or within docs for relevant information

- **First used for feature location by Marcus et al. in 2004**.
 - Latent Semantic Indexing** (LSI)

- **Utilized by many existing approaches**: PROMESIR, SITIR, HIPIKAT etc.

Applying LSI to Source Code

- **Corpus creation**
 - Choose granularity

- **Preprocessing**
 - Stop word removal, splitting, stemming

- **Indexing**
 - Term-by-document matrix
 - Singular Value Decomposition

- **Querying**
 - User-formulated

- **Generate results**
 - Ranked list
Dynamic Feature Location

Software Reconnaissance*

Feature Invoked

Feature Not Invoked

Scenario-based Probabilistic Ranking (SPR)**

Hybrid Feature Location

<table>
<thead>
<tr>
<th></th>
<th>PROMESIR*</th>
<th>SITIR**</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSI score</td>
<td>SPR score</td>
<td>Execution Trace</td>
</tr>
<tr>
<td>m₁₅ 0.91</td>
<td>m₅₂ 0.80</td>
<td>m₆ 0.715</td>
</tr>
<tr>
<td>m₁₆ 0.88</td>
<td>m₄₇ 0.66</td>
<td>m₄₇ 0.70</td>
</tr>
<tr>
<td>m₂ 0.85</td>
<td>m₆ 0.64</td>
<td>m₅₂ 0.70</td>
</tr>
<tr>
<td>m₆ 0.79</td>
<td>m₂ 0.53</td>
<td>m₂ 0.69</td>
</tr>
<tr>
<td>m₄₇ 0.74</td>
<td>m₁₅ 0.37</td>
<td>m₁₅ 0.64</td>
</tr>
<tr>
<td>m₅₂ 0.60</td>
<td>m₁₆ 0.34</td>
<td>m₁₆ 0.61</td>
</tr>
<tr>
<td>... ...</td>
<td>... ...</td>
<td>main</td>
</tr>
</tbody>
</table>

Probabilistic Ranking of Methods Based on Execution Scenarios and Information Retrieval

Single Trace and Information Retrieval

Data Fusion Example

Global Positioning System (GPS)
- Discrete measurements
- Meter accuracy
- Noisy
+ No drift

Inertial Navigation System (INS)
+ Continuous measurements
+ Centimeter accuracy
+ Low noise
- Drifts over time

Actual Position
Data Fusion for Feature Location

• Combining information from multiple sources will yield better results than if the data is used separately
 - Previous
 • Textual, Dynamic, and Static
 - Current
 • Textual info from IR
 • Execution info from dynamic tracing
 • Web mining
Web Mining

![Diagram](image)

Results 1 - 10 of about 19,800,000 for web mining (0.37 seconds)

- the free encyclopedia
 - a collection of data mining techniques to discover patterns from the targets, **web mining** can be divided into...
- Caching - Web structure mining
- Cached - Similar -

Ins and Techniques - Google Books Results
- Computers - 427 pages
- and related applications in a manner that encourages additional abstraction of information overflow, which...
- bn=1591404142...

Search: A Survey
- Google - Quick View
- Related articles
- a converging research area from several research communities, mining and when comparing research in this...
- c/download;jsessionid...?doi=10.1.1...

Upon in data mining terms, can be said to have three operations grouping of users, ...
- Cached - Similar -

reb-mine/
Web Mining Algorithms

PageRank

- Measure the relative importance of a web page
- Used by the Google search engine
- Link from X to Y means a vote by X for Y
- A node’s PageRank depends on # incoming links and the PageRank of nodes that link to it

Image source: http://en.wikipedia.org/wiki/Pagerank

Web Mining Algorithms

HITS

- Hyperlinked-Induced Topic Search
- Identifies hub and authority pages
- Hubs point to many good authorities
- Authorities are pointed to by many hubs

Probabilistic Program Dependence Graph*

PPDG
- Derived from feature-specific trace
- Binary weights
- Execution frequency weights

Incorporating Web Mining with Feature Location
Feature Location Techniques Evaluated

