2 Algorithm analysis method

Reading: MAW: Chapter 2

2.1 Asymptotic notation

- Used to compare growth rate or order of magnitude for increasing functions. “Asymptotic” deals with the behavior of functions in the limit, for sufficiently large values of variables.

- \(f(n) = O(g(n)) \) if \(\exists c, n_0 \) such that \(f(n) \leq cg(n) \) for \(n \geq n_0 \).

- \(f(n) = \Omega(g(n)) \) if \(\exists c, n_0 \) such that \(f(n) \geq cg(n) \) for \(n \geq n_0 \). (Or equivalently, \(g(n) = O(f(n)) \).)

- \(f(n) = \Theta(g(n)) \) if \(\exists c_1, c_2, n_0 \) such that \(c_2g(n) \leq f(n) \leq c_1g(n) \) for \(n \geq n_0 \). (Or equivalently, \(f(n) = O(g(n)) \) and \(f(n) = \Omega(g(n)) \).)

Remarks:
- Asymptotic notation: growth rate or order of magnitude, not exact value of the functions.

- \(O(\leq), \Omega(\geq), \) and \(\Theta(=) \).

- Ignores constant factors as well as lower-order terms, e.g., \(10^9n^2 + 10^{10}n + 10^{100} = O(n^2) \).

- Ordered by increasing growth rate: constant \(<\) polylogarithmic \(<\) polynomial \(<\) exponential, i.e., 1, \(\log n \), \(\log^2 n \), \(n \), \(n\log n \), \(n^2 \), \(2^n \).

- If \(T_1(n) = O(f(n)) \) and \(T_2(n) = O(g(n)) \), then \(T_1(n) + T_2(n) = \max\{O(f(n)), O(g(n))\} \) and \(T_1(n) \cdot T_2(n) = O(f(n) \cdot g(n)) \).

Examples:
1. Compare \((\log n)^{100}\) and \(n^{0.01}\).
2. Order the following functions by increasing growth rate.
 \(\sqrt{n}, n^2, n!, \sqrt{n}\log n, 10n, 2^n, (\log n)^2, 2^{2^n}, \ln n, n^{\log\log n}, 1, n\log n, \sqrt{\log n}, n2^n \).

2.2 Time complexity of algorithms

- Factors that affect the actual running time of an algorithm: hardware (computer), software (language), people (programmer), and data (input). Can the analysis of algorithms ignore those complex factors?

- Measure the running time (time complexity) by the number of basic steps that the algorithm goes through.

- What is a basic step? \(+, -, \times, /, \) comparison, assignment, predicate evaluation, etc.. (**, while, and for are not.)

- Define the time complexity as a function of input size, which returns the number of basic steps. That is, time complexity \(T(n) \) is the number of basic steps for inputs of size \(n \).

- What is the input size? The amount of memory needed to store the input data. For example,

<table>
<thead>
<tr>
<th>Input</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>List</td>
<td># of items</td>
</tr>
<tr>
<td>Matrix</td>
<td># of rows and columns</td>
</tr>
<tr>
<td>Graph</td>
<td># of vertices and edges</td>
</tr>
<tr>
<td>Integer</td>
<td># of bits</td>
</tr>
</tbody>
</table>

- What if there are millions of inputs with size \(n \)? We use the worst-case time complexity.

 - \(I_n \): Any input of size \(n \).
 - \(t(I_n) \): Time (number of basic steps) spent on \(I_n \) by the algorithm.
The worst-case time complexity of the algorithm is defined to be \(\max_{x \in A} \{ t(I_x) \} \). (But this is not how you calculate \(T(n) \).)

How to analyze the worst-case time complexity of an algorithm:

- Determine the input size \(n \);
- What is the worst case?
- Count the number of basic steps for that worst case and represent it as a function of \(n \). (Shortcuts may be taken.)
- Simplify the function by using the asymptotic notation.

