CSCI 303 Algorithms

Homework 5

Due: 11:00 in class, October 9, 2001

1. Heap initialization of an input array 10, 12, 1, 14, 6, 5, 8, 15, 3, 9, 7, 4, 11, 13, 2.
 (a) (5 points) Show the result of inserting the numbers, one at a time, into an
 initially empty min heap.
 (b) (5 points) Use the linear-time heap initialization algorithm to build a min
 heap using the same input.

2. A min-max heap is a data structure that supports both DeleteMin and DeleteMax
 in \(O(\log n)\) per operation. The structure is identical to a regular heap, but the
 heap property is that for any node \(x\) at even depth, the key in \(x\) is the smallest
 in its subtree, and for any node \(x\) at odd depth, the key in \(x\) is the largest in its
 subtree. Assume that the root is at even depth of 0. For example, array 6, 81, 87,
 14, 17, 12, 28, 71, 25, 80, 52, 78, 31, 42, 31, 59, 16, 24, 79, 63, 18, 19, 32,
 13, 15, 48 represents a min-max heap.
 (a) (2 points) How do you find the minimum in a min-max heap?
 (b) (3 points) Describe how DeleteMin can be done in \(O(\log n)\) time.
 (c) (2 points) How do you find the maximum in a min-max heap?
 (d) (3 points) Describe how DeleteMax can be done in \(O(\log n)\) time.