<table>
<thead>
<tr>
<th>LSI & Dynamic Analysis</th>
<th>Web Mining</th>
<th>LSI, Dyn, & PageRank</th>
<th>LSI, Dyn, & HITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSI</td>
<td>PR(bin)</td>
<td>LSI+Dyn+PR(bin)(^\text{top})</td>
<td>LSI+Dyn+HITS(h,bin)(^\text{top})</td>
</tr>
<tr>
<td>LSI+Dyn</td>
<td>PR(freq)</td>
<td>LSI+Dyn+PR(bin)(^\text{bottom})</td>
<td>LSI+Dyn+HITS(h,req)(^\text{top})</td>
</tr>
<tr>
<td>(baseline)</td>
<td>HITS(h, bin)</td>
<td>LSI+Dyn+PR(freq)(^\text{top})</td>
<td>LSI+Dyn+HITS(a,bin)(^\text{top})</td>
</tr>
<tr>
<td></td>
<td>HITS(h, freq)</td>
<td>LSI+Dyn+PR(freq)(^\text{bottom})</td>
<td>LSI+Dyn+HITS(a,req)(^\text{top})</td>
</tr>
<tr>
<td></td>
<td>HITS(a, bin)</td>
<td></td>
<td>LSI+Dyn+HITS(a,bin)(^\text{bottom})</td>
</tr>
<tr>
<td></td>
<td>HITS(a, freq)</td>
<td></td>
<td>LSI+Dyn+HITS(a,req)(^\text{bottom})</td>
</tr>
</tbody>
</table>

Use LSI to rank methods, prune unexecuted

Use web mining algorithm to rank methods.

Use LSI to rank methods. Prune unexecuted. Use web mining algorithm to also rank methods and prune top- or bottom- ranked methods from LSI+Dyn’s results.
Feature Location Techniques Explained

LSI+Dyn

PR(bin)

HITS(h, bin)

Source Code

LSI Query Tracer Scenario

Ranked Methods Executed Methods

Web Mining

Ranked Methods+

Ranked, Executed Methods+

Final Results
Subject Systems

• Eclipse 3.0
 - 10K classes, 120K methods, and 1.6 million LOC
 - 45 features
 - **Gold set**: methods modified to fix bug
 - **Queries**: short description from bug report
 - **Traces**: steps to reproduce bug
Bug 66914 - [typing] Error Message after undo copy/paste

Status: VERIFIED FIXED
Product: JDT
Component: Text
Version: 3.0
Platform: PC All

Importance: P2 major (vote)
Target Milestone: 3.0 RC3
Assigned To: Tom Hofmann
QA Contact:

See Also:

Attachments

<table>
<thead>
<tr>
<th>error log (5.43 KB, text/plain)</th>
<th>no flags</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004-06-14 08:17 EDT, Ralf Schmauder</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LinkedModeUI.diff (4.59 KB, patch)</th>
<th>no flags</th>
<th>Details</th>
<th>Diff</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004-06-18 09:59 EDT, Tom Hofmann</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Add an attachment (proposed patch, testcase, etc.) View All

Ralf Schmauder 2004-06-14 08:16:24 EDT

- create a new Class and generate the main method
- type "sysout" and use the code completion
- type the double quote
- paste Hello World into the double quotes
- try to undo without saving using Ctrl+z

using undo in the menubar does work
Subject Systems

- **Rhino 1.5**
 - 138 classes, 1,870 methods, and 32,134 LOC
 - 241 features
 - **Gold set**: Eaddy et al.’s dataset*
 - **Queries**: description in specification
 - **Traces**: test cases