Example: Compute \(\sum_{i=1}^n i^3 \).

```java
sum = 0
for i = 1 to n
    sum = sum + i * i * i
return sum
```

Time complexity: \(T(n) = 1 + (2n^2) + 4n + 1 = 6n + 4 = O(n) \).

Shortcut: \(T(n) = O(1) + O(n) = O(n) \).

General rules:

- Consecutive statements: These just add (meaning that the maximum is the one that counts). For example, \(O(1) + O(n^2) + O(n) = O(n^2) \).
- If \(C \) then \(S_1 \) else \(S_2 \): The running time is the running time of \(C \) plus the larger of the running times for \(S_1 \) and \(S_2 \).
- Loops/Nested loops: The running time is decided by the running time of the statement executed most (in the innermost loop), which can be computed by using summations. For example,
  ```java
  for i = 1 to n
      for j = 1 to n
          k ++
  ```

Time complexity: \(T(n) = \sum_{i=1}^n \sum_{j=1}^n 1 = \sum_{i=1}^n n = O(n^2) \).

2.3 An example: The maximum subsequence sum

- Given integers \(a_1, a_2, \ldots, a_n \), find the maximum value of \(\sum_{k=i}^j a_k \) for \(1 \leq i \leq j \leq n \). (Also called the maximum subsequence sum.)

- For example, for input \(-2, 11, -4, 13, -5, -2\), the answer is 20 (\(i = 2 \) and \(j = 4 \)).

- **Algorithm 1:** Check all subsequences (blocks of consecutive items in the array).

 Idea: For each starting index \(i = 1, \ldots, n \), let the ending index \(j = i, \ldots, n \). Compute \(\sum_{k=i}^j a_k \) and keep track of the maximum sum.

```java
Input: a[1], ..., a[n]
Output: mss
mss = a[1]
for i = 1 to n
    for j = i to n
        sum = 0
        for k = i to j
            sum = sum + a[k]
        if sum > mss
            mss = sum
return mss
```
Time complexity: $O(n^3)$.

- Algorithm 2: Same as Algorithm 1, but uses a smart idea to compute $\sum_{k=i}^{j} a_k = \sum_{k=i}^{j-1} a_k + a_j$.

 Input: $a[1], \ldots, a[n]$
 Output: mss

 \[
 mss = a[1] \\
 \text{for } i = 1 \text{ to } n \\
 \quad \text{sum} = 0 \\
 \quad \text{for } j = i \text{ to } n \\
 \quad \quad \text{sum} = \text{sum} + a[j] \\
 \quad \quad \text{if sum > mss} \\
 \quad \quad \quad mss = \text{sum} \\
 \text{return mss}
 \]

 Time complexity: $O(n^2)$.

- Algorithm 3: Divide-and-conquer.

 Idea: Divide the list A into two equal-size sublists, A_1 and A_2. Determine the solutions, mss_1 and mss_2, for A_1 and A_2 recursively. Find the the maximum right subsequence sum, $mrss$, for A_1 and then the maximum left subsequence sum, $mlss$, for A_2. Finally, let mss be the maximum of mss_1, mss_2, and $mrss + mlss$.

 Input: $a[1], \ldots, a[n]$
 Output: mss

 Max_Subsequence_Sum(A)
 if $|A| = 1$
 \quad return $a[1]$
 else
 \quad $A \Rightarrow A_1$ and A_2, with $|A_1| = |A_2|$
 \quad $mss_1 = \text{Max_Subsequence_Sum}(A_1)$
 \quad $mss_2 = \text{Max_Subsequence_Sum}(A_2)$
 \quad $mrss = \text{Max_RSubsequence_Sum}(A_1, |A_1|)$
 \quad $mlss = \text{Max_LSubsequence_Sum}(A_2, |A_2|)$
 \quad $mss = \max(mss_1, mss_2, mrss + mlss)$
 \quad return mss