Size of Traces

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
<th>25%</th>
<th>Med</th>
<th>75%</th>
<th>σ</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eclipse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methods</td>
<td>88K</td>
<td>1.5MM</td>
<td>312K</td>
<td>525K</td>
<td>1MM</td>
<td>666K</td>
<td>406K</td>
</tr>
<tr>
<td>Unique Methods</td>
<td>1.9K</td>
<td>9.3K</td>
<td>3.9K</td>
<td>5K</td>
<td>6.3K</td>
<td>5.1K</td>
<td>2K</td>
</tr>
<tr>
<td>Size-MB</td>
<td>9.5</td>
<td>290</td>
<td>55</td>
<td>98</td>
<td>202</td>
<td>124</td>
<td>83</td>
</tr>
<tr>
<td>Threads</td>
<td>1</td>
<td>26</td>
<td>7</td>
<td>10</td>
<td>12</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Rhino</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methods</td>
<td>160K</td>
<td>12MM</td>
<td>612K</td>
<td>909K</td>
<td>1.8MM</td>
<td>1.8MM</td>
<td>2.3MM</td>
</tr>
<tr>
<td>Unique Methods</td>
<td>777</td>
<td>1.1K</td>
<td>870</td>
<td>917</td>
<td>943</td>
<td>912</td>
<td>54</td>
</tr>
<tr>
<td>Size-MB</td>
<td>18</td>
<td>1,668</td>
<td>71</td>
<td>104</td>
<td>214</td>
<td>210</td>
<td>273</td>
</tr>
<tr>
<td>Threads</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Research Questions

• RQ1
 - Does combining web mining algorithms with an existing approach to feature location improve its effectiveness?

• RQ2
 - Which web-mining algorithms, HITS or PageRank, produces better results?
Data Collection & Testing

- **Effectiveness measure**
 - Descriptive statistics
 - 45 Eclipse features
 - 241 Rhino features

- **Statistical Testing**
 - Wilcoxon rank sum test
 - Null hypothesis
 - There is no significant difference between the effectiveness of \(X \) and the baseline (LSI+Dyn).
 - Alternative hypothesis
 - The effectiveness of \(X \) is significantly better than the baseline (LSI+Dyn).

<table>
<thead>
<tr>
<th>LSI score</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_{15})</td>
<td>0.91</td>
</tr>
<tr>
<td>(m_{16})</td>
<td>0.88</td>
</tr>
<tr>
<td>(m_2)</td>
<td>0.85</td>
</tr>
<tr>
<td>(m_6)</td>
<td>0.79</td>
</tr>
<tr>
<td>(m_{47})</td>
<td>0.74</td>
</tr>
<tr>
<td>(m_{52})</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Effectiveness = 4
Results: Web Mining Techniques

Eclipse

Rhino

- LSI
- LSI+Dyn
- PR(freq)
- PR(bin)
- HITS(a, freq)
- HITS(a, bin)
- HITS(h, freq)
- HITS(h, bin)
Results: IR, Dyn, & Web Mining

Eclipse

1. LSI+Dyn
2. LSI+Dyn+PR(freq)\text{top} \{40, 60\}%
3. LSI+Dyn+PR(freq)\text{bot} \{20, 70\}%
4. LSI+Dyn+PR(bin)\text{top} \{40, 60\}%
5. LSI+Dyn+PR(bin)\text{bot} \{10, 70\}%
6. LSI+Dyn+HITS(a, freq)\text{top} \{30, 70\}%

Rhino

7. LSI+Dyn+HITS(a, freq)\text{bot} \{40, 60\}%
8. LSI+Dyn+HITS(h, freq)\text{top} \{10, 70\}%
9. LSI+Dyn+HITS(h, freq)\text{bot} \{60, 50\}%
10. LSI+Dyn+HITS(a, bin)\text{top} \{20, 70\}%
11. LSI+Dyn+HITS(a, bin)\text{bot} \{40, 40\}%
12. LSI+Dyn+HITS(h, bin)\text{top} \{10, 70\}%
13. LSI+Dyn+HITS(h, bin)\text{bot} \{70, 60\}%
A Case in Point: Eclipse exclusion filter

LSI = 1,696

LSI+Dyn+
HITS(h, bin)\text{bottom}
= 24
Results of the Wilcoxon Rank Sum test comparing these techniques to the baseline, LSI+Dyn.

Null Hypothesis: There is no significant difference between the effectiveness of X and the baseline, LSI+Dyn.

<table>
<thead>
<tr>
<th></th>
<th>Eclipse</th>
<th>Rhino</th>
<th>Null Hypothesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR(bin)</td>
<td>1</td>
<td>1</td>
<td>Not Rejected</td>
</tr>
<tr>
<td>PR(freq)</td>
<td>1</td>
<td>1</td>
<td>Not Rejected</td>
</tr>
<tr>
<td>HITS(h, bin)</td>
<td>1</td>
<td>1</td>
<td>Not Rejected</td>
</tr>
<tr>
<td>HITS(h, freq)</td>
<td>1</td>
<td>1</td>
<td>Not Rejected</td>
</tr>
<tr>
<td>HITS(a, bin)</td>
<td>1</td>
<td>1</td>
<td>Not Rejected</td>
</tr>
<tr>
<td>HITS(a, freq)</td>
<td>1</td>
<td>1</td>
<td>Not Rejected</td>
</tr>
<tr>
<td>LSI+Dyn+PR(bin)\text{top}</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td>Rejected</td>
</tr>
<tr>
<td>LSI+Dyn+PR(bin)\text{bottom}</td>
<td>0.004</td>
<td>0</td>
<td>Rejected</td>
</tr>
<tr>
<td>LSI+Dyn+PR(freq)\text{top}</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td>Rejected</td>
</tr>
<tr>
<td>LSI+Dyn+PR(freq)\text{bottom}</td>
<td>< 0.0001</td>
<td>0.74</td>
<td>Not Rejected</td>
</tr>
<tr>
<td>LSI+Dyn+HITS(a, freq)\text{top}</td>
<td>0</td>
<td>< 0.0001</td>
<td>Rejected</td>
</tr>
<tr>
<td>LSI+Dyn+HITS(a, freq)\text{bottom}</td>
<td>< 0.0001</td>
<td>0.99</td>
<td>Not Rejected</td>
</tr>
<tr>
<td>LSI+Dyn+HITS(h, freq)\text{top}</td>
<td>0</td>
<td>1</td>
<td>Not Rejected</td>
</tr>
<tr>
<td>LSI+Dyn+HITS(h, freq)\text{bottom}</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td>Rejected</td>
</tr>
<tr>
<td>LSI+Dyn+HITS(a, bin)\text{top}</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td>Rejected</td>
</tr>
<tr>
<td>LSI+Dyn+HITS(a, bin)\text{bottom}</td>
<td>< 0.0001</td>
<td>1</td>
<td>Not Rejected</td>
</tr>
<tr>
<td>LSI+Dyn+HITS(h, bin)\text{top}</td>
<td>0</td>
<td>1</td>
<td>Not Rejected</td>
</tr>
<tr>
<td>LSI+Dyn+HITS(h, bin)\text{bottom}</td>
<td>< 0.0001</td>
<td>< 0.0001</td>
<td>Rejected</td>
</tr>
</tbody>
</table>
Research Questions Revisited

- **RQ1**: Does combining web mining algorithms with an existing approach to feature location improve its effectiveness?
 - Yes

- **RQ2**: Which web-mining algorithms, HITS or PageRank, produces better results?
 - HITS
Best Techniques

- LSI+Dyn+HITS\(h, \text{ freq}\)\text{bottom}
- LSI+Dyn+HITS\(h, \text{ bin}\)\text{bottom}

- Methods with low HITS hub values are getters and setters
Current Work (not in the paper)

- HITS and PageRank on static vs. dynamic info
- Evaluation first relevant vs. all relevant methods
- Evaluation against fan-in and fan-out and heuristics based on setters and getters
- Impact of thresholds on the filtering power
Tool Support

- FLAT3
 - Eclipse Plug-in
 - Lucene-based IR
 - Execution tracing
 - Integration
 - Tagging
 - Metrics

http://www.cs.wm.edu/semeru/flat3/

Summary

- Proposed and implemented novel methods for feature location based combinations of:
 - Textual analysis, dynamic analysis and web mining
- Evaluated proposed methods on large, open-source systems
- Developed practical tools for the proposed approaches
- Released benchmarks for feature location:
Thank you. Questions?

SEMERU @ William and Mary

http://www.cs.wm.edu/semeru/
denys@cs.wm.edu