 Max_RSubsequence_Sum(B, m)
 \[
 mrss = b[m] \\
 \text{sum} = 0 \\
 \text{for } i = m \text{ to } 1 \\
 \quad \text{sum} = \text{sum} + b[i] \\
 \quad \text{if sum > mrss} \\
 \quad \quad mrss = \text{sum} \\
 \text{return mrss}
 \]

 Max_LSubsequence_Sum(B, m)
 \[
 mlss = b[1] \\
 \text{sum} = 0 \\
 \text{for } i = 1 \text{ to } m \\
 \quad \text{sum} = \text{sum} + b[i] \\
 \quad \text{if sum > mlss} \\
 \quad \quad mlss = \text{sum} \\
 \text{return mlss}
 \]
Time complexity:

\[T(n) = \begin{cases}
1 & \text{if } n = 1 \\
2T\left(\frac{n}{2}\right) + n & \text{if } n \geq 2
\end{cases} \]

\[T(n) = 2T\left(\frac{n}{2}\right) + n \\
= 2^2T\left(\frac{n}{4}\right) + 2n \\
= \ldots \\
= 2^kT\left(\frac{n}{2^k}\right) + kn \quad (n = 2^k) \\
= nT(1) + n\log n \\
= O(n\log n) \]

- Algorithm 4: Uses clever design.

Idea: Uses two pointers \textit{start} and \textit{end}. Let \textit{sum} be the corresponding sum of the block pointed by \textit{start} and \textit{end}.

- Case 1: \textit{start} = \textit{end} and \textit{sum} < 0.
 Set \textit{start} = \textit{end} + 1, \textit{end} = \textit{end} + 1, and \textit{sum} = 0.
- Case 2: \textit{start} = \textit{end} and \textit{sum} > 0.
 Set \textit{end} = \textit{end} + 1 and \textit{sum} = \textit{sum} + \textit{a}[\textit{end}].
- Case 3: \textit{start} < \textit{end} and \textit{sum} > 0
 Set \textit{end} = \textit{end} + 1 and \textit{sum} = \textit{sum} + \textit{a}[\textit{end}].
- Case 4: \textit{start} < \textit{end} and \textit{sum} < 0 (for the first time)
 \textit{a}[\textit{end}] must be a very negative number. In fact one can prove that it is so negative (small) that no subsequence with maximum sum includes it.
 Set \textit{start} = \textit{end} + 1, \textit{end} = \textit{end} + 1, and \textit{sum} = 0.

Input: \textit{a}[1], \ldots, \textit{a}[\textit{n}]
Output: \textit{mss}

\textit{mss} = \textit{a}[1]
\textit{sum} = 0
\textit{start} = 1
for \textit{end} = 1 to \textit{n}
 \textit{sum} = \textit{sum} + \textit{a}[\textit{end}]
 if \textit{sum} > \textit{mss}
 \textit{mss} = \textit{sum}
 if \textit{sum} < 0
 \textit{start} = \textit{end} + 1
 \textit{sum} = 0
return \textit{mss}

Time complexity: \(O(n)\).

- Compare \(O(n^3), O(n^2), O(n\log n)\), and \(O(n)\) by experiments (in seconds).

<table>
<thead>
<tr>
<th>(T(n))</th>
<th>(n = 10)</th>
<th>(n = 100)</th>
<th>(n = 1,000)</th>
<th>(n = 10,000)</th>
<th>(n = 100,000)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n^3)</td>
<td>0.00103</td>
<td>0.47015</td>
<td>448.77</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>(n^2)</td>
<td>0.00045</td>
<td>0.01112</td>
<td>1.1233</td>
<td>111.13</td>
<td>NA</td>
</tr>
<tr>
<td>(n\log n)</td>
<td>0.00066</td>
<td>0.00486</td>
<td>0.05843</td>
<td>0.68631</td>
<td>8.0113</td>
</tr>
<tr>
<td>(n)</td>
<td>0.00034</td>
<td>0.00063</td>
<td>0.00333</td>
<td>0.03042</td>
<td>0.29832</td>
</tr>
</tbody>
</